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Abstract—Video conferencing over IP (VCoIP) is a major
trend in current Internet communication and has particularly
spread to the mobile realm. In this environment, users face the
problem of heterogeneous and fluctuating network conditions. A
promising solution to this issue is the scalable video coding (SVC).
It allows an adaptation of the video stream to the available band-
width, but requires a reliable bandwidth estimation. Adaptation
times for conversational video at fluctuating network conditions
are critical, and a fast strategy for bandwidth estimation is needed
to avoid congestion. In this work, we analyse the capabilities of
the sender and the receiver to adapt the video coding to changing
network conditions. We derive an early congestion indicator at
the sender side based on the jitter variation. For receivers, we
use sustained goodput to extract a feasible scaling. In thorough
evaluations that include real-world 3G networks, we reveal a
faster congestion detection at the sender that are also more robust
but less accurate than probing at the receiver.

I. INTRODUCTION

Video communication is one of the fastest growing phe-
nomena on the Internet. It has been implemented in many
applications like conferencing software, online games, instant
messaging, and mobile applications [1]. Conversational video
inherits delay sensitivity from audio, while its large band-
width consumption may easily cause or amplify congestion
on the communication path. A congested path can lead to
transmission errors like packet loss, delay and jitter that
typically degrade the visual quality or stall the video flow.
Heterogeneous and varying network conditions as common to
mobile environments increase the likelihood of congestions.

Keeping the video fluent and at appropriate quality requires
a dynamic adaptation, whenever network services fluctuate.
The current video coding standards H.264/AVC [2] and H.265
[3] allow for a dynamic rescaling in time (adaptive framerate)
and quality (adaptive quantization). The scalable video coding
extensions [4] enable additional spatial scaling and arrange lay-
ers in packet streams. All codecs need a proper parametrization
for establishing a robust and reliable video conversation.

Appropriate video scaling is derived from estimating the
bandwidth currently available in the network. Such estimators
are required to detect congestion as early as possible and to
predict a bitrate that complies to the network constraints of the
immediate future.

Network congestions arise at overloaded network elements
when the overall transmission demands exceed the available
bandwidth along the path. It is neither easy to identify the
available bandwidth nor to determine a congested link in real-
time. In general, this can be done at the sender or at the receiver
side, which have access to different measures of network
performance.

In this paper, we explore methods to detect changing
network conditions at the sender and the receiver side, as well
as corresponding strategies for an appropriate video scaling.
In detail, our contributions read:

1) A new algorithm for early congestion indication at the
sender based on the jitter variation observed from a
fast feedback loop of the transport protocol.

2) An adaptation of the inter-arrival jitter for estimating
network conditions at the receiver with an extra
feedback channel to rescale the sender.

3) Experimental analysis of video adaption strategies
based on the estimates of the sender, the receiver,
and a combination of both.

We perform extensive experimental evaluations that include
real-world 3G networks to analyse and justify our approaches.
Our findings include an overall successful adaptation for each
algorithm, with a faster reactivity of the sender-sided scheme,
but a higher accuracy in bandwidth prediction at the receiver.

The remainder of this paper is organized as follows.
Section II discusses the problems and requirements for an
adaptive video conferencing software, followed by references
to related work in Section III. Our core algorithms for detecting
congestion and estimating appropriate scaling parameters is
presented in Section IV. These approaches are applied and
extensively evaluated with the help of our full-fledged video
conferencing software system as documented in Section V. We
conclude with an outlook in Section VI.

II. PROBLEM STATEMENT

The Internet is a highly distributed network that does not
guarantee end-to-end performance. Packet delivery delays are
often caused by a congested path between sender and receiver.
However, avoiding a stuttering video stream is important to
provide a good user experience during a video conference.



To leverage modern video codecs, which can scale to meet
available network resources, three basic tasks need to be
supported: (a) detect a congested path, (b) approximate the
available bandwidth, and (c) adjust the codec accordingly.

A. Requirements

In most video scenarios it is more important to provide
a continuous video stream rather than a high resolution with
interruptions. The time to identify congestion and estimate the
bandwidth is crucial. As soon as a congestion is detected, the
video stream needs downscaling to the available bandwidth.

