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22.1 Introduction

Network topologies are one major building block for data communication.
They describe how network entities are directly interconnected with each
other and thus de�ne how information may �ow. Such a structure of node
relations can be built on di�erent layers resulting in a physical or logical
topology. The �rst will be constructed while connecting devices by a physical
medium. On top of this structure, data exchange can be arranged via the
network and application layer creating a logical or overlay topology.

Network communication depends on its underlying structure. This drives
protocol performance, and has impact on routing behavior and complexity.
Choosing an appropriate topology for simulations, analytical studies, or ex-
periments is an important task. As a simple example consider Figure 22.1(a)
and 22.1(b). Both scenarios represent a local area network that connects end
devices via routers to the Internet, but di�er in topological properties. Pro-
tocol evaluation thus may lead to completely di�erent results. For instance,
failover mechanisms of a routing protocol cannot be observed for a setting
shown in Figure 22.1(a), as redundant paths are not available to bridge bro-
ken connections.

The network topology and its properties are important ingredients for
protocol and system evaluation. They should be chosen characteristic of the
problem under observation. Thus, the �rst step in selecting an appropriate
topology is to clarify the scenario, in which the protocol will operate. In
many cases, though, the characteristic properties of the underlying network
are unknown or only vaguely speci�ed. For this reason, there is a tendency to
enrich topology modeling by network measurement. However, working with
real data especially for large, evolving networks such as the Internet cause
speci�c problems. First, it is an intricate task to retrieve real data for such
structures. Second, every measurement represents only a snapshot, which may
quickly obsolete. Moreover, sets of realistically large sizes may be di�cult to
process with currently available memory and CPU cycles. Thus, instead of
applying the problem to a dedicated network topology, the corresponding
topology space should be explored.

In this chapter, we will introduce some common topology models. The
remainder is structured as follows: We present the basic abstraction principle
for network topologies in Section 22.2, and explain how network models can
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(a) Non-redundant net-
work

(b) Redundant network

Fig. 22.1: Di�erent network topologies

be characterized in Section 22.3. Section 22.4 describes basic topology models.
Finally, we discuss approaches to model the Internet in Section 22.5.

22.2 Abstraction of Network Topologies by Graphs

Physical and logical topologies consist of entities which are in a rela-
tionship with each other. In most networks, these entities represent di�erent
types. The topology of a computer network, for example, includes end hosts
linked to switches (layer 2) connected via routers (layer 3), cf. Figure 22.2(a).
In this chapter, we address the modeling of the resulting structures, i.e., the
network.

The modeling process includes several levels of abstraction. A network
topology model forms the structural properties of the network. Dedicated
instances of network devices such as di�erent types of routers, switches, or
end system nodes are neglected based on uni�cation (cf. Figure 22.2(a)). The
second step 'eliminates' all entities that are transparent to the layer under
observation and subsumes devices. In our example, we focus on the local
routing structure. Thus, switches will be omitted and end devices can be
merged to a domain represented by a single entity (cf. Figure 22.2(b)). At this
stage, our network includes routers, end user domains and an inter-network
connection. From a structural point of view, the inter-network connection as
illustrated does not include any further information. The last step transforms
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(a) Redundant network (b) Redundant net-
work

(c) Graph represen-
tation

Fig. 22.2: Abstraction process of network topologies

the concrete network in an abstract graph representation (cf. Figure 22.2(c)).
Nodes and links equal edges and vertices, respectively.1

A graph G is a set of vertices connected via edges. The set of vertices
is usually denoted by V , and the set of edges by E. Edges may be directed
or undirected, and hence allow to model uni- and bidirectional, as well as
symmetric and asymmetric links. Figure 22.2(c) shows an undirected graph.
Vertices and edges can be extended by attributes, e.g., weighted edges, which
represent link costs. Each vertex possesses an inherent structural property:
its degree, usually denoted by k. The degree of a node is the number of its
connections (which equal its number of nearest neighbors). In the case of
directed edges, the degree can be split in in- and out-degree.

