
Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

CCNx meassurement testbed implementation

Markus Vahlenkamp

Master project report

CONTENTS II

Contents

1 Introduction 1

2 Problem statement 2

3 NDN / CCNx overview 3
3.1 Architecture . 3
3.2 Software components . 5

4 Measurement 6
4.1 Testbed topology . 6
4.2 Measurement workflow . 7
4.3 Measurement components . 11

5 Results 13
5.1 Basic experiments: Resource exhaustion 13

5.1.1 Resource exhaustion . 13
5.1.2 Chunk-based state multiplication . 14

5.2 Extended experiments: State propagation & correlation 15
5.2.1 Homogeneous network . 15
5.2.2 Heterogeneous network . 16
5.2.3 Heterogeneity magnitudes . 16
5.2.4 Increased inhomogeneities . 17
5.2.5 Summarising retrospection . 19

6 Conclusion 19

References 22

A Appendix 23
A.1 Measurement files . 23
A.2 Measurement run graphs . 25

LIST OF FIGURES III

List of Figures

1 CCNx router overview . 4
2 CCNx packet structure . 5
3 Testbed logical topologie . 6
4 Workflow illustration of the semi-automated measurement process 9
5 Datacentric workflow that the measurement results undergo 12
6 Load at the designated router of the receiver while requesting non-existing

content . 14
7 Parallel download of 10 Mbit files: Start and stop time of the download per

file at the receiver & resource consumption at its designated router [Pending
Interests (PI), Interest retransmits (IR), and Network Load (NL) including the
mean goodput] . 15

8 Routing and forwarding performance in a homogeneous five-hop network . . 16
9 Load per hop for a chain of 5 routers while initiating a 80k, 100k, 120k, and

150k different Interests for non-existing content 17
10 The effect of router strengths on Interest trading 18
11 Interleaving of the competitive processes 18
12 Routing and forwarding performance in a five-hop network with alternating

CPU reductions . 18
13 Comparison of state management and forwarding performance in different net-

work scenarios (mean and standard variation) 19
14 Per node statistics gathered throughout measurement 25
15 Filetransfer statistics . 25
16 Measurement run overview page . 26

Listings

1 Excerpt of the routing process measure file 23
2 Excerpt of the finally deduced capture information 23
3 Excerpt of the file transfer statistics . 23
4 Sample content of the capture summary file 24
5 Excerpt of the capture extracted psml file 24

1 INTRODUCTION 1

1 Introduction

The amount of data transferred through the Internet is steadily increasing, all the more be-
cause of the enhanced availability of wired and wireless broadband access as well as the
rising amount and quality of content. It is used to deliver and distribute masses of all sorts
of content these days. Compared to what the Internet was built for, namely the direct in-
terconnection of hosts, its current architecture is assumed inefficient for the dissemination
of today’s web content. Websites, videos, pictures, and so on are repeatedly transferred
throughout the Internet, from content source up to the content consumer.
Consumers of all these kinds of content do not matter where the actual content is acquired
from, they are also not interested in communication with a particular network node, but in
receiving the desired content.
Plenty of nodes are already available, spread across the globe, which host, replicate and
cache the content that is of interest for consumers. To utilise these nodes for an efficient
content distribution, many techniques and workarounds like load balancers, DNS- and HTTP-
redirection have been introduced. But all these Content Delivery Network (CDN) related tech-
niques are applied on top of the actual host-to-host communication concept of the Internet.
At the present researchers hold the opinion that because of the fundamental shift towards
content centricity, the basic concept of networks should reflect this through enhanced con-
tent dissemination capabilities.
Current research includes for instance routing on content names instead of hostnames, con-
tent caching directly implemented into the routing infrastructure and all this backed by the
publish / subscribe paradigm for content acquisition [1].
Different projects implemented or simulated the network architecture concepts they de-
veloped. These prototypes follow the concept that is generally known as Information-Centric
Networking (ICN). The systems are further used to analyse the behaviour as well as to
identify the pros and cons of the different approaches.
Within this project we will take the most famous of these implementations, namely Palo Alto
Research Centers (PARCs) [2] CCNx project, deploy it within our testbed and analyse the
underlying concept and its implementation. The goal is to test if scalability, robustness, per-
formance or security flaws exist within the Named Data Networking (NDN) [3] concept, the
concept that represents the CCNx projects core architecture. We want to stress, that our
analysis is based on analytical pre-considerations and focuses on conceptual issues instead
of implementation related bugs or alike. The present work is directly related to our previous
publications [4, 5] but widens the spectrum and also gives a bright inside into our measure-
ment processes and the testbed setup.
In the remainder of this document we will give a short overview of the open issues we see
in the field of ICN regarding performance, stability and security in Section 2. A survey of the
CCNx components and their mode of operation is given in Section 3. Afterwards in Section 4
we will expose detailed information about the testbed components and the implemented