Any solution that gives input to parametrizing the video
codec should not introduce additional complexity to the net-
work. Dedicated bandwidth probing techniques should be
avoided as they increase congestion in large-scale deploy-
ments. A change of common network protocols should not
be part of the solution space as this hinders deployment.

B. Discussion of the Solution Space

A common approach to determine a congested path based
on video stream mechanisms is to observe the filling level of
the receive buffer [5]. Unfortunately, this is not applicable in
real-time video conferencing application, where an unbuffered
video output is desired. In the following, we discuss different
aspects when designing solutions for adapting the video codec.

Who should control?—Observation 1: In the spirit of end-
to-end connectivity, solutions should not be implemented at
middleboxes, but at the sender or the receiver. The receiver
does not control the encoding or the transmission of the
video flow. Unlike the sender, it has no information about the
transmission time, but can only measure time differences and
the actually arriving bit rate. For a fast video adaptation, the
sender should estimate and control the video quality directly.
This is an advantage over a receiver-sided adaptation as it does
not need an additional response channel to the sender and is
thus faster and introduces less overhead.

Which measure indicates congestion?—Observation 2:
Network overload fills router queues that cause delay. Its
detection should avoid additional signaling, but be built on data
already available from transport. Typically, transport protocols
that maintain transmission state like TCP, Reliable UDP, or
RTP/RTCP provide inherent information about the transmis-
sion time, usually in terms of the round-trip time (RTT).

However, a high RTT does not necessarily indicate a
congestion. The RTT sums the one-way delays from the
sender to the receiver as well as from the receiver to the
sender. A congestion on the return path influences the RTT
even if it does not influence the video stream. This leads
to incorrect reasoning of the delay in particular in case of
highly asymmetric delays, which are visible in the Internet
[6]. For video stream transmission, only the one-way delay
from the source to the destination is relevant, but difficult to
measure. It requires synchronized clocks [7]—a complex task.
It also produces overhead, especially in large-scale multimedia
applications with multiple participants.

In summary, both sender and receiver can detect congestion
and derive countermeasures. Most notably, the receiver can

TABLE I. OVERVIEW OF APPLICATION REQUIREMENTS AND
INVOLVED PARTIES

Application requirements Involved Party
Sender Receiver

Very fast adaption, very low overhead 3 8
Very precise adaption 8 3
Very precise and fast adaption 3 3

measure sustained bandwidths, frame rates and inter-arrival jit-
ter, while the sender can measure RTTs and react immediately
to prevent network overuse. Depending on the video scenario
a sender-based, a receiver-based, or combining both may be
appropriate. We summarize our findings in Table I.

III. RELATED WORK

The objective of this work overlaps with several inde-
pendent research areas, most notably (1) scalable video de-
ployment in heterogeneous regimes, (2) bandwidth estimation
techniques, (3) approaches to adaptive scaling at receiver and
sender, and (4) flow control in the presence of competing
traffic.

1) Scaling a video stream in heterogeneous environments:
Schierl et al. [8] present an overview of basic approaches to
deploying scalable video in mobile realms, regarding various
set-ups for IP and non-IP worlds. Particular focus is given
to the problems of unstable network conditions with signif-
icant packet loss. As such, conversational or broadcast-type
multimedia applications suffer from varying throughput and
a scalable video stream bears potentials to adapt to the poor
network conditions. Insights are given on how the SVC inter-
acts with mobile networks, different QoS metrics, and content
delivery protocols. A real-world implementation of scalable
mobile video conferencing is presented and analysed in [9],
including first steps towards a dynamic network adaptation.

2) Bandwidth measurement: Common approaches to mea-
sure the available bandwidth such as the Probe Gap Model
(PGM) or the Probe Rate Model (PRM) operate in parallel to
the application by separate probing packets [10]. The accuracy
of the bandwidth estimation depends on the probing frequency,
the nature of side traffic, and the duration of the measurement.
For a good comparative overview on these approaches includ-
ing tools, we refer to [11], [12]. These techniques are intrusive,
rather slow, and not compliant to the requirements for a real-
time video conference.