The degree property enables the indirect modeling of di�erent node types.
Considering the example in Figure 22.2, an end user domain has been merged
to a single vertex. The inner structure of such domains is not under consider-
ation, and they are connected to a single router. Consequently, the domains
can be identi�ed by vertices with a degree of 1. This simpli�cation does not
allow the modeling of multi-homed or redundant sites.

Typically, the characterization of a dedicated vertex is not very helpful
and does not re�ect the whole graph (or network). In the following, we de-
scribe properties of the complete graph.

22.3 Characterizing Graphs

The graph model can be based on two approaches: ad-hoc and measurement-
based. An ad-hoc model is developed independently of real measurements. In

1 In the following, we will use both, the network engineering and graph term,
interchangeably.
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contrast to this, a measurement-based model tries to reconstruct graph prop-
erties or to reproduce the reasons for it. Ad-hoc as well as measurement-based
approaches require a characterization of graphs to verify the approximation
of the real network.

In this section, we summarize some basic properties of graphs. Based on
graph metrics, we can describe and compare networks. Each type of net-
work exhibits a di�erent structure. A mesh network, for example, includes
signi�cantly more inter-connections than a local area network. This property
should be preserved in the corresponding topology model. However, usually
a network cannot be described by a single (simple) metric, but metrics may
be correlated. The latter may be used to restrict the set of properties.

Metrics have a global or local meaning for the graph.
The basic property of a graph is the number of edges |E| and vertices |V |.

For an undirected graph, it follows the average node degree 〈k〉 by 〈k〉 =
2|E|/|V |. More signi�cant (and often used) is the degree distribution P (k),
which calculates the probability that a randomly selected node has degree k.
We denote the number of nodes with degree k by n(k), then:

P (k) =
n(k)
|V |

(22.1)

It is worth noting that based on this probability distribution the average
value 〈k〉 can be evaluated. In this case, 〈k〉 =

∑kmax
k=0 k · P (k).

Equation 22.1 calculates the degree distribution for a general instance of a
network. Several realizations of networks may belong to the same (statistical)
class of graphs that admit equal distributions. There are three common degree
distributions [122]:2

Poisson distribution

P (k) = e−〈k〉 · 〈k〉
k

k!
Exponential distribution

P (k) ∝ e−k/〈k〉

Power-law distribution

P (k) ∝ k−γ , k 6= 0, γ > 0

A closer insight into the interconnection properties of the graphs is given
by the joint degree distribution . This correlation law de�nes the probability
that a randomly selected edge connects nodes with degree k1 and k2. Let
m(k1, k2) denote the number of edges out of the total |E| edges that connect
two nodes of degrees k1 and k2 in an undirected graph. Then the correctly
normalized joint degree distribution is calculated as

2 The symbol ∝ means �proportional to�.
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(a) Full Mesh (b) Star (c) Chain

Fig. 22.3: Three extreme graph topologies

P (k1, k2) =
m(k1, k2)

2|E|

It does not only describe the one hop neighborhood structure of an average
k-degree node, but can also be used to derive other well-known measures
[333], [303]. Note that the single node degree distribution P (k) does not
directly follow from integration, but requires a bias correction factor, i.e.,
P (k) ∝

∑
j P (k, j)/k.

Delay sensitive applications or routing protocols are a�ected by the num-
ber of intermediate nodes between the source and destination. They adjust
bu�ers or decide on a forwarding path based on the distance between nodes.
The distance between two nodes is the length of the shortest path between
them. In graph theory, this class of paths is also called geodesic . The dis-
tance distribution d(x) measures the probability that two randomly selected
nodes are connected via distance x, which typically is calculated in hops.
The length of the longest shortest path taken over all pairs of nodes is called
diameter of a graph, but in general the metric is not well-de�ned. In some
publications, the diameter describes the average shortest path length [122],
as well.