2 PROBLEM STATEMENT 2

setup we use to gather our measurement values. We expose and illustrate out explicit meas-
urements and their results in Section 5, followed by the conclusion that our measurements
lead to in Section 6.

2 Problem statement

Different ICN proposals have been developed in the past, all implementing the general idea
of ICN. Among them are for instance TRIAD [6], DONA [7], NDN [3, 8], PSIRP / LIPSIN
[9, 10] and NetInf [11]. They all take slightly different approaches in one or the other design
choice, but aim for the general ICN goals such as content caching, routing on names as
described in [12, 1]. ICN inherently introduces an enhanced content awareness to the net-
work. The network needs to maintain information about where particular pieces of content
are available in conjunction to today’s networks which just need to maintain the information
where particular subnets (aggregations of individual nodes) are located.
The step of exposing knowledge about content into the network infrastructure itself places
a higher burden on the network infrastructure. It has to keep track of pieces of content and
their location except just knowing how to reach groups of nodes or particular nodes.
Through this shift and increase of responsibility towards the network infrastructure new chal-
lenges and threads arise. The following non-exhaustive list recaps the security and perform-
ance challenges we already elaborated in [5].

Resource Exhaustion A massive generation of content subscriptions or publications,
caused by for instance malicious misuse or misconfiguration, will result in an extensive
utilisation of memory and processing resources. This could likely lead to a Denial-of-
Service (DoS).

State Decorrelation Through the asynchronous nature of the publish / subscribe based
data transmission, a decorrelation of the distributed states may lead to service disrup-
tion and unwanted traffic flows.

Path & Name Infiltration Through the publishment of a name or name prefix within the net-
work subscription messages are attracted. This can be used to blackhole subscription
messages or to start man-in-the-middle attacks by issuing falsified publication mes-
sages. The fact that distributed cached copies need to be registered to optimally use
the caching infrastructure, as posed in [13], makes the genuineness validation of pub-
lishments even harder.

Cache Pollution Through the use of content caches within the routers, the network aims to
perform better while disseminating the same content again and again. By spoiling the
cache relevance, the usefulness and thus the performance of the cache are vulnerable.

3 NDN / CCNX OVERVIEW 3

Further randomly filling the cache also leads to an increase in control traffic and routing
table maintenance.

Cryptographic Breaches Long lived signing keys combined with large amounts of pub-
lished data provide increased opportunities to compromise the cryptographic creden-
tials used to secure the authentication of the publisher as well as the integrity of the
content itself.

Further resources that elaborate the security risks and threads of ICN are [14, 15].
In this paper, we will especially focus on the Resource Exhaustion and State Decorrelation
case. Our objective is to figure out how severe these threads to security and performance
are in an actual testbed deployment.

3 NDN / CCNx overview

Prior to introducing our testbed in Section 4, we will give a short introduction to the NDN
architecture in Section 3.1 and available software components of the actual CCNx imple-
mentation in Section 3.2.

3.1 Architecture

The CCNx protocol utilises the publish / subscribe paradigm for content dissemination. Con-
tent that should be made available needs to be published within CCNx, such that content
consumers will be able to retrieve the content through issuing subscription messages, known
as Interests. Every piece of content in CCNx is made available through the use of certain
names. These content names are used to identify and locate the content, thus in some way
they take over certain parts of IPs responsibilities of today’s networks. Like in IP networks
every content router needs to know where particular parts of the namespace are located.
This information is distributed between name-based content routers through the use of a
name-based routing protocol [16].
The name-based routing information populates the Forward Information Base (FIB)-table of
the name-based router and is then used to route incoming subscriptions towards the pub-
lisher.
Figure 1 depicts the architecture of a CCNx based router. Besides the FIB-table the router

holds the Pending Interest Table (PIT) and the Content Store. The PIT is used to store
Interest messages, when they are passed on to the next content router or an application.
Interests in fact are the representation of a subscription message of the NDN concept that
is propagated from subscriber towards a content source. The main purpose of the PIT,
though is to aggregate content requests. For Pending Interest messages, requesting the

3 NDN / CCNX OVERVIEW 4

Figure 1: Packets In the NDN Architecture.

