
A Monitoring Framework for
Hybrid Multicast Networks

Sebastian Zagaria, Thomas C. Schmidt, Sebastian Meiling
{sebastian.zagaria,sebastian.meiling}@haw-hamburg.de, t.schmidt@ieee.org

iNET Research Group – Department Informatik
Hamburg University of Applied Sciences
Berliner Tor 7, 20099 Hamburg, Germany

Matthias Wählisch
waehlisch@ieee.org

Institut für Informatik
Freie Universität Berlin

Takustr. 9, 14195 Berlin, Germany

Abstract—Many popular Internet applications like IPTV, video
or voice chat, social networks and massive multiplayer online
games communicate in groups. While IP layer multicast remains
hesitant in global deployment, applications implement their own
group distribution techniques at the price of higher complexity
and lower efficiency. Emerging hybrid multicast approaches
become a promising alternative to fill that gap. Hybrid multicast
networks bridge between application and IP-layer multicast and
gain multicast deployment at a system level throughout the
Internet. In this paper, we present a monitoring framework for
such hybrid multicast networks based on a common API in the
process of standardization. Monitoring tools are useful to identify
network failures and to improve the performance. The target of
our monitoring framework is to collect, analyze and visualize
node and routing information, thereby making the complexity
of hybrid networks accessible to network administrators for the
first time.

I. INTRODUCTION

In today’s Internet, group communication software is an
important part for people to interact and share data with
one another. Applications like video-, audio-streaming and
conferencing software are popular examples for group com-
munication tools. In such applications, a large number of
users participate in a network. An efficient and easy-to-use
protocol for data delivery in groups is multicast. Multicast
exists in many flavours. There is IP-layer multicast [1] and
application layer multicast [2]. Due to the lack of IP-layer
multicast support in today’s Internet and the complexity of
overlay schemes, the most widely used multicast algorithm is a
simple reflection based on servers. In recent years, approaches
arose to combine IP-layer and application-layer-multicast for
transparently using the benefits of both. These approaches are
called hybrid multicast networks. In hybrid multicast networks,
IP-layer technologies will be used wherever available, and
application-layer-multicast is chosen to bridge gaps in wide-
area deployment of multicast network throughout the Internet.

In order to maintain complex networks, it is necessary to
have tools available that help administrators to monitor these
networks. Monitoring tools are useful to identify network
failures and to improve the performance. There are well known
tools for unicast like ping and traceroute that help managing
standard networks. In the case of IP-layer multicast, there exist
a number of tools that mimic the functionality of ping and
traceroute, e.g., mcping [3], tracetree [4] and SSM-ping [5].

Also several monitoring and visualization tools exist, e.g.,
Mhealth [6] and MUVI [7]. However, to the best knowledge of
the authors, there is no monitoring tools that supports hybrid
multicast networks.

This paper focuses on the development of a monitoring
and visualization framework for hybrid multicast networks.1

The framework is based on the common API for transparent
hybrid multicast, jointly developed by the Internet Technolo-
gies Group at HAW-Hamburg and Cisco. The target of the
monitoring framework is to collect and visualize data from a
hybrid multicast network using this common API. The frame-
work does provide functionalities to display the captured data
in a graphical and intuitive way. Its graphical representation
visualizes multicast forwarding trees, as well as detailed node
and group information.

The remainder of this paper is structured as follows. In
Section II, we review related work with special dedication to
H∀Mcast. Section III presents the monitoring framework. We
conclude and give an outlook on future work in Section V.

II. RELATED WORK

A. Hybrid Multicast

In recent years, a number of hybrid multicast approaches
have been released providing solutions to overcome the lack
of support for IP-layer multicast throughout the Internet. Ap-
proaches like Hybrid Shared Tree (HST) [8], Island Multicast
(IM) [9], Scalable Hybrid Multicast (SHM) [10] and Universal
Multicast (UM) [11] divide the network into two layers.
The lower layer, consisting of IP-layer multicast domains,
interconnected via the upper layer that consists of some global
scheme of overlay multicast.

B. H∀Mcast

H∀Mcast [12] is a recent practical approach to hybrid
multicast networks. The H∀Mcast project focuses on the
development and analysis of a hybrid group communica-
tion Internet architecture. This hybrid architecture is centered
around a common API (see Section II-C) and a universal
middleware. The API is implemented as a C/C++ and Java

1Our monitoring software is publicly available at
http://hamcast.realmv6.org/developers.

library. It provides a universal and technology-transparent
service for group communication. The architecture follows
an evolutionary model using a middleware at each system
and gateways to forward multicast data between technologies.
The middleware manages a number of multicast protocols di-
vided into technology moduls. This approach makes H∀Mcast
highly flexible and adaptable to the needs of the network sta-
tus. The simple socket configuration and creation in H∀Mcast
eases its use and offers a rich framework for the development
of group communication software.