The average shortest path length 〈d〉 for an undirected graph is quanti�ed
as follows: Let d(i, j) denote the distance of a shortest path between the two
nodes i and j, then the normalized average path length is given by:

〈d〉 =
2

|V |(|V | − 1)
·
∑
i6=j

d(i, j)

In any forwarding scenario, intermediate nodes between source and re-
ceiver attain a distinct role. The number of shortest paths passing through
a node m (or link) is quanti�ed by the metric betweenness B(m). To calcu-
late the relative amount, we count all shortest paths between any two nodes
passing m, and divide this by the number of shortest paths of all node pairs
excluding m. Thus, if the total number of shortest paths between two nodes i
and j is B(i, j), and the number of these paths going through m is B(i,m, j),
than the betweenness of m is de�ned as follows [122], [159]:
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Figure 〈k〉 〈d〉 B(v1) B(v2) B(v3) B(v4) B(v5)

Full Mesh 22.3(a) 4 1 0 0 0 0 0
Star 22.3(b) 8/5 8/5 0 0 0 0 6
Chain 22.3(c) 8/5 2 0 3 4 3 0

Table 22.1: Structural properties of the graphs shown in Figure 22.3

B(m) =
∑

i 6=m6=j,i 6=j

B(i,m, j)
B(i, j)

Betweenness is a common metric in the context of tra�c engineering, or
social networks. This measurement quanti�es the importance of a node in
information exchange, and the load on such intermediate vertex. Assuming
uniformly distributed tra�c that follows shortest paths, the tra�c passing
through a node coincides with its betweenness. For comparison of di�erent
sized, directed networks, the betweenness of nodes and edges can be normal-
ized by (|V | − 1)(|V | − 2) and (|V |(|V | − 1)), respectively [159].3 Note that
undirected graphs require an additional dividing factor of 2. The calculation
of the betweenness in unweighted and weighted networks requires O(|V ||E|)
and O(|V ||E| + |V |2 log(|V |) time, respectively, consuming O(|V | + |E|) of
memory [80].

Networks agreeing on one property may still di�er in others. Table 22.1
presents the average node degree, the mean path length, and the betweenness
for nodes of the graphs shown in Figure 22.3. For example, a star and a chain
topology with the same number of nodes exhibit the same average node
degree. Nevertheless, both topologies di�er signi�cantly in their robustness
against attacks (average distance), and in their characteristic tra�c �ow per
node (betweenness). In the case of a full mesh, the betweenness reveals that
no vertex attains a dedicated role in the forwarding process. On the other
hand, the central entity in the star topology can be identi�ed easily.

22.4 Common Topology Models

In this section, we want to address the question of how to construct a
graph that satisfy speci�c properties.

22.4.1 Random Graphs

The basic random graph model, and the corresponding theory have
been derived by Erd®s and Rényi [134, 135]. A random graph, which is also

3 The maximum value of betweenness is |V |(|V | − 1). For simpli�cation, some
authors use this for normalization of node and link betweenness [303].
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(a) Random graph (b) Geometric ran-
dom graph

(c) Barabási-Albert
graph

Fig. 22.4: Visualization of di�erently generated topologies

called Erd®s-Rényi-graph, will be constructed as follows: Given a �xed num-
ber of nodes and a probability p, then each edge between two vertices will be
constructed independently with probability p. The pseudocode is presented
in Random Graph Algorithm:

Random Graph Algorithm n, p

� A denotes the adjacency matrix of G with n vertices
� p denotes the probability that two arbitrary vertices are connected
� getRandom() returns uniformly distributed a number over [0, 1]

1 for all 0 ≤ i , j ≤ n− 1
2 do Ai,j ← 0
3 for all 0 ≤ i , j ≤ n− 1
4 do if p ≤ getRandom()
5 then Ai,j ← 1
6 return A

Another variant of the Erd®s-Rényi-graph considers a �xed number of
edges: Given the set of all graphs that have n vertices and m edges, one is
uniformly selected. Both models generate a class of graphs with equal sta-
tistical degree properties. For large n, the random graph exhibits a Poisson
degree distribution. All connections are distributed with equal probability
over node pairs. Consequently, the classical random graph does not model
clustering properties, which makes it almost unsuitable for implementing re-
alistic networks. However, there are contributions on generalizing the random
graph to correct these issues [334]. Detailed mathematical background in the
theory of random graphs is presented in [67].