Figure 2: Forwarding Process at an NDN Node.

achieved by conventions agreed between data producers and consumers, e.g., name conventions indicating
versioning and segmentation. Name conventions are specific to applications and opaque to networks.

Names do not need to be globally unique, although retrieving data globally requires a degree of global
uniqueness. Names intended for local communication may be heavily based on local context, and require
only local routing (or local broadcast) to find corresponding data.

To retrieve dynamically generated data, consumers must be able to deterministically construct the name
for a desired piece of data without having previously seen the name or data. Either (1) a deterministic
algorithm allows producer and consumer to arrive at the same name based on data available to both,
and/or (2) consumers can retrieve data based on partial names. For example, the consumer may request
/parc/videos/WidgetA.mpg and get back a data packet named /parc/videos/WidgetA.mpg/1/1. The
consumer can then specify later segments and request them, using a combination of information revealed
by the first data packet and the naming convention agreed upon by the consumer and producer applications.

The naming system is the most important piece in the NDN architecture and still under active research; in
particular, how to define and allocate top level names remains an open challenge. Not all naming questions
need be answered immediately, however; the opaqueness of names to the network – and dependence on
applications – means that design and development of the NDN architecture can, and indeed must, proceed
in parallel with our research into name structure, name discovery and namespace navigation in the context
of application development (Section 3.3).

2.2.2 Data-Centric Security

In NDN, security is built into data itself, rather than being a function of where, or how, it is obtained [51].
Each piece of data is signed together with its name, securely binding them. Data signatures are mandatory
– applications cannot “opt out” of security. The signature, coupled with data publisher information, enables
determination of data provenance, allowing the consumer’s trust in data to be decoupled from how (and from
where) data is obtained. It also supports fine-grained trust, allowing consumers to reason about whether a
public key owner is an acceptable publisher for a particular piece of data in a specific context.

However, to be practical, this fine-grained and data-centric security approach requires some innovation.
Historically, security based on public key cryptography has been considered inefficient, unusable and diffi-
cult to deploy. Besides efficient digital signatures, NDN needs flexible and usable mechanisms to manage
user trust. Section 3.4 describes how NDN offers a promising substrate for achieving these security goals.
Since keys can be communicated as NDN data, key distribution is simplified. Secure binding of names to
data provides a basis for a wide range of trust models, e.g., if a piece of data is a public key, a binding is
effectively a public key certificate. Finally, NDN’s end-to-end approach to security facilitates trust between
publishers and consumers. This offers publishers, consumers and applications a great deal of flexibility in
choosing or customizing their trust models.

NDN’s data-centric security can be extended to content access control and infrastructure security. Ap-
plications can control access to data via encryption and distribute (data encryption) keys as encrypted NDN
data, limiting the data security perimeter to the context of a single application. Requiring signatures on
network routing and control messages (like any other NDN data) provides much-needed routing protocol

4

Figure 1: CCNx router overview [3]

same piece of content, at most one Interest is forwarded towards a neighbour router. Sub-
sequent Interests that arrive at the content router, while an active Interest is pending, are
noted in the PIT but their forwarding is suppressed. When the content chunks subsequently
arrive at the router, following the reverse path of the Interest message, they are delivered
towards every requesting consumer that previously sent an Interest for the particular chunk.
This behaviour apparently results in a per chunk multicast like dissemination behaviour.
The content store is used to cache the received content to be able to deliver it to consumers
that subsequently issue an Interest for the particular piece of content. It also allows the
underlying mechanism to evolve from synchronous to asynchronous multicast. Without the
content store the multicast like behaviour will just appear when Interests for the same content
chunk arrive at the time at least one other Interest requesting the same content is already
pending. The Content Store alleviates this timely coupling, by locally storing the acquired
content for later requests, resulting in an asynchronous per chunk multicast dissemination.
Faces are the generalization of an interface. It may be a connection to various network nodes
or to an application.
Due to the publish / subscribe approach, the communication is always driven by the receiver.
Through the generation of an Interest, the client announces its willingness to receive a par-
ticular piece of content. This Interest is send to a content router that processes the Interest
message in the following way [2].

