
Topology Authentication in RPL
Martin Landsmann

Heiner Perrey, Osman Ugus
HAW Hamburg

firstname.lastname@haw-hamburg.de

Matthias Wählisch
Freie Universität Berlin

m.waehlisch@fu-berlin.de

Thomas C. Schmidt
HAW Hamburg

t.schmidt@ieee.org

Abstract—The Routing Protocol for Low-Power and Lossy Net-
works (RPL) is a proposed standard by the Internet Engineering
Task Force (IETF). Although RPL defines basic security modes,
it is still subject to topology attacks. VeRA is an authentication
scheme which protects against attacks, based on the version
number and rank. This work presents two rank attacks which
are not mitigated by VeRA. In the first attack, the adversary can
decrease its rank arbitrarily. Hence, it can impersonate even the
root node. In the second attack, the adversary can decrease its
rank to that of any node within its access range. We present an
enhancement of VeRA to mitigate the first attack. Additionally,
a basic approach for mitigating the second attack is introduced.

I. INTRODUCTION

RPL [1] is a routing protocol for low-power and lossy
networks (LLN). It is organized as a Destination Oriented
Directed Acyclic Graph (DODAG) directed towards a special
node, called root node. Routes to the root are established via
parent nodes. That is, each node sends its data to a parent,
which is located closer to the root in the topology. In turn,
each parent node sends the received data until the root node
is reached.

The rank of a node represents its distance to the root and
defines the relationship of a parent and its children. The rank
increases monotonically with distance to the root node. Hence,
a node with a smaller rank forwards more traffic than a node
with a larger rank. Accordingly, to get a greater impact on the
network, an attacker tries to obtain the lowest rank possible.

RPL uses a unique and increasing version number for each
DODAG. Occasionally, the DODAG needs to be updated, e.g.,
to repair routing inconsistencies. During a version update, the
nodes (re-)select their parents according to the rank values
disseminated by their neighbors. Hence, an adversary can
simply announce a small rank value to become a parent of
a large number of sensor nodes. To address this problem,
VeRA [2] proposes an authentication scheme, in which every
node can check, if the version number is updated by the root,
and if the rank of the parents is monotonically increasing1.
However, VeRA still allows two different rank attacks. While
the first one allows the attacker to successfully get any rank of
its choice, the second still enables the adversary to replay its
parents rank. In this work we summarize the VeRA protocol

1If a node is running DODAG version i = 0, the next version must be
i+1. Similarly, if a node has the rank j, its parent must have the rank j−∆,
where ∆ depends on the use-case. For simplicity, we assume ∆ = 1 in this
work.

and show two attacks on this approach (II). We propose a
solution for the first attack and a partial solution for the second
attack (III).

II. VERA - VERSION NUMBER AND RANK
AUTHENTICATION

A. The Protocol

VeRA [2] uses hash chains to prevent the adversary from
increasing the version number of the DODAG as well as
decreasing its rank. A version number increase causes a global
repair in the DODAG and provides a chance for an adversary
to decrease its own rank and to move closer to the root node.

In VeRA, each version Vi is represented by an element
of a hash chain Vn, . . . , V0, where Vi = hn+1−i(r), r is
a random seed, h is a one-way hash function, and n is
a sufficiently large parameter denoting the largest version
number possible. Moreover, the ranks in a version Vi are repre-
sented by a rank chain Ri,0, . . . , Ri,l, where Ri,l = hl+1(xi),
xi is a random number, Ri,j is the element representing
the rank j, and l is the largest rank value possible for a
version Vi. In the initialization phase, the root node dissemi-
nates the packet 〈V0, InitV N , R1,l, {V0,MACV1

(R1,l)}sign〉,
where InitV N is the actual version number. The receiv-
ing nodes verify the signature and accept the parame-
ters V0 and R1,l, if the signature is valid. In subse-
quent version updates, say Vi, the root node disseminates
the packet 〈Vi, InitV N + i,MACVi+1

(Ri+1,l)〉. Each
node then verifies the version number by checking that
h(Vi) == Vi−1 holds. Each node verifies the rank, j,
announced by its parent in a version Vi by checking if
MACVi

(Ri,l) == MACVi
(hl−j(Ri,j)).

B. Vulnerabilities of VeRA

The VeRA approach is still subject to two rank attacks:
(1) The first attack requires the adversary to prevent the
sensor nodes from receiving two subsequent version updates
initiated by the root. For instance, if the attacker withholds
the updates V1 and V2, he has the ability to create any MAC,
MACV2

(R′2,l), by using the key V2 he received in the second
update. Once he releases version V2, the adversary can claim
any rank j by sending the forged hash chain R′2,j to its
children. (2) An adversary may replay the rank hash of its
parent in its access range to decrease its own rank by one in
the topology.