It is worth noting that the following construction procedure does not re-
�ect the random graph model: Consider all graphs of a �xed number of ver-
tices. They di�er in numbers and combinations of edges, and attain topolo-
gies of di�ering degree properties. Choosing random elements from this set
of graphs, will not lead to an unbiased sample of random graph. For exam-
ple, the graph with no edges, or the full mesh topology represent a single
instance. The selection process is thus inherently biased preferring graphs
with the maximal number of link combinations.
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22.4.2 Geometric Random Graphs � The Waxman Model

Physical connections between nodes of a computer network are not
created arbitrarily but may follow cost aspects of cable lengths. An enhance-
ment of the Erd®s-Rényi-model are geometric random graphs. They account
for the distance between two nodes and thus introduce preference aspects.
The most well-established model for this class of graphs is the so called Wax-
man graph, which has been introduced to compare Steiner tree algorithms
[489]. In this model, vertices are placed randomly on a Cartesian coordinate
grid; the probability P that an edge connects two nodes u, v depends on
their Euclidean distance d(u, v):

P (u, v) = β · e−d(u,v)/Lα, 0 < α, β ≤ 1

L denotes the maximal distance of two vertices. An increasing β increases
the edge density. A decreasing α reduces the ratio of long to short edges.
Based on these parameters, we can also adjust the average node degree.
The Waxman graph is an appropriate model for small networks that include
locality aspects.

22.4.3 Hierarchical Topologies

Larger computer networks typically consist of several levels. Hierarchical
models decompose the network into tiers, e.g., transit domains connect stub
domains that connect local area networks (LANs) [86]. The general idea is
that each tier is represented by multiple graphs with identical properties.
For this purpose a 2d�grid is divided into separate sub-regions with a scaling
dependent on the network type. This approach allows for inherent support by
Waxman graphs. LANs are modeled as star. Sub-regions are connected step
by step following a top�down creation process. The properties of constructing
a network rely on the (sub�)graph models in use.

There are two common, basic hierarchical models in the context of com-
puter networks: The Transit�Stub [511] and Tiers [120] model. The transit�
stub graph supports two tiers, and node labels contain hierarchical informa-
tion. Edges are associated with policy weights. In contrast, the Tier model
supports a three level hierarchy. All nodes in a single domain are connected
by a minimum spanning tree algorithm. Inter-domain connections are based
on the Waxman model.

22.4.4 Preferential Linking � The Barabási-Albert Model

A preferential linking model implements the key concept that highly
connected vertices are likely to become even more connected. The �rst
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model combining network evolution and preferential linking is the Barabási-
Albert model [49]. Motivated by their analysis of the web link structure,
Barabási and Albert observed that complex networks evolve continuously by
the emergence of additional vertices, and that new vertices prefer the es-
tablishment of links with already well-connected vertices. Let ki denote the
degree of node i, then the probability P that a new vertex attaches to i is:

P (ki) =
ki∑
j kj

The basic construction algorithm works as follows: Starting with m0 con-
nected vertices, and a prede�ned �xed degree k, at each time step a new
k�degree vertex l is added and linked with probability P (kl) to j randomly
selected, already existing di�erent vertices. An extended version including a
rewiring option has been presented in [30].