1. Content store lookup is performed. If a content object matching the Interest is found
within the content store, it is transmitted out the arrival interface of the Interest mes-
sage. The Interest message is then dropped because it is satisfied and no further
processing in needed.

3 NDN / CCNX OVERVIEW 5

Figure 1: Packets In the NDN Architecture.

Figure 2: Forwarding Process at an NDN Node.

achieved by conventions agreed between data producers and consumers, e.g., name conventions indicating
versioning and segmentation. Name conventions are specific to applications and opaque to networks.

Names do not need to be globally unique, although retrieving data globally requires a degree of global
uniqueness. Names intended for local communication may be heavily based on local context, and require
only local routing (or local broadcast) to find corresponding data.

To retrieve dynamically generated data, consumers must be able to deterministically construct the name
for a desired piece of data without having previously seen the name or data. Either (1) a deterministic
algorithm allows producer and consumer to arrive at the same name based on data available to both,
and/or (2) consumers can retrieve data based on partial names. For example, the consumer may request
/parc/videos/WidgetA.mpg and get back a data packet named /parc/videos/WidgetA.mpg/1/1. The
consumer can then specify later segments and request them, using a combination of information revealed
by the first data packet and the naming convention agreed upon by the consumer and producer applications.

The naming system is the most important piece in the NDN architecture and still under active research; in
particular, how to define and allocate top level names remains an open challenge. Not all naming questions
need be answered immediately, however; the opaqueness of names to the network – and dependence on
applications – means that design and development of the NDN architecture can, and indeed must, proceed
in parallel with our research into name structure, name discovery and namespace navigation in the context
of application development (Section 3.3).

2.2.2 Data-Centric Security

In NDN, security is built into data itself, rather than being a function of where, or how, it is obtained [51].
Each piece of data is signed together with its name, securely binding them. Data signatures are mandatory
– applications cannot “opt out” of security. The signature, coupled with data publisher information, enables
determination of data provenance, allowing the consumer’s trust in data to be decoupled from how (and from
where) data is obtained. It also supports fine-grained trust, allowing consumers to reason about whether a
public key owner is an acceptable publisher for a particular piece of data in a specific context.

However, to be practical, this fine-grained and data-centric security approach requires some innovation.
Historically, security based on public key cryptography has been considered inefficient, unusable and diffi-
cult to deploy. Besides efficient digital signatures, NDN needs flexible and usable mechanisms to manage
user trust. Section 3.4 describes how NDN offers a promising substrate for achieving these security goals.
Since keys can be communicated as NDN data, key distribution is simplified. Secure binding of names to
data provides a basis for a wide range of trust models, e.g., if a piece of data is a public key, a binding is
effectively a public key certificate. Finally, NDN’s end-to-end approach to security facilitates trust between
publishers and consumers. This offers publishers, consumers and applications a great deal of flexibility in
choosing or customizing their trust models.

NDN’s data-centric security can be extended to content access control and infrastructure security. Ap-
plications can control access to data via encryption and distribute (data encryption) keys as encrypted NDN
data, limiting the data security perimeter to the context of a single application. Requiring signatures on
network routing and control messages (like any other NDN data) provides much-needed routing protocol

4

Figure 2: CCNx packet structure [3]

2. PIT lookup is performed. If a Pending Interest matching the content name is already
pending, meaning that an Interest for that piece of content is already forwarded to
neighbouring routers, the incoming face is just added to the corresponding PIT entry
and the Interest message is discarded.

3. FIB lookup is performed. A corresponding prefix for the name of the Interest packet
is looked up in the FIB-table. If a matching prefix is found, an entry is created within
the PIT describing the Interest. Subsequent the Interest is forwarded out one or more
faces noted within the FIB.