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

INFOCOM'2013 Demo/Poster Session

3563

2

III. ENHANCING VERA

Mitigating Attack – 1: The vulnerability exploited by this
attack originates from the missing correlation between the rank
hash chain and the version number hash chain in VeRA. We
propose a nested encryption to entangle both hash chains. Prior
to the initialization phase, the root node creates a version hash
chain as in the original version of VeRA. The difference in
our method is that the root also creates the rank hash chains
for all versions in advance. Additionally, the last element of
the rank hash chains are nested in each other as follows: for
i = (n − 1), . . . , 1, each element i is encrypted using the
encryption of the (i + 1)th element as the key ki. That is,
ci = encki(Ri,l), where ki = ci+1 and cn = Rn,l (see Table
I). Then, each cipher ci+1 is distributed in a version update
Vi following the original VeRA as depicted in Figure 1.

The receiving nodes verify the version number like in VeRA.
In contrast to VeRA, the rank hash chain in a version Vi is
verified differently. First, the nodes decrypt the cipher ci re-
ceived in Vi−1 using the cipher ci+1 as the key to obtain Ri,l =
decci+1

(ci). Then, Ri,l is verified using the MAC as described
in VeRA. Finally, the nodes verify the rank of their parents,
j, by checking if MACVi(Ri,l) == MACVi(h

l−j(Ri,j)).
Modifying a cipher ci breaks the decryption of the cipher ci−1
leading to an invalid R′i−1,l which cannot be verified by the
MAC.

Mitigating Attack – 2: To mitigate the rank-replay attack, we
propose to use a challenge response procedure. The main idea
behind our approach is that two honest neighboring nodes with
the same rank r have a parent with the rank r−1. Considering
this observation, our protocol is based on a challenge that can
only be solved, if the node has indeed a parent with rank r−1
in its transmission range.

Let us assume that an honest node H with rank j and a
malicious node M within the range of H . Choosing H as a
parent, M calculates the rank j+1. In a replay attack the node
M claims to have rank j. This is possible, since M learns the
Ri,j disseminated from a parent node in its transmission range.

To mitigate such an attack, the honest node H performs a
challenge response protocol: H chooses a random number α
and encrypts it with Ri,j−1 and sends the ciphertext to its par-
ent P . P decrypts the ciphertext and encrypts α with its par-
ent’s hash Ri,j−2 and sends the challenge β = encRi,j−2(α)
back to H . Finally, H challenges the malicious node M with
β. Node M can provide a correct response only if it has a
parent with rank j − 1.

A remaining issue is how to detect the attack. We propose
an inquiry in which a node is requested to multicast its
rank to all neighbors using a RPL control message with
minor adjustments. Since both parents and children receive
this message, an inconsistency (or attack) can be detected. A
malicious node either uses the true or false rank. The false
rank is detected by the parents. Using the true rank renders
the attack harmless.

Ri,l use key ki cipher ci = encki
()

Rn,l – cn = Rn,l

Rn−1,l kn−1 = cn cn−1 = enckn−1
(Rn−1,l)

.
R2,l k2 = c3 c2 = enck2

(R2,l)
R1,l k1 = c2 c1 = enck1

(R1,l)

TABLE I
CREATION OF THE RANK ENCRYPTION CHAIN

Fig. 1. AUTHENTICATION OF THE RANK ENCRYPTION CHAIN

IV. CONCLUSIONS & OUTLOOK

RPL is vulnerable to different topology attacks. A mali-
cious node can exploit the rank value or version number
to illegitimately improve its position in the DODAG. VeRA
proposes a version number and rank authentication method to
mitigate such attacks. In this poster, we identified two new
vulnerabilities of VeRA, rank forgery and replay.

We proposed an encryption chain linking the version num-
ber and rank hash chain to prevent an attacker from propa-
gating forged hash chains. Since this solution cannot mitigate
rank-replay attacks, the attacker can still decrease its rank by
one step. To address this problem, we introduced a challenge
response and rank inquiry procedure. The combination of both
approaches for a security scheme to defend against the rank-
replay attack is subject to a forthcoming publication.

ACKNOWLEDGMENT

This work is partly supported by the BMBF within the
projects SAFEST and SKIMS.

REFERENCES

[1] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks,” IETF, RFC 6550, March 2012.

[2] A. Dvir and T. Holczer and L. Buttyan, “VeRA - Version Number and
Rank Authentication in RPL,” in Mobile Adhoc and Sensor Systems
(MASS), 2011 IEEE 8th International Conference on, oct. 2011, pp. 709
–714.

INFOCOM'2013 Demo/Poster Session

3564