C. Common API for Transparent Hybrid Multicast

The aim of the common API [13] is to enable applica-
tion programmer to develop applications that communicate
in groups and run everywhere, independent of the state of
network service deployment. Unlike the current multicast
socket API, the naming and addressing is endpoint- and type-
agnostic, using a universal multicast URI scheme to identify
groups. The API calls group into four categories. The group
management calls that provide creation of multicast sockets
and management of the group memberships. The send/receive
calls to send and receive multicast data. The socket options
for the configuration of the multicast socket, e.g., to set the
ttl or add/remove interfaces. The service calls provide means
to access interface information such as routing neighbors or
joined multicast groups.

D. IP Multicast Monitoring Tools

There are several tools for multicast monitoring that dis-
cover the tree topology or analyse multicast traffic. For exam-
ple, RTPmon [14] is a tool to collect and display packet loss
and jitter. RTPmon uses RTCP (Real Time Control Protocol)
to gather these information. Also tools like tracetree [4] can be
used to discover multicast forwarding trees based on extended
router functionalities. Mhealth [6] combines application and
routing information to provide a detailed view of a multicast
network. The routing information is obtained by Mtrace [15],
which is not part of Mhealth, Mtrace is a multicast traceroute
program. It basically mimics the functionality of unicast
traceroute. It resolves the tree from the receiver to the source.
Also data like jitter, packet loss, delay and group relations can
be monitored with Mhealth. These data is determined using
the RTCP protocol, thus Mhealth is bound to programs using
RTP. All information acquired with Mhealth are visualized,
like the multicast forwarding tree and additional information.
MUVI [7] is a tool that can monitor statistics and visualizes
the multicast forwarding tree of a network. In order to trace
the forwarding tree, MUVI uses the SNMP protocol to retrieve
the routing neighbours of a router. It is also possible to browse
and save the MIB table of a router. Thus MUVI needs access
to the management of routers that will be monitored.

III. THE MONITORING FRAMEWORK

The monitoring framework consists of three independent
modules, the management agent, the collector, and the viewer.
The main functionalities of the framework are to first access

the data of distributed nodes, to collect and finally visualize
it. To access the data, every node needs to run a management
agent that serves as a remote interface to the common API. A
collector will use these agents to collect and process the ac-
quired information. A view then displays the data provided by
the collector. All components are completely separated. This
modular architecture allows to change functionalities without
interfering with other modules. Most importantly the design
and development of user interfaces can be separated from
the monitoring task, allowing to implement different kind of
views. Since the common API used by the monitoring frame-
work is on its track to experimental standard, the framework
can be used to monitor group applications that implement this
API. Figure 1 gives an overview of the monitoring framework.
A single collector fetches and aggregates the information from
the nodes and feeds into the different views. As shown in
Figure 1, the viewers do not need to be part of the hybrid
multicast network and do not require to run any kind of library.
The information provided by the collector can be accessed
using a simple HTTP based messaging protocol to ensure
many different views.

Daemon 1Daemon 1 Daemon 2Daemon 2 Daemon ...Daemon ... Daemon NDaemon N

Monitoring Collector

HAMcast
Network

Qt-UIQt-UI Web-Based UIWeb-Based UI Java ...Java ... OthersOthers

Fig. 1. Architecture overview

The communication between monitoring modules is realized
using a RESTful-Web-Service. REST [16] is a lightweight
remote procedure call (rpc), using a client-server architecture.
The server provides methods that can be called by the client.
For this purpose the client and server are communicating using
the HTTP message protocol. Methods are identified by an URI
in the HTTP header. The payload of a message and return
values of a method are encoded in XML.

A. Monitoring Framework Modules

1) Management Agent: A Node running this program can
be connected to one or several collectors. Basically the
management agent wraps the service-calls (see Section II-C)
in methods that convert the returned values into an XML

document. A collector connected with the agent can use the
REST-Interface to execute the calls. All callable methods of
the agent have a counterpart in the Common-API.
Callable methods of the management agent are as follows:

get interface returns a list of communication interfaces
and their properties.

group set returns a list of groups for the specified
interface.

neighbour set returns a list of routing neighbours for the
specified interface.

parent set returns a list of routing parents for a speci-
fied interface and group.

children set returns a list of routing children for a spec-
ified interface and group.