3) Receiver-sided approaches: Barzuza et al. presented
TREND [13], a receiver-sided approach to scale a video stream
to network conditions. TREND was designed for real-time
video applications and does not use a buffer for the incoming
video stream. Instead, the inter-arrival frame gap is used to
detect a congested link. The TREND algorithm has two key
functionalities: The delay detection and the bandwidth adap-
tation. The receiver detects a delay by real-time monitoring
of subsequent video frames. A frame is considered delayed,
if the inter-arrival gap between two frames differs from the
gap of the RTP timestamps. Basically, the algorithm raises the
quality of the video stream until a delayed frame is detected at
the receiver. Thereafter, the video stream is set to the last stable



bit rate prior to the congestion and starts increasing it slowly
after some time. A similar approach is taken at the receiver
side of the Google Congestion Control algorithm (GCC) [14]
that is discussed in the RTCWeb context of the IETF.

Nguyen and Ostermann [15] examine video streams in
an alternative scheme directly following a PGM approach.
Their work is part of a streaming system, which uses the
scalability extension of H.264/AVC and provides congestion
control. Their approach is similar to the bandwidth estimation
algorithm PTR [16], which is also a Probe Gap Model (PGM)
approach. Instead of extra probing packets, the sending time
of the RTP [17] video packets is manipulated for re-use as
probing packets. Therefore, the RTP packets are sent with
a predefined gap. Like in PGM, the competing traffic will
influence the gap between the RTP packets.

Our approaches refrain from changing the semantic or use
of transport protocols like RTP, but proceeds in a non-intrusive
way by solely evaluating the arrival of regular video packets.

4) Sender-sided approaches: Precise one-way bandwidth
estimations at the sender-side are complex, and common
approaches follow a TCP-style approach by examining the
loss rate, which is also influenced by the return path [18].
The measurement results are less accurate than receiver-sided
measurements. On the other hand, loss can be used as con-
gestion indicators like in the TCP protocol, introducing well-
known problems in the wireless world. Such a sender-sided
video adaptation approach is presented by Jang et al. [19],
as well as the sender side of the Google Congestion Control
algorithm (GCC) [14].

The IETF RTCWeb working group1 is standarizing a set of
protocols such as congestion control for real-time multimedia
transport flows. One of the proposed approaches is the Google
Congestion Control algorithm (GCC) [20]. The GCC is a TCP-
friendly, real-time multimedia adaptation algorithm that uses
UDP/RTP and is already implemented in some browsers. It
consist of a receiver-sided and a sender-sided approach.

The receiver-sided approach uses the receive time of the
frames to identify an over-used path. The difference in time
of a frame and its predecessor is compared to the difference
in their playout timestamps. A frame is delayed if the arrival
time difference is larger than the timestamp difference. This
occurs if the framesize varies or the sending rate exceeds
the available bandwidth and queuing delays occur. The mean
delay is observed and if it exceeds a certain threshold, the
receiver indicates the path as congested and a downscaling of
the multimedia stream is considered. If the detected congestion
holds on for certain amount of time and frames, an ’over-use’
of the path will be signaled to the sender. An ’under-use’ of the
link is signaled if the mean delay is below a certain threshold.
If no ’under-use’ nor an ’over-use’ is detected, a ’normal’ is
signaled to the sender. The bit rate of the multimedia stream
is increased by factor which is a function of the global system
response time and the estimated measurement noise until a
’over-use’ is signaled.

The sender-sided approach is based on packet loss, which
is detected with frequently sent response messages from the
receiver via RTCP. The RTCP reports include the fraction

1http://tools.ietf.org/wg/rtcweb/

TABLE II. NOTATION

Variable Description
µ(t) Effective bandwidth on a path
β(t) Bitrate of the video stream
ω(t) Frame rate of the video
k(t) video scaling factor
d physical transmission delay
L(t) Filling level of a queue at time t
q(t) Queuing delay of a packet on path
ri(x) Reception time of the i-th bit of frame x

of lost packets and based on the amount, the sender-sided
congestion control scales the multimedia stream. If 0-2% of
the packets are lost, the bit rate is increased (a). If 2-10%
of the packets are lost, the bit rate stays unchanged (b) and
if more than 10% of the packets are lost, the bit rate gets
downscaled (c). The sender-sided congestion control cannot
scale the bitrate arbitrarily, but is limited by two rates. The
bit rate cannot exceed the bandwidth estimation from the
receiver-sided congestion control and it cannot be lower than
the estimation of the TCP Friendly Rate Control formula [21].