All new nodes follow the same weight in preferential attachment. To dy-
namically adjust the weight of the preference, the Generalized Linear Prefer-
ence Model (GLP) has been introduced with a weighting parameter β [82]:

P (ki) =
ki − β∑
j(kj − β)

, with β ∈ (−∞, 1)

This model addresses representative path length and clustering. Both,
the Barabási-Albert model and the GLP model exhibit a power law degree
distribution.

22.4.5 Intermediate Results

Based on the models presented so far, we can create random topologies
without clustering, networks that re�ect preferences in locality or popularity,
and hierarchical structures. Hierarchical models typically inherit properties
from sub-models. The random graph, the Waxman model, and Transit-Stub
as well as Tiers model can be summarized as ad-hoc models, which are typ-
ically inappropriate for large-scale, evolving networks. The Barabási-Albert
model is an example for measurement-driven approaches trying to reproduce
empirically observed properties of real-world structures.

Figure 22.4 visualizes the (geometric) random graph as well as the
Barabási-Albert model. This illustration tries to give some intuition behind
these models. However, it is worth noting that the same instance of a graph
may be drawn di�erently resulting in quite di�erent pictures. A graph should
not be identi�ed based on its visual structure but on its measurable proper-
ties.
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22.5 Modeling the Internet

In this section, we focus on the modeling of the Internet topology. The
Internet is a multi-tier network, which involves communicating components of
the applications down to the network, and even the physical layer. Referring
to the Internet topology means looking at the structure that is responsible
for packet forwarding. We thus exclude structures such as the World Wide
Web graph [359, 150].

22.5.1 Background

The term Internet topology is not well-de�ned. The Internet consists of
edge domains (or access networks) connected to at least one router, which
may serve several IP networks. Such an access router is typically part of a
larger domain, consolidating multiple IP pre�xes. Routers administrated by
a single authority are aggregated within an Autonomous System (AS). Bor-
der routers of ASes peer with each other. Routing within ASes may follow
di�erent protocols, routing between ASes is based on a single protocol, cur-
rently BGP [386]. In contrast to intra-domain routing , inter-domain routing
need not follow shortest path selection, but economical or political rules, for
example. Peering between ASes may be private, or publicly located at Inter-
net Exchange Points (IXPs). An AS of an Internet Service Provider (ISP )
that agrees to accept and forward tra�c to other ISPs, but does not run own
access networks, is called a transit domain.

Modeling the Internet topology implies the choice of granularity, i.e., the
type of resolved entities (the AS-level, router-level or IP-level), or a com-
bination. Augmenting an AS structure with access networks (router-level
networks) is not trivial as autonomous systems are not homogeneous and
the inner structures may di�er. Autonomous systems can be classi�ed by
administrative categories or peering relationships (cf. [119] and related work
therein).

22.5.2 Topology Inference & Data Sources

The accurate modeling and analysis of the Internet topology require the
observation of its current state. Gathering the complete Internet structure
is a complex challenge, which cannot be entirely successful as there is no
global view on all connections, nor do we have a method to validate routes
and guarantee global consistency. Nevertheless, several measurement studies
have been pursued over the last decade to understand the Internet structure
and to provide researchers with a realistic Internet topology. For a detailed
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overview about Internet topology inference and its problems, we refer to the
surveys [192], [121].

Topology inference is done on di�erent levels of the Internet. IP paths
may be discovered by traceroute. Using alias resolution mechanisms [121],
IP interface addresses can be summarized and mapped to a single router. Both
steps, however, are not trivial: ISPs �lter ICMP messages used by traceroute
causing incomplete data sets. Additionally, VPNs, tunnels, or MPLS paths
cannot be revealed by such technique. The aggregation of di�erent IP hops to
a single router usually follows heuristic approaches. Further on, routing paths
need not be symmetric, and source routing is almost everywhere prohibited.
This complicates traceroute measurement and require several vantage points
to explore the diversity of the routing layer. There are studies around which
evaluate the accuracy of traceroute-based data, e.g., [40].