4. No FIB match found. The node has no chance to satisfy the Interest, thus the Interest
message is discarded.

These steps are performed on every content router on the way up to a source of the name.
Whenever a particular piece of requested content arrives at a content router, a PIT lookup
is performed to find all faces a corresponding Interest was received on. The resulting list
of faces is used to transmit the data chunks towards all subscriber that issued an Interest
for that particular piece of content. Once the Pending Interest is satisfied, the PIT entry
is removed and the content object is stored within the local nodes Content Store for future
requests.
The PIT entries use a soft-state model. If they are not satisfied or refreshed within a certain
period of time the PIT entries are dropped automatically.
Figure 2 for the sake of completeness shows the structure of an Interest message as well as
a data packet.

3.2 Software components

The CCNx bundle comprises various different programs. CCNx core library implementations
exist in C or Java as well as for the Android OS.

4 MEASUREMENT 6

ccnxshort

Hop1

ccnxlong

Hop 1 ccnxlongHop 2 ccnxlong

Hop 4

ccnxlong

Hop 3

ccnxshort

Hop 2

Repository

ccnxlong

ccnxshort

Client

CCNx1 CCNx2

CCNx3 CCNx4

CCNx5

Figure 3: Testbed logical topologie

The bundle further consists of various sample applications that rely on CCNx. A chat applic-
ation (ccnChat) is part of the bundle as well as a file proxy and a repository.
The file proxy is used to serve files located within the file system to CCNx clients, whereas
the repository daemon serves as a persistent storage for already chunked content. Further
the bundle consists of a VLC-Player1 plugin, that allows the media player to directly inter-
act with the routing daemon to request and playback for instance audio or video content via
CCNx.
The last part of the bundle we want to mention is the wireshark2 packet dissector. It is used
to ease the retrieval of CCNx related information from packet captures and will also heavily
be used in our testbed implementation.

4 Measurement

Throughout this chapter we exhibit our testbed setup in detail. The topology of the testbed
is described in Section 4.1 followed by a description of the script backed workflow used
for metering and post-processing. Finally the resulting measurement data is presented in
subsection 4.3.

4.1 Testbed topology

Our testbed consists of five CCNx nodes named CCNx1 to CCNx5. These nodes are all
virtualised linux machines running on top of a VMware ESX server. We choose such virtual-

1http://www.videolan.org/vlc/
2http://www.wireshark.org

4 MEASUREMENT 7

ised environment to be able to simply change the hardware configuration of the machines, a
feature we excessively rely on in our measurement cases. Through this eased configurability
we are able to simulate homogeneous as well as different heterogeneous node constella-
tions. In the basic setup all nodes are equipped with 3 GB of RAM, 2 x 2.4 GHz Cores and
an virtual Ethernet interface connected to a standard VMware vSwitch. For the operating
system Debian Linux in version 6.0.4 was chosen.
Regarding CCNx, we focused on the repository application as the source of content and the
ccnd routing daemon for inter-node connectivity.
Each of the nodes depicted in Figure 3 is running a local ccnd process. The routing inform-
ation of all these nodes is configured manually. This means static routing entries have been
configured in the testbed setup phase instead of using a dynamic routing protocol. Within
the setup, there exist two distinct routes, referring to the names ccnxshort and ccnxlong.
We choose the names regarding the hop count from node CCNx1 to node CCNx5. While
the route ccnxshort traverses just two hops, from CCNx1 through CCNx2 towards CCNx5,
ccnxlong extends through all of the five nodes from CCNx1 to CCNx5.
CCNx1 in addition to the ccnd runs the client software that is using the CCNx Java API to
request and retrieve the content used for measurement.
CCNx5 is also hosting an additional process, the content repository. The repository is pre-
filled with content, matching the namespaces ccnxlong and ccnxshort. Thus the client can
request the files which will then be delivered on the reverse path the Interest took up to node
CCNx5. Through the connection from the repository to the local ccnd the routing daemon
running on CCNx5 knows that these namespaces are served by the repository and thus
passes on the associated Interests to the repository.
Because of the distributed nature of the setup a common timereference is needed to be able
to timely associate different events happening on various nodes in the testbed. Through the
use of the virtualisation server we have been able to accurately synchronise the clocks of
the virtual machines with the host clock of the VMware ESX server, such that the accuracy
fits our requirements of below 1 second divergence. The timely resolution of our measure-
ment setup is limited through the use of the Unix timestamps, which have a resolution of one
second. The resolution of one second is considered sufficient to examine the test scenarios
and answer our research questions.
To be able to remotely execute commands in batch mode, Secure Shell (SSH) [17] backed
by public keys is used. This way the centrally executed control script is able to execute the
necessary commands on the testbed nodes and thereby control the measurement run.