A well known effect of a bandwidth adaptation based on the
loss rate, is that they tend to fill the bottleneck queue. The filled
queues delay the video flow, which is unwanted in real-time
multimedia realms. However, the receiver-sided congestion is
only reliable when the queue sizes along the paths are large
and can hold enough packets to delay the video stream without
losing packets. If the queues are short, packet loss occurs
before the delays are visible in the receiver-sided congestion
control. Thus, the packet loss based congestion control at the
sender-side is important to make the approach reliable on paths
with short queues.

5) Consideration of side-traffic: Streaming servers in the
Internet are another application class with highly adaptive
bandwidth demands and often use HTTP progressive down-
load over TCP [22]. Huang et al. examined video bit rate
adaptation strategies of three popular video streaming services
(Hulu, Netflix, and Vudu) [23]. Even though these services
operate over HTTP/TCP and adaptations compete with TCP
flow control, their work yields fundamental insights into the
problems which common video applications face when they
have to compete with side-traffic.

6) Open issues: In previous work, we presented a prelim-
inary implementation of a sender-sided congestion detection
[24], which is elaborated and enhanced in the present paper.
To the best of our knowledge, there is no generic sender-sided
traffic adaptation scheme nor a detailed analysis comparing
sender-sided, receiver-sided, and hybrid approaches.

IV. VIDEO CODEC ADAPTATION

A network link congests when its traffic demands exceed
the effective bandwidth µ(t). In this work, we assume µ(t) as
effective remaining bandwidth after all side traffic has been
subtracted, and consider the traffic stream of a controllable
video of bit rate β(t), only. Thus a path congests when
β(t) > µ(t) and the goal is to find a scaling factor k(t)
for the video stream so that the bit rate matches the effective
bandwidth, i.e., β(t) ∗ k(t) = µ(t).



For scaling, it is not necessary to measure the available
bandwidth µ directly, nor to know the current video bitrate, but
it suffices to estimate the bandwidth ratio k(t). The challenge is
to detect a congestion based on the given network metrics and
to simultaneously extract a scaling factor k(t) that steers the
adaption of the video codec accordingly. Table II summarizes
the notation that we use for deriving the following algorithms.

A. A Sender-sided Algorithm

The idea for a fast sender-sided video adaptation is to detect
increasing queuing delays in the jitter variation of the RTT. We
assume a near packet-wise feedback from the receiver that can
be harvested from stateful transport (see Section II). It is worth
noting that RTCP feedback according to RFC 3550 is too slow,
but rapid feedback mechanisms have been standardised in [25].

The RTT consists of the physical transmission delay d,
which is approximately constant, and the queuing delays of
the on-path routers q(t)

RTT (t) = d+ q(t) (1)

As long as the path is congestion-free, queuing delays remain
stable and of little variation

RTT ′(t) = q′(t) ≈ 0 (2)

Less simplistic, the RTT commonly rises and falls on a limited
scale, its (signed) jitter alternates around zero with a small
jitter variation close to zero. Every congestion, though, adds
a significant queuing delay to the on-path delay that differs
from regular RTT fluctuations. The jitter turns positive, causing
a significant jump in its derivative. We use this jump in the
jitter variation as a trigger for a video adaptation

RTT ′′(t) = q′′(t) � 0 (3)

In detail with every feedback from packet transmission, we
monitor the second derivative of the RTT and interpret irregular
(positive) jumps as early congestion indicators.

After a congestion is detected at a time tc, the scaling factor
k(tc) needs to be extracted for the codec adaptation. Consider
the time interval [tc,tf ] between the detected congestion and
the transmission of the next frame. The queuing occurs at
routers that have an egress to a congested link and the queue
process follows the rate equation

L(tf ) − L(tc) =

tf∫
tc

β(τ) − µ(τ) dτ, (4)

where L(t) is the filling level of the queue, tc is the timestamp
of the detected congestion, and tf is the time when the next
frame needs to be encoded.