The IP-level can be transformed into the AS-level based on an IP pre�x
to AS number mapping .4 However, a pre�x can be announced by multiple
ASes, known as the multiple origin AS problem (MOAS ) [516]. Inferring the
AS-level Internet paths from router-level traces is a well-known issue, but still
an unsolved problem. In contrast to active measurement, we can infer the AS-
level topology by the usage of publicly available data. There are two sources:
Internet registries, and BPG routing services. Routing registry information
is based on data which is provided by the ISPs and may be incomplete or
obsolete. Typically, this information is used to enhance other sources. AS
topology information can also be derived from BGP routing table dumps
and updates, route servers, and looking glasses. A route server is member
of the BGP peering. It provides limited telnet-access to query BGP routing
information. A looking glass is basically a web interface that acts as telnet-
wrapper for route servers. An o�ine version of BGP tables provide BGP
dumps. Projects such as RouteViews5 globally distribute route collectors,
which periodically store snapshots of the BGP table. To reconstruct routing
changes, this is done in combination with a dump of all BGP updates obtained
between current and preceding snapshot. BGP updates can also be used
to include �uctuating, e.g., backup links [514]. It is worth noting that the
peering with a route server is voluntary. There are several route servers, which
may have di�erent views on the BGP topology . BGP tables are location
dependent. Consequently, the set of information will be merged.

There are two popular IP traceroute projects, CAIDA 6 and DIMES
[419]. In contrast to CAIDA, DIMES establishes vantage points at end user
systems, similar to SETI@home, and thus collects data from signi�cantly
more Internet perspectives (i.e., ASes). For a comparison of both data sets
we refer to [481]. As mentioned before there are objections to derive the AS

4 See http://www.team-cymru.org/Services/ip-to-asn.html, for example.
5 http://www.routeviews.org/
6 Actually, CAIDA is an organization that operates several measurement projects,
e.g, Ark (formerly Skitter).
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Data Source Granularity URL

DatCat � http://www.datcat.org
CAIDA AS, IP(, Router) http://www.caida.org/projects/ark
DIMES AS, IP, Router http://www.netdimes.org
RIPE RIS AS http://www.ripe.net/ris
RouteViews AS http://www.routeviews.org
UCLA AS http://irl.cs.ucla.edu/topology
NEC AS http://topology.neclab.eu

Table 22.2: Selection of sources for periodically updated measurement data

graph from traceroute. The RouteViews project as well as the RIPE Routing
Information Service (RIS) , for example, provide BGP table dumps. The
routing table dumps must be post-processed to generate AS relations. The
Internet Topology Collection of the UCLA incorporates these both sources,
and additional route servers and looking glasses to provide a merged data
set on a daily base. Based on the processing of BGP updates, the created
AS graph is particularly aware of backup links, which are not visible in the
snapshots of BGP routing tables [514]. The project annotates the graph with
AS relationships. A simpli�ed AS graph based on RouteViews, RIPE RIS,
and UCLA data, is calculated within the project of NEC [498]. It represents
an unweighted and weighted next hop matrix, a shortest path calculation
(using policy-free and weighted edges), and classi�es the ASes in three tiers.

The Internet Measurement Data Catalog (DatCat ) [418] indexes Internet
measurements in a broader context. It does not only include Internet network
topologies, but also DNS traces, P2P measurements, etc. It facilitates search-
ing for and sharing of data among researchers. DatCat is a comprehensive
database, which is freely accessible by the research community in the context
of Internet measurement to allow for reproducible data.

All data sources are summarized in Table 22.2.

