
Leveraging WebRTC for P2P Content Distribution
in Web Browsers

Christian Vogt, Max Jonas Werner, Thomas C. Schmidt
Department of Computer Science

Hamburg University of Applied Sciences, Hamburg, Germany
christian.vogt@haw-hamburg.de, maxjonas.werner@haw-hamburg.de, t.schmidt@ieee.org

I. INTRODUCTION

WebRTC enables web applications to establish a direct
communication channel between two browsers without relay-
ing the data through a web server. It consists of an API [1]
defined by the W3C and a set of underlying protocols defined
by the IETF Rtcweb Working Group [2]. The possibility of
establishing peer-to-peer channels between two browsers and
the expected broad deployment opens the opportunity for new
use cases that were not possible until now.

In this demo, we present a distributed content sharing
facility using WebRTC Data Channels as well as an emulation
component for test and measurement purposes. This library
provides an API for applications to store content in and retrieve
content from the underlying DHT; it can be used as a drop-in
for existing web applications. The integration of WebRTC into
a majority of browsers on the market can immediately deliver
the benefits of such an approach to a huge user base, without
the need of installing any additional software.

II. ARCHITECTURE

The architecture proposed in this paper consists of two
main components: a bootstrap server that serves as a central
instance for joining the P2P network and the peers (made up
of the users’s browsers) forming the actual network.

The implementation is based on the built-in capabilities
of web browsers, leveraging the WebRTC API. So called Data
Channels [3] allow for the transfer of generic data (text, binary
data) in a P2P manner. Point-to-Point Data Channels comprise
the main transfer mechanism used to build the P2P system
described in this paper. On top of these Data Channels we
implemented a protocol used for joining the WebRTC network
and for maintaining connections between clients.

A. Functionality

1) Join: Clients join the P2P network by establishing a
WebSocket connection to a bootstrap server that holds a
connection to a certain number of peers that have recently
joined the network. Afterwards this WebSocket connection is
used to signal the WebRTC handshake, resulting in a direct
WebRTC connection between the newly joined client and one
of the other clients, forming a mesh of peers. Once a client has
joined the network it may disconnect from the server without
losing the capability of transferring data to/from other peers.

2) Message exchange: Figure 1 demonstrates the exchange
of a message between client 1 and client 3. Here, client 1
sends a message via the Data Channel to client 2 indicating
the sender (client 1) and receiver (client 3). Our approach
is designed so that client 2 forwards all messages dedicated
to other peers via a routing layer to the designated receiver.
Messages that are meant for client 2 itself are passed to the
local application layer on client 2.

Peer 1 Peer 2
Data Channel

Peer 3
Data Channel

Server

W
e
b

S
o
ck

e
t

1 2

3

Fig. 1. Client 1 wants to communicate with client 3. Therefore it sends the
data via the open Data Channel to client 2 which in turn routes it to client 3.
The server is not involved in this process at all.

3) Layered approach: To enable the functionality explained
above we used a layered approach similar to that proposed by
Dabek et al. in [4]. Figure 2 shows the different layers and
APIs. The central component – called PeerManager – provides
an API to applications that would like to make use of the P2P
network. Underneath the PeerManager lies a routing layer that
can also be implemented in different ways, later allowing us
to form a structured Peer-to-Peer overlay like Chord [5].

Our next step is to concretize the component’s APIs to be
able to assemble the three layers from Figure 2 into a working
solution. Using a structured P2P system like Chord we are
planning to achieve our goal of implementing a pure browser-
based P2P network that allows us to investigate possibilities of
running information-centric networking components on top.

B. P2P mechanisms

P2P systems can be classified by two main categories: Un-
structured and Structured systems. Unstructured P2P systems

978-1-4799-1270-4/13/$31.00 c©2013 IEEE

Application

PeerManager

Routing

Routing API

PeerManager API

Peer 1 Peer 2

WebRTC

Application

PeerManager

Routing

Routing API

PeerManager API

WebRTC

Fig. 2. Our layered approach mimics the proposal towards a common API
for P2P networks by Dabek et al. [5].

use a flooding-based approach or a centralized component for
lookup and management purposes. In contrast to unstructured
P2P systems, structured P2P systems can achieve logarithmic
scalability in search and lookup complexity without requiring
any central component. Therefore, we concentrate our work on
implementing a structured P2P system based on a distributed
hash table (DHT). Such a DHT (like Chord or CAN) will be
the foundation of the routing layer mentioned above.