The expected queuing delay q(t) of a packet traversing at
time t can be calculated as the ratio of the filling level and
the departure rate from the queue µ(t), which we assume to
be constant in short time intervals. Correspondingly, we can
approximate the additional queuing delay ∆q generated during
our inter-frame transmission time interval as

∆q(tc, tf ) ≈ 1

µ(ti)

tf∫
tc

(β(τ) − µ(τ)) dτ (5)

As shown in (2), the queuing delay variations are also visible
in the RTT jitter

∆RTT (tc, tf ) ≡ RTT (tf ) −RTT (tc) ≈ ∆q(tc, tf ) (6)

For a small interval, we assume the bit rate and the available
bandwidth constant µ(t) = µ, β(t) = β, which resolves (5)
combined with (6) to

∆RTT (tc, tf ) ≈ 1

µ
(β − µ) ∗ (tf − tc) (7)

This expression can be solved for k

k =
µ

β
=

(tf − tc)

∆RTT (tc, tf ) + (tf − tc)
(8)

and remains with simple, measurable quantities known at the
sender side.

Still it remains unknown to the sender, whether the forward
or the return path caused the congestion with additional
queuing delay. However, assuming queuing delays always on
the transmission path is a conservative approach and will never
lead to a delay in adaptive scaling.2

This approach predicts impending congestions in a very
fast and light-weight way. It enables an immediate downscaling
to assure a fluent video stream. On the downside, we only
react to the jitter changes of the RTT, which do not provide
information whether a link is currently free or congested. A
decreasing RTT does imply that the video stream bit rate
β(t) is below the effective bandwidth µ(t), but we have no
knowledge about the state of queues which still could be filled.

B. A Receiver-sided Algorithm

The sender-sided approach operates fast and provides a
scaled video stream that never exceeds the available bandwidth
(see Section V). However, it has difficulties to identify a free
link and optimize scaling for it. In case of a partially congested
path, a receiver-sided adaptation can predict feasible video
streams more reliably, as we will derive in the following.

At the receiver side, the general idea is to compare the
incoming bit rate with the ideally required bit rate of the video
stream. If the incoming data rate at the receiver stays below
the original bit rate of the video stream, a link is considered to
be congested. Additional bandwidth is available and the video
transmission can be upscaled, otherwise. As for the sender-
side, the factor k is used to scale the video codec, which
represents the ratio of the available bandwidth µ to the video
bit rate β.

The smallest and fastest accessible time interval for mea-
suring the sustained video bit rate is given by the inter-frame
gap defined by the frame rate ω(t). The frame rate is known
by the receiver and it can be used for calculating the current
bit rate for a frame received with length l

β(t) = l ∗ ω(t). (9)

For an approximation of the available bandwidth, the receiver
continuously measures the incoming bit rate of the video

2We will see in the next section that receiver-sided measures can correct
erroneous early predictions by the sender.



stream, including the reception-time of the first and the last
bit of a frame with n bits

µ =
l

rn(x) − r1(x)
(10)

where ri(x) is the reception-time for the i-th bit of frame x.

Combining equations (9) and (10) yields the scaling factor
k as predicted from the receiver side

k =
µ

β
=

ω

rn(x) − r1(x)
(11)

This receiver-sided approach differs from the sender-sided
approach by making use of complete frames for the measure-
ment and is thus slower. Instead, it can accurately suggest
upscaling and is capable of recognizing an underused link.

V. PERFORMANCE EVALUATION

A. Measurement Setup

1) Basic methodology: The Internet consists of many
highly heterogeneous links carrying multiple competing traffic
streams. The available bandwidth depends on both, the amount
of UDP and TCP connections and traffic characteristics of
the applications. For example, an HTTP application such as a
browser has short TCP peaks when a new site is requested,
while a streaming application exhibits a relatively constant
UDP stream. The applications might also be sensitive to
congestion and adapt the traffic depending on the available
bandwidth. Emulating this variety on a very fine-grained level
is difficult and usually does not help to highlight specific
protocol effects. In this work, we will focus on basic param-
eters such as the available bandwidth and the delay of a path
in a representative emulation environment, as well as on a
deployment in a real 3G network.

2) Environment: For the emulation measurements, we used
Mininet3. Mininet is an open source network emulator, which
can be used to create virtual networks with controlled network
conditions. To gain ground truth in our results, we also
verified the measurements by running selected experiments in
a real network. Deployment in real-world mobile networks was
undertaken by using an UMTS uplink from a mobile sender.