22.5.3 On Internet Topology Properties

Although the real Internet structure is unknown in absent of a complete
Internet map, there has been various work on analyzing the measured por-
tions. One of the most controversial assumptions of the Internet topology is
the scaling relations of several properties according to power laws . In their
seminal work, Faloutsos et al. [140] analyzed the Internet AS-level topology
based on RouteViews BGP tables. They observed that the out-degree of a
node, the degree distribution, and the Eigenvalue of a graph adjacency matrix
follow power laws. The power law exponent has been related to basic graph
characteristics (e.g., number of nodes and edges). The authors thus found
a very elegant way to describe the evolving inter-domain Internet structure.
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Several researchers veri�ed this work [424], [301], and tried to understand the
origin of power laws [313]. A common model in this context is the Barabási-
Albert model (cf., Section 22.4.4). Inspired by the work of Faloutsos et al., Bu
and Townsley [82] empirically analyzed measured Internet topologies. They
show that the AS-level topology is a small world graph [488].

Although the observations by Faloutsos et al. have been veri�ed, there
are indications contradicting power laws. Chen et al. [98] argue that the de-
rived AS-level topology is not representative for the Internet connectivity as
at least 20 − 50% of the physical links are missing. Using an extended data
set they show that strict power law relationship does not hold for the node
degree distribution. In a subsequent paper, Siganos, Faloutsos et al. [424] re-
analyze their initial work [424] based on the extended AS map and reclaim
power law observation using linear regression evaluation. A fundamental ob-
servation concerning power law relationship of the node degree distribution
and sampling biases has been presented by Lakhina et al. [273]. The au-
thors construct a subgraph which is based on a larger structure without any
power-law characteristics (e.g., random graph). They show that this subgraph
appears to have power-law degree distribution. Thus, an uneven sampling of
a non-power law structure may lead to power law properties.

The inner structure of an AS domain with respect to its IP path diversity
has been studied by Teixeira et al. [460]. Path diversity measures the number
of available routes between two nodes. The analysis is based on real network
information provided by the ISP Sprint, and inferred topologies. Teixeira et
al. show that approximately 90% of pairs of Sprint's 17 Point-of-Presence
(PoPs) in the US exhibit at least four link-disjoint paths, and that 40% of
pairs are linked by eight or more routes. In contrast to this, the topologies
derived from active measurements overestimate the number of disjoint paths.

The routing behaviour between two end hosts has been initially analyzed
by Paxson [356]. Employing network probe daemons distributed over 37 In-
ternet hosts located in 34 di�erent stub networks, Paxson measured that
about 30% of the site pairs cross at least one di�erent AS in the forward or
reverse path, and approximately 50% visited at least one di�erent city. For
further work on this topic see, for example, [198].

Routing on the AS-level structure depends on the Autonomous System
relationships . They determine routing export and selection policies. Links
between AS domains are classi�ed in (1) provider-to-customer, (2) customer-
to-provider, (3) peer-to-peer, and (4) sibling-to-sibling relationships [173].
No transit tra�c is allowed along peer-to-peer-links, and ISPs typically pre-
fer customer routes over peering or provider links. Following speci�c policies,
which are bound to the relation type, realistically chosen AS paths (measured
in router hops) are elongated in contrast to shortest path routing. Neglecting
inter-ISP relationships and using a simpli�ed shortest AS path policy model,
Tangmunarunkit et al. [455] analyzed that 20% of Internet paths are in�ated
by more than 5 router-level hops. In their subsequent work, the authors ex-
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Generator AS-level Router-level Hierarchy URL

GT-ITM Yes No Yes http://www.cc.gatech.
edu/projects/gtitm

Inet Yes No No http://topology.eecs.
umich.edu/inet

BRITE Yes Yes Yes http://www.cs.bu.edu/
brite

IGen No Yes Yes http://www.info.ucl.
ac.be/~bqu/igen

Table 22.3: Network topology generators

tended the policy model but observed that 96% of paths still have the same
length independently of the model in use [454]. Based on a routing policy
model that re�ects commercial relationships, Gao et al. [174] derive the path
elongation in AS hops. More than 45% of all AS paths are in�ated by at least
one AS hop.