2) Collector: This program collects all data from connected
agents, feeding the view with aggregated information about the
network. In a periodic time interval, the collector updates and
stores the node information within a data model. Node infor-
mation is accessed using the REST-Interface of management
agents. To provide the collected data to a viewer, the collector
implements a REST-Interface. The methods made available are
directly adapted for monitoring reasons and visualization.
Callable methods of the collector are as follows :

group list returns a list of groups aggregated from the
group sets of all known nodes.

node list returns a list of agent ids from all known nodes.
Every agent has an id to identify the node.

group data returns a list of all agent ids for a specific
group. This call needs a group URI as argu-
ment.

node data returns a list that contains detailed information
about a specific node. This call requires a valid
agent id as argument.

group tree returns a list of edges specific to a group. The
list contains pairs of agent ids representing
edges between nodes. This call requires a group
URI as argument.

In order to exchange data, the collector and the management
agents need a discovery mechanism to find one another. Due to
the group dynamics of multicast, users may join and leave the
network at any time. Thus in order to find all nodes involved
in the network, the discovery process has to be as dynamic as
the network itself. Since all nodes participate in a multicast
network, it is possible to perform a group based rendevouz
to contacting the nodes without prior knowledge. All agents
involved in the network join a well known multicast group.
The collector is now able to distribute connect messages within
the well known group (fig. 2). This messages contains the IP-
address of the collector. Every agent that receives this message
will open a connection to the collector. This reduces the NAT
connection problem to the collector and prevents the agents
from polluting the multicast network with replies. To track
additionally joining nodes, the collector periodically sends
connect messages into the multicast group.

Daemon 2

Daemon 4 Daemon 5

Daemon 1

Collector

Daemon 3

x

Connect-
Message

Unicast
connection

1.
2.

Fig. 2. Node discovery of the monitoring framework

3) Viewer: This program visualizes data provided by the
collector. This part of the framework is the most exchangeable
and can be adjusted to the needs of the user. For our implemen-
tation, we required the viewer to provide an intuitive, group
focused visualization of the network. All existing groups in the
network must be clearly displayed, to get an overview of the
network status. In addition, a more detailed view for specific
groups is given. This detailed view lists all nodes and their
properties, e.g, interface and routing information. As a second
visualization, the viewer can draw multicast group forwarding
trees. This graph is displayed in a new tab, so that the user can
switch between different graphs. The visualized nodes display
information about the technology in use and their identity, so
nodes can be related to the none-graphical representation. All
nodes are represented by icons, the used icon depends on the
available multicast technologies modules of the node. Every
node in this tree can show detailed node information, equal to
the detailed group view but for this single node. This allows
the user to view node information without the need to switch
between the text and the graphics view.

B. Interaction among Modules

The interaction among the modules is separated into two
layer. At the lower layer, the management agents and collec-
tor communicate using hybrid multicast sockets and REST-
Interfaces. This interaction consists of node discovery and
monitoring. Figure 3 shows the sequence diagram of the
communication between a collector and an agent. After the
agent opens a TCP-connection, due to the node discovery, it
instantly replies its agent id to the collector. Thus the collector
can identify the agent for node specific requests. Also it is
used by the viewer as a text representation of a node. After the
node discovery the collector uses the open TCP-connection for
the REST communication. At the upper layer the viewer and
collector communicate via the REST-interface of the collector.

IV. OPERATING THE MONITORING FRAMEWORK

The framework is based on the H∀Mcast prototype. The
management agent and the collector are build upon the C++
library of H∀Mcast to implement the discovery process via
hybrid multicast sockets. Also the agent uses this API to access
node information provided by the service-calls. The viewer is
implemented using the Qt-UI framework [17] for the GUI

Collector DaemonMulticast group

Join group

/CONNECT

/CONNECT

/CONNECT

POST daemon ID

POST /interfaces

200 OK payload

Fig. 3. Communication between collector and management agent

and tree visualization. The node positions of the graphical
representation are calculated using the iGraph library [18].
This library supports data types, layouts and functions for
generating and manipulating graphs. All of these libraries are
multi platform enabled and may at least be operated under
Windows and Linux distributions. We tried to minimize the
use of external libraries to make sure the framework operates
on many different systems.