3) Topologies: We used two basic test topologies for the
networks in our performance evaluation (cf., Figure 1), i.e., a
daisy-chain topology and a dumbbell topology, before prob-
ing in real-world mobile networks. The daisy-chain topology
consists of one sender, one receiver, and five interconnecting
switches. The dumbbell topology consists of one sender, one
receiver, two switches, and two hosts that produce a 500 kbit/s
competing traffic stream. The competing traffic is emulated by
iperf4.

In both topologies, the emulated bandwidth is limited to
1 Mbps, and the RTT between video sender and receiver is
set to 24 ms. This is considered to be a short RTT network
[26]. The one-way delay for all (full-duplex) links has been
adjusted accordingly, i.e., either 2 ms or 8 ms (cf., Figure 1).
These are very friendly network conditions, because the fastest

3http://mininet.org
4http://iperf.sourceforge.net
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Fig. 1. Measurement setup

possible response time for the congestion detection is defined
by the RTT (i.e., 24 ms). The gap between arriving frames
is 66 ms. This means that the signalling between sender and
receiver can be completed before the next frame is encoded
in the receiver-sided adaptation approach. In the 3G mobile
production networks, the available bandwidth varied between
1 Mbit/s and 1.7 Mbit/s. More significantly, RTT values from
60 ms to above 1 s were observed on a free link with an
average variation of the RTT around 60 ms.

4) Video sequences and video codec: To evaluate our
approaches we use the TW, UH, G4, SM, TC, and KO
test sequences from the Heinrich-Hertz Institute (HHI). The
resolution is 768x576 pixel and the frame rate is 15 fps.
The videos are too short for longer measurements. To achieve
a total playout time of 60 s, we looped each test video.
In general, the improvements based on the adaptive video
coding were qualitatively very similar. For visibility reasons
we present only the results of the TW test sequence in the
following subsections. In Section V-G we show a comparison
of all test sequences.

All measurements are conducted using the DSVC
codec [9], which supports up to three temporal layers. This
is an extension of the very efficient DAVC H.264/AVC imple-
mentation. The codec is used in commercial products and thus
complies with real-world requirements.

5) Metrics: We evaluate the performance of the adaptation
approaches based on the metrics RTT, jitter variation, bit rate
and video quality, and the distribution of the inter-arrival jitter.
For easy comparison between the different experiments, we
always sample inter-arrival jitter in bins of 2 ms.

In the remainder of this section, we first present the
performance of an unscaled video, which clearly motivates the
need for scalable adaptive video coding. We compare sender-
sided, receiver-sided, and hybrid adaptation in the second,
followed by the mobile deployment in a 3G network.

B. Unscaled Video Stream

The video source sends an unscaled version of the TW test
sequence with the highest quality, i.e., a maximal quantization
factor is configured and all three temporal layers are enabled.
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Fig. 2. Unscaled video stream with a maximal bandwidth of 1000 kbps
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Fig. 3. Sender-sided video adaptation

The bitrate of the unscaled video stream varies between
500 kbit/s and 1.5 Mbit/s (cf., Figure 2(b)). The available
bandwidth of 1 Mbit/s is clearly exceeded. The resulting
congestion influences the RTT significantly (cf., Figure 2(a)).
In the best case, the RTT should fluctuate around 24 ms, but the
overused link causes RTT variations between 24 ms and 500
ms. In video conferencing applications the maximal one-way
delay should be around 100 ms to not distract end users [27].

As a consequence of the congestion frames do not arrive
in time. Figure 2(c) shows the distribution of the inter-arrival
jitter per frame at the receiver. The huge variations in the inter-
arrival jitter are perceived by the user as a stuttering video
stream. The Media Delivery Index (MDI) [28] suggests an
inter-arrival jitter below 50 ms for an acceptable video stream
and an inter-arrival jitter below 9 ms for a high quality video
streaming. Only 34 % of the frames fulfill these requirements;
appropriate video conferencing is not possible.

In the next sections, we show how an adaptive video codec
can cope with congestions. Our objective is to provide a fluent
video stream. We use the 9 ms inter-arrival jitter from the
MDI as reference to judge about the applicability in real-world
deployment.