22.5.4 Topology Generation

A standardized Internet topology cannot be provided as long as the Inter-
net structure is not completely understood. One may import real measure-
ment data (cf. Section 22.5.2) into the simulator but the created topology
remains incomplete (e.g., missing peering links at the AS-level [41], [199]).
Additionally, for most simulators the inferred number of nodes and links is too
large. Krishnamurthy et al. [267], for example, introduce a sampling method
in order to reduce the graph size on the one hand, and preserve power law
metrics and slope on the other hand. The created structure is an undirected
graph at the AS level. To allow for realistic inter-domain routing, edges need
to be annotated with AS relationships as included in some measurement
data [514], [498].

There are several network generators available to create synthetic topolo-
gies (cf. Table 22.3). One of the �rst well-established generators was GT-
ITM . It provides �at random graphs, and a hierarchical transit-stub model
to re�ect the AS structure. Inet-3.0 is also an Autonomous System level
Internet topology generator. It creates a random network and tries to re-
produce inter-domain properties based on the input parameters: number of
nodes, and the fraction of degree-one nodes. The characteristics are similar
to Internet observations between November 1997 and February 2002 [497].
The authors mention that the model does not represent the Internet well
with respect to clique and clustering properties. A topology generator that
re�ects the Internet AS-level and router-level is BRITE . BRITE is suitable
for large scale power law graphs. It uses the Waxman , two Barabási-Albert
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models , and the generalized preference model to create �at AS, �at Router,
and hierarchical topologies. BRITE also implements several import and ex-
port schemes to transform graphs between di�erent topology generators and
simulators. BRITE, and GT-ITM are pure degree-based generators. More
recently, the IGen generator has been introduced that attempts to create
end-to-end paths. IGen follows a new generation approach, which includes
network design heuristics and geographic restrictions.

22.6 Conclusion

The network topology represents the interconnection of communication
entities. It describes the paths which information can �ow, and may largely
a�ect evaluation of communication protocols. Understanding existing struc-
tures, such as the Internet, is a prerequisite to model realistic topologies. The
speci�cation of a graph can be generally descriptive based on a su�cient set
of properties, or constructive using generation rules. A constructive creation
may again be distinguished in two di�erent approaches: Pure algorithmic con-
struction that de�nes the procedures to create a graph with speci�c properties
independent of the actual reasons, derived from the network. In contrast, a
causality inspired construction models the understanding of the graph evo-
lution as synthesizing the underlying network building process. It is worth
noting that the two construction mechanisms follow orthogonal perspectives
and may lead to unwanted results when mixed without care.

In this chapter, we introduced basic background on topology modeling,
in which we focused on �xed networks. We started with the �rst modeling
step: the abstraction of the real network by a graph, which includes the elim-
ination of unnecessary details. Subsequently, we discussed essential metrics
to describe a graph, and to analyze existing structures. The presented ex-
amples are not complete, but should be considered as starting point. The
selection of metrics and the understanding of their interplay with the subject
of investigation are an important part in the modeling. After characterizing
graphs, we introduced common topology models. All of them are not directly
applicable to the Internet topology, as Internet connections are neither built
by random, nor do they follow simple geometric or preferential attachment
rules. We discussed Internet topology modeling in the last section.

The modeling of the Internet is an intricate task. First and foremost, we
are not able to capture the complete Internet, and thus there is no complete
understanding of its structure. There are measurement projects. Processing
their output (e.g., merging di�erent sources) can be part of the modeling.
Presenting an Internet topology without mentioning its level of granularity
(i.e., AS-, router-, or IP-level) is meaningless. Recent discussions [193] advise
to enrich the topology generation by some level of randomness to re�ect the
various evolutionary aspects of the Internet.
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Subsequent steps may include the modeling of the network layer (Chap-
ter 16), augmenting connections by corresponding link delays (Chapter 19),
and the evaluation of protocols based on realistic tra�c patterns (Chap-
ter 18). For an in-depth treatment of network topologies in the context of
communication networks, we refer to the excellent books [69], [122], and [471].
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