4.2 Measurement workflow

We created a script that guides through the measurement and measurement data post-
processing phase. The workflow created by this script is illustrated in Figure 4. Further
Figure 5 illustrates the post-processing steps, that the logging files undergo. If not explicitly

4 MEASUREMENT 8

denoted, the script executes the tasks on every node included in the testbed. Within the en-
vironment, the general measurement script is executed on the first node, CCNx1. It may be
worth mentioning, that this does not impact the measurement because the script is paused
and waiting for user input during the time the measurement is running. When we use "control
node" in the reminder of this document we refer to CCNx1.
When the script is started, it tries to restart the CCNx routing process (ccnd) running on
every node that is involved in the measurement (1) . This is due to previous runs that may
have influenced the running ccnd instance, in a way that the memory consumption or the
cpu utilisation is already higher than it is in a clean state. Thus to measure just the impact
created by the actual measurement run, the ccnd is restarted. In case it isn’t already run-
ning it is started.
Some of the processes responsible for logging just append their log information to the pre-
viously created files. Thus the routing process logfile and the file transfer statistics file are
erased in step (2) and (3). Afterwards the packet capture process is started on every node
(4). It is configured to capture just 500 Bytes of every packet that is transmitted between
each node and its successor on the way up to the repository node. Whereas the last node
CCNx5 has no such successor, hence it is measuring the connection towards CCNx4 so to
say the opposite direction.
In step (5) the logging process for the ccnd routing daemon is started. Subsequently the

script stops and asks the user to stop the measurement run through pressing the 8 key on
the keyboard. This is when the external process that utilises the CCNx infrastructure is to
be executed (6). After that process is done, the user has to confirm that the measurement
should be stopped by pressing the 8-key (7). Subsequent the routing daemon logging pro-
cess as well as the packet capture process are stopped (8, 9).
At this point the active measurement is completed and the post-processing of the metered
data takes place. In step (10) the script connects to every node involved in the measurement
run and prints out the statistics of the packet capture. Following this in step (11), every rout-
ing process logfile is also analysed, while still residing on the particular nodes. The count of
routing process logfile lines that hold invalid data is printed out. Invalid lines are those, where
certain values are missing because of timeouts or alike. These invalid lines are a direct result
of an overload of the ccnd routing daemon. The ccndstatus command times out while
querying the daemon and thus no data is available for that request. Nevertheless the data
regarding memory consumption and cpu utilisation as well as the timestamp is written into
the log file. If too many lines contain those invalid logging lines, the measurement may need
to be rerun. The count of lines containing invalid data are determined and displayed. On the
basis of this information displayed in steps (10) and (11) it is up to the user to decide if the
post-processing of the data should continue or not. It may be the case that to much packet
have been dropped from the capture so the results can be looked upon as inadequate. The
same may be the case with the amount of dropped routing process logfile lines. If continued
though the script prompts for a name for the measurement run in step (12). This name is

4 MEASUREMENT 9

(1)
(re)start routing

deamon on every
node

(2)
delete previous

Routing Daemon
logfile on every

node

(3)
delete previous file
transfer statistics
file on client node

(4)
start packet capture

on every node

(5)
start routing

daemon logging

(7)
press 8 to stop
meassurement

(6)
Start the CCNx
client process
that is to be
measured

(8)
stop routing

daemon logging

(9)
stop packet capture

on every node

(13)
copy all

measurement data
into local folder

Routing process logfile
Packet capture file

Packet capture summary file
File transfer statistics file

(12)
Read name for
measurement

run from
console

(10)
Display all remote

packet capture
summary dropped

packet statistics

(16)
Ask if

continue or
stop

(17)
Continue?