C. Sender-sided Video Adaptation

In this scenario, only the sender is used to scale the video
stream without support from the receiver. The sender itself is
not capable to detect a priori an uncongested path and therefore
has to increase the video quality after some time when no
congestion was detected. Until the sender explores congestion,

we use a very aggressive upscaling strategy and continously
increase the quality after a frame was sent.

Figure 3(a) shows the RTT and the jitter variation of
the RTT, which is used to indicate a congested link. Every
increasing of the RTT goes along with a significant jump in
the jitter variation, which triggers a downscaling. Figure 3(c)
shows the inter-arrival jitter distribution of the frame reception
on the receiver-side. Compared to the unscaled video stream,
93.1% of the frames arrive in time with at most 9 ms jitter.

Figure 3(b) shows the resulting bitrate of the video stream
and the codec quality adaptation. At the beginning, the video
stream starts with the worst quality settings, but increases
rapidly. Every detected congestion that increases the RTT
follows an adaptation to the estimated available bandwidth.
The encoding quality varies between 75% and 100%, which
corresponds to quantization factors below 25. The video thus
remains at high quality [29]. As result, the bitrate of the video
stream stays around or below the available bandwidth and does
not congest the link.

D. Receiver-sided Video Adaptation

In this scenario, only the receiver scales the video stream.
The receiver-sided congestion control compares the incoming
rate with the current bitrate of the video stream (cf., Fig-
ure 4(a)). The incoming throughput varies around 1 Mbit/s. As
soon as the bitrate of the video stream is larger (or smaller),
the receiver signals a downscaling (or upscaling) to the sender.

Figure 4(b) shows the bitrate and the codec adaptation of
the rescaled video stream. Both measurements exhibit similar
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Fig. 5. Sender-sided and receiver-sided video adaptation

behaviour compared to the sender-sided codec adaptation ap-
proach. The receiver-sided adaptation is less sensitive to RTT
fluctuations, i.e., over a longer time frame the change of the
video quality is less frequent. However, amplitudes are larger.

The distribution of the inter-arrival jitter at the receiver is
shown in Figure 4(c). A fairly stable video stream transmission
is clearly visible. Most of the frames arrive in time and provide
a fluent playout of the video stream. In contrast to an unscaled
video stream the results are significantly better, but compared
to the sender-sided video adaptation only 78.8 % of the frames
arrive in due time.

E. Sender-sided and Receiver-sided Video Adaptation

In this scenario, the receiver and the sender influence the
scaling of the video stream. Both can initiate a downscaling
of the video quality (i.e., reduce the bit rate), while only the
receiver is allowed to increase the video quality.

The sender and the receiver calculate a scaling factor k.
Figure 5(a) visualizes the evolution of this value for both par-
ties over time. The sender makes more downscaling requests
which are less persistent than the receiver-sided requests. This
complies with our previous observations, which showed that
the sender reacts more sensitive to network changes (cf.,
Section V-C and Section V-D). Most of the time, the sender
reacts fast enough to avoid any congestion that could also be
detected by the receiver. There are two (rare) cases where
the receiver-sided adaptation compensates the sender-sided
approach. (a) The measurement period of the sender is too

short and thus lacks accuracy. (b) The sender overestimates
the available bandwidth and the downscaling is not sufficient
to prevent congestion. The receiver detects the underestima-
tion and suggests an additional downscaling. The combined
approach is more reliable in these situations.

Since most of the downscaling is requested by the sender,
the codec adaptation looks very similar to the pure sender-
based adaptation (cf., Figure 5(b)). Compared to the unscaled
stream, the scaled video exhibits still a high quality and
varies between 70% and 100%, which ensures a good viewer
experience. The bit rate stays around or below the available
bandwidth and the video stream is adapted reliably. In general,
the results show a fairly stable video transmission with just a
few disturbances. Strikingly, 92.3 % of the incoming frames
exhibit a jitter below 9 ms (cf., Figure 5(c)).