There is no strict order to run the programs, but the viewer
cannot work properly without a collector. After setting up
the network or using an existing one, every node that should
be monitored by the framework has to run a management
agent that is properly configured. At start up, the agent takes
two command line arguments, its agent ID and a multicast
management group URI. If not set, the ID will be set to the
IP-address of the node. The multicast group URI is used for the
node discovery, this argument has to be set. After the program
started, the management agent will join the multicast group
given in the command line argument and wait for incoming
/connect messages from a collector.

After the agents are configured and running, the collector
can be started on a system. As for the agent, the collector needs
to be executed on a system with a running H∀Mcast middle-
ware, which is part of the network that will be monitored. The
collector can be configured by four command line arguments.
The first argument specifies the multicast group URI that will
be used to execute the node discovery process. The second
argument is a time interval that indicates how frequently the
collector will perform the node discovery. The third argument
is a time interval that defines the lag between updates of node
data from connected agents. The last argument defines the port
of the TCP-Server which is used to communicate with the
agents. After the collector is started, the program will send
/connect to the multicast group that was given as a command
line argument. This message contains the IP-Address of the
collector and the port of the TCP-Server. After the agents
receive this message, they initiate a TCP-connection to the
specified endpoint.

Once the connection is successfully established, the agent
will immediately send its agent ID to the collector. On
receiving the agent ID, the collector will save the ID and
connection information into a map. This enables the collector

to send requests to specific agents identified by the ID. This
ID could also be auto generated by the collector, but it is better
readable and more meaningful to the user if its an IP-address
or a name set by the user.

The collector will periodically call the methods of an agent
that can be accessed over the REST-interface to update a data
model that will be created for every connected management
agent. This data model represents all properties of a node.
Figure 4 shows the data model and all its properties. A node
consists of its name and a set of interfaces. Each interface has
its own ID, name, address, technology, routing neighbours and
a set of groups. A group consists of a group URI, parent and
children.

node

+interfaces: vector<interface>
+name: string

interface

+name: hamcast::uri
+tech: string
+address: string
+id: int
+groups: vector<group>
+neighbours: vector<hamcast::uri>

group

+name: hamcast::uri
+parent: hamcast::uri
+children: vector<hamcast::uri>

 1 0..* 1 1..*

Fig. 4. Data model for a node

Once the collector is running, the viewer can be started as
well. On start up the viewer takes no command line arguments.
The viewer can be configured over an configuration window
that will show up (see fig. 5). In this configuration window,
the user can set the IP-address and port of the collector as
well as a time interval that indicates how frequently the data
will be updated.

Fig. 5. Configuration window of the viewer

On confirming the configuration, the viewer will connect
to the collector and a main window will show up. In this
main window, there are two views, a group and a detailed
group view. The first view contains a list of all multicast
groups joined by the nodes. This information is provided by
the group list call of the collector. The second view is a tree of
detailed group information. The information provided by that
view include all nodes that have joined the group and their
node specific informations, like active technology interfaces,
routing neighbours, parent and children set. By clicking on an
item in the group view the user can switch between the groups
shown in the detailed view. On double clicking a group item
in the group view, a graphical representation of the group tree
will be opened in a new tab (see fig. 6). Every node in this
tree view is represented by an icon, e.g, nodes with active
application layer multicast interface, Inter-domain Multicast

Gateways, nodes with IP multicast interface or nodes with
both native and ALM interface. In the bottom of a screen, a
legend is displayed that explains the meaning of all occurring
icons. All node icons are connected via edges representing the
parent children relation of the multicast forwarding tree for the
specific group. If the user moves the cursor over an icon, a tool
tip window will appear that shows some quick informations
about the node, e.g, the technology interfaces that are used, the
name of the node and the number of parent and children for
this group. By clicking on an icon an information window will
pop up. This window shows detailed node information that can
also be found in the detailed group view. The user can position
the windows next to each other to get a direct comparison of
nodes. Allowing the user to identify nodes that are important
for routing. All tree views are displayed in different tabs so
that the user can freely switch between tree vies or the textual
representation.

Fig. 6. Multicast forwarding tree visualization with detailed node information

V. CONCLUSION AND OUTLOOK

Hybrid multicast opens the realm of widespread, operator-
independent deployment at the price of a virtualized net-
work access of higher complexity. A monitoring and analysis
framework is needed for large scale deployment. We devel-
oped a software that provides detailed knowledge and visual
information about multicast groups and trees. The concept
and implementation of the framework presented in this paper
is generic in the sense that it extracts all base information
from the common API calls and combines a complete view
to provide a graphical representation of multicast forwarding
trees.