C. Demonstration

In our demonstration we will show the following compo-
nents: A working server component which acts as bootstrap
for newly joined nodes and takes care of assigning node IDs.
Moreover we’ve developed a rough client-side application that
implements the PeerManager component from Figure 2. We
will show how different browsers join the P2P network and
may establish connections to each other even after shutting
down the signaling server.

For test and measurement purposes, we also developed an
emulation component that uses Node.js and the WebRTC im-
plementation contained in the Libjngle library. This emulation
is able to run all of the client code written in JavaScript so that
we can conduct functionality and performance tests as well as
measurements. The status of this emulation layer will also be
demonstrated.

III. RELATED WORK

Research on leveraging native browser technologies –
each achieving a different set of goals – is already being
conducted: [6] examines a way to distribute the load and
stream video content between browsers using WebRTC, thus
reducing the bandwidth cost of content providers. The author
uses a BitTorrent-like architecture involving a tracking server
for discovering content.

Zhang et al. describe the implementation of a browser-
based CDN in [7]. The authors have researched on the pos-
sibilities of building such a CDN service using the Flash
plugin by Adobe. Their implementation is centered around
a coordinator that holds mappings between peers and the
data stored on these peers. Web site owners eager to use
this solution have to modify the site’s HTML code so that
every asset that shall be distributed in the P2P network is

fetched via JavaScript from one of the participating peers using
the proposed mechanism. Similar approaches are pursued by
PeerCDN1 and SwarmCDN2.

IV. CONCLUSION/FUTURE WORK

Our current experience researching on WebRTC and con-
tent distribution in combination with Peer-to-Peer networking
leaves us confident that a deeper exploration of the possibilities
provided is well worth it. We have already planned next
steps with regards to the implementation of the proposed
component layers – especially building a working DHT-based
CDN prototype on top of WebRTC – as well as investigating
possible overlapping issues of browser-based P2P networks
and information-centric networking [8].

Topics that are to be investigated more thoroughly with
regards to WebRTC are those of security and privacy of users.
We will further cover these as part of our ongoing research and
implementation efforts. The current specification drafts already
cover a wide range of these aspects, especially focussing on
end-to-end encryption and peer authentication.

Since both W3C/IETF as well as browser vendors have not
agreed on a final specification the APIs and protocols used are
very much in flow. This could lead to problems especially
when trying to lead our implementation to a consistent state
that can be used productively. We are intensely watching the
ongoing research activities by W3C and IETF as well as the
browser vendor’s implementations.

REFERENCES

[1] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan, “WebRTC
1.0: Real-time Communication Between Browsers,” W3C, W3C Editor’s
Draft, Jun. 2013.

[2] H. Alvestrand, “Overview: Real Time Protocols for Brower-based Ap-
plications,” IETF, Internet-Draft – work in progress 01, June 2011.

[3] R. Jesup, S. Loreto, and M. Tuexen, “RTCWeb Data Channels,” IETF,
Internet-Draft – work in progress 04, February 2013.

[4] F. Dabek, B. Y. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica,
“Towards a Common API for Structured Peer-to-Peer Overlays,” in
Peer-to-Peer Systems II, Second International Workshop, IPTPS 2003,
Berkeley, CA, USA, February 21-22, 2003, Revised Papers, ser. LNCS,
M. F. Kaashoek and I. Stoica, Eds., vol. 2735. Berlin Heidelberg:
Springer–Verlag, 2003, pp. 33–44.

[5] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM ’01: Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications.
New York, NY, USA: ACM Press, 2001, pp. 149–160.

[6] A. J. Meyn, “Browser to Browser Media Streaming with HTML5,”
Master’s thesis, Technical University of Denmark, DTU Informatics, E-
mail: reception@imm.dtu.dk, Asmussens Alle, Building 305, DK-2800
Kgs. Lyngby, Denmark, 2012.

[7] L. Zhang, F. Zhou, A. Mislove, and R. Sundaram, “Maygh: building a
cdn from client web browsers,” in Proceedings of the 8th ACM European
Conference on Computer Systems, ser. EuroSys ’13. New York, NY,
USA: ACM, 2013, pp. 281–294.

[8] C. Vogt, M. J. Werner, and T. C. Schmidt, “Content-centric User
Networks: WebRTC as a Path to Name-based Publishing,” in 21st
IEEE Intern. Conf. on Network Protocols (ICNP 2013), PhD Forum.
Piscataway, NJ, USA: IEEEPress, Oct. 2013, accepted for publication.

1http://www.peercdn.com
2http://www.swarmcdn.com