F. Measurements in Real-World 3G Networks

3G wireless networks introduce significant delays and
alienating delay variations in the absence of congestions as
discussed above. In an unscaled video, this leads to a dis-
graceful performance of only 12 % of the frames remaining
within the 9 ms jitter bound (cf., Figure 6(a)), as well as
unpredictable algorithmic fluctuations. The video quality flaps
around appropriate values and the application is never able
to reach a high quality stream. This can be improved by a
temporal blocking of upscaling after each re-scaling. In detail,
we set a constant timer of 1 s in our scenario for this delay.
The temporal blocking slows down the upscaling process, but
sustain a robust and stable video stream.
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Fig. 6. Scaling analysis for video streams in a real-world UMTS network

The distribution of the inter-arrival jitter of a scaled video
stream in Fig. 6(c) depicts an improvement up to about
46.8 %. In contrast to the previous measurements, increasing
the quality of the video is more cautious and shows a stable
and converging course (cf., Fig. 6(b)).
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Fig. 7. Inter-arrival jitter distribution for a video stream with an inter-arrival
based video scaling at the receiver-side

The same test configuration is also tested with an inter-
arrival based scaling approach at the receiver-side, which is
a widely used technique to scale video streams [14]. The
measurement results are slightly better with 49.2% in due
time arriving frames (cf., Figure V-F), but it is only a minor
improvement. In both scenarios, the sender-sided approach
reacts faster and both receiver-sided algorithms sparely detect
a congestion. Therefore, the measurements results are only
slightly influenced by the receiver-sided algorithm.

In summary, our experiments validated that the proposed
approach to sender-sided video scaling could approximate the
difficult transmission regime of UMTS packet transmissions in
real-world networks.

TABLE III. INTER-ARRIVAL JITTER BELOW 9 MS

Video Unscaled Scaled
TW 34.04% 92.31%
G4 66.38% 97.33%
KO 20.32% 81.61%
SM 75.90% 96.39%
TC 22.87% 88.56%
UH 0.55% 92.14%

Elephants Dream 0.00% 92.00%

G. Comparison of the Test Sequences

Finally, we compare the quality of the sender-sided and
receiver-sided approach by deploying all six test sequences
in the daisy chain topology. Table III shows the percentage
of frames that complies with the Media Delivery Index, i.e.,
a high quality video streaming requires an inter-arrival jitter
below 9 ms. Overall, scalable video coding results in a huge
improvement for all test sequences. Varying values show that
characteristics of the video significantly influence the effects
of scaling: By comparing the test sequence ”UH” with ”TC”,
it becomes evident that the characteristic of the video largely
influences scalability. The testsequence ”UH” constantly at-
tains high bit rates, while the testsequence ”TC” has a low
and fluctuating bit rate.

The previous test scenarios uses short video sequences
and thus, the measurement time was very short and allows
a clear analysis of certain effects. For a deployment in a real
world application, the presented approach must work reliable
over a long period of time. Thus, the software is tested with
longer video sequences. The movie Elephants Dream5 is used
in this measurement. Without scaling, the path congests within
the first minute and never recovers. After a few minutes the
connection disconnects. The scaled video stream reaches the
available bandwidth and rarely exceeds it. Overall, the scaling
is reliable and the provided video stream has a high quality
considering the network conditions. 92% of the frames arrive
in time and the user perceive only minor impairments.

5http://www.elephantsdream.org



VI. CONCLUSION

Multimedia applications with high quality video streams
are likely to cause network congestions and thus need to be
aware of the network conditions to sustain fluency. Particu-
larly on access links or in the presence of heavily changing
traffic, a quick reaction is crucial for real-time multimedia
applications more beneficial than a slow but more accurate
video adaptation. In this work, we presented a combination
of a receiver-sided and a sender-sided congestion detection
approach combined with scalable video adaptation to address
this problem.

Our algorithms are simple, non-intrusive and easy to im-
plement. For a proof-of-concept and for detailed experimental
evaluations, we developed a scalable conferencing application
based on the DSVC codec and previous work. The application
encodes a raw video, sends it over the network and detects
impending congestions on both ends. Our test results give
evidence, that our approaches ensure a fast and reliable video
stream adaptation and are capable of detecting a link conges-
tion early enough for avoid it so that it remains unnoticeable
to users. In particular, our sender-sided approach is capable of
reacting to changing network conditions very fast, while the
receiver-sided approach is more precise and adds reliability.

In future work, we will transfer this adaptation scheme to
PlaceCam 6, our professional video conferencing system, and
evaluate performance statistics from real-world deployment on
a large scale. Analyzing various video samples and different
network conditions will help to ensure reliable video adapta-
tion even in challenging environments.
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