Currently, we are working on a logging system for the
collector that records the monitored networks and an offline
mode for the view that visualizes recorded data. Furthermore,
we are planning to develop a Web interface that uses the
daemon and collector software of the framework. This Web
interface should provide a second mobile view that can be used
on smaller devices like smart phones as well. We also plan to

implement statistic measurements for network performance,
and to extend the daemons to run user-defined scripts on
distributed nodes, using REST-interfaces of this framework.

ACKNOWLEDGMENT

We wish to thank Dominik Charousset and Sebas-
tian Wölke for their contributions and development within
the H∀Mcast project. This work is funded by the Ger-
man Federal Ministry of Education and Research (BMBF)
within the project H∀Mcast and the G-Lab initiative, see
http://hamcast.realmv6.org.

REFERENCES

[1] S. E. Deering and D. R. Cheriton, “Multicast Routing in Datagram
Internetworks and Extended LANs,” ACM Trans. Comput. Syst., vol. 8,
no. 2, pp. 85–110, 1990.

[2] C. K. Yeo, B. S. Lee, and M. H. Er, “A Survey of Application Level
Multicast Techniques,” Computer Communications, vol. 27, no. 15, pp.
1547–1568, 2004.

[3] P. Namburi, K. Sarac, and K. Almeroth, “Practical Utilities for
Monitoring Multicast Service Availability,” Comput. Commun., vol. 29,
pp. 1675–1686, June 2006.

[4] K. Sarac and K. C. Almeroth, “Tracetree: a scalable mechanism to
discover multicast tree topologies in the internet,” IEEE/ACM Trans.
Netw., vol. 12, pp. 795–808, October 2004.

[5] P. Namburi, K. Saraç, and K. C. Almeroth, “SSM-ping: A ping utility for
source specific multicast.” in Communications, Internet, and Information
Technology, 2004, pp. 63–68.

[6] D. B. Makofske and K. C. Almeroth, “MHealth: A real-time multicast
tree visualization and monitoring tool,” in NOSSDAV, June 1999.

[7] R. Krzywania and R. Lapacz, “Multicast Visualisation Tool MUVI,”
http://muvi.man.poznan.pl, last called on January 09.2012. [Online].
Available: http://muvi.man.poznan.pl/

[8] M. Wählisch and T. C. Schmidt, “Between Underlay and Overlay:
On Deployable, Efficient, Mobility-agnostic Group Communication
Services,” Internet Research, vol. 17, no. 5, pp. 519–534, November
2007.

[9] X. Jin, K.-L. Cheng, and S.-H. G. Chan, “Island multicast: combining
IP multicast with overlay data distribution,” IEEE Transactions on
Multimedia, vol. 11, no. 5, pp. 1024–1036, 2009.

[10] S. Lu, J. Wang, G. Yang, and C. Guo, “SHM: Scalable and Backbone
Topology-Aware Hybrid Multicast,” in 16th Intern. Conf. on Computer
Communications and Networks (ICCCN’07), August 2007, pp. 699–703.

[11] B. Zhang, W. Wang, S. Jamin, D. Massey, and L. Zhang, “Universal IP
multicast delivery,” Computer Networks, vol. 50, no. 6, pp. 781–806,
2006.

[12] S. Meiling, D. Charousset, T. C. Schmidt, and M. Wählisch, “System-
assisted Service Evolution for a Future Internet – The HAMcast Ap-
proach to Pervasive Multicast,” in Proc. of IEEE GLOBECOM 2010,
Workshop MCS 2010. Piscataway, NJ, USA: IEEE Press, Dec. 2010,
pp. 913–917.

[13] M. Wählisch, T. C. Schmidt, and S. Venaas, “A Common API for
Transparent Hybrid Multicast,” IRTF, IRTF Internet Draft – work in
progress 04, January 2012.

[14] D. Bacher, A. Swan, and L. A. Rowe, “rtpmon: a third-party RTCP
monitor,” in Proceedings of the fourth ACM international conference
on Multimedia, ser. MULTIMEDIA ’96. New York, NY, USA: ACM,
1996, pp. 437–438.

[15] D. B. Makofske and K. C. Almeroth, “Real-time multicast tree
visualization and monitoring,” Softw. Pract. Exper., vol. 30, pp.
1047–1065, July 2000.

[16] L. Richardson and S. Ruby, RESTful Web Services. Beijing: O’Reilly,
2007.

[17] Nokia Corp., “Qt : cross-platform application and ui framework,” 2012.
[Online]. Available: http://qt.nokia.com/

[18] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, vol. Complex Systems, p. 1695, 2006.