(18)
Copy original data

files as backup

(20)
Ask if

continue or
stop

(21)
Continue?

(22)
Normalize

timestamps of
logfiles

(23)
Plot overview

statistics

(24)
Backup the newly

created or modified
datafiles

Yes

abort

No

Yes

Finished
Processing -
Successfully

Start measurement

abort

No

Routing process logfile
Processed packet capture csv file

File transfer statistics file

(14)
Export Wireshark

packet summary as
XML

(11)
Remote count lines
in routing process

logfile that are
corrupt, print the

count

(15)
Process Wireshark
summary creating

csv statitics

(19)
Drop corrupt lines
of routing process

logfile

(25)
Compress capture
files for archiving

Figure 4: Workflow illustration of the semi-automated measurement process

4 MEASUREMENT 10

used as a prefix for all the log files collected on the node running the measurement script,
through this name it is easy to uniquely identify different runs. Subsequently the routing pro-
cess logfile, capture file and the capture statistics from all nodes as well as the file transfer
statistics file from the requesting node are copied into a local directory on the control node
(13). From this point onwards all commands and processes are executed just on the control
node.
The collected capture files are processed (14) such that the packet capture summary xml-file
is extracted. This summary file is hereafter used to gather the informations about throughput,
goodput as well as the Interest retransmission count (15).
Thereafter this, the script hits a breakpoint in step (16) and the user has the opportunity to
interrupt further execution of the script if something went wrong in previous steps or just con-
tinue the processing (17). Because in the following steps the gathered data will be altered, a
backup of the original data is created in step (18), so that in case of an error in the subsequent
processing steps the original measurement data is not lost through a faulty modification of
files. In step (19) though the invalid lines of all routing process log files are finally dropped.
This is a valid step, because in step (11) was shown how many lines are invalid and thus
has acknowledged that the amount is negligible and the processing should continue. Never-
theless is the amount of dropped lines is outputted once again and the user is asked once
again (20) if the whole processing should be aborted or continued (21). If the processing
continues, the timestamps contained in the routing process log, processed packet capture
statistics and the file transfer statistics file are normalized. The time-wise normalization (22)
is performed to convert the lowest timestamp occurring in all metered logging files to value
one, hence to represent the time since the start of the measurement instead of the Unix
timestamps3. With this step the data processing is done. Following just some final clean-up
tasks are performed. An overview figure for each node is created to visualise the measured
data for quick review (23). As depicted in Figure 14 the figure shows six graphs, contain-
ing CPU and Memory Utilization, amount of Pending Interest, Data Goodput in Interest and
Data direction and the Interest Retransmission count. The second graph (Figure 15) that is
created illustrates the transfer times of the files that have been transferred throughout the
measurement run. Finally the plots are composed in an measurement overview pdf contain-
ing all graphs and the measurement name. A sample output can be found in the appendix
(Figure 16). Then the newly created and altered files are copied (24) besides the backuped
files from step (18). At last the capture files in the backup folder are compressed (25) to be
able to store them as efficient as possible for revision purpose. Through this, there still is the
possibility to recheck or extend the analysis later on.
Further processing and analysis of the processed data is subsequently accomplished by the
use of other special purpose tools.

3seconds since January 1st 1970 00:00:00 UTC

4 MEASUREMENT 11

4.3 Measurement components

Throughout our measurement runs we create different files containing measurement data.
Figure 5 shows these datafiles that are created for each run as well as the data centric
workflow these files undergo. Following we describe the different measurement files in detail
and how they are processed.

Routing process log The routing process measure file includes the Memory Consumption
and CPU utilisation of the ccnd. This is to deduce the performance and scalability of
the routing mechanism. Further the statistic values that the ccnd process provides
are also collected. These informations include the Interest names the ccnd is aware
of, pending, propagated and noted Interests. All this data is derived and aggregated
along with the time of the retrieval. An example of the output is shown in Listing 1 on
page 23.

Packet capture The traffic flowing between two neighbouring nodes regarding the topology
depicted in Figure 3 is captured for the purpose of network level analyses, including for
instance data throughput and retransmission rate. Because of performance reasons
we limited the amount of captured data per packet to 500 Byte. Nevertheless we have
been able to deduct the size of every packet because of the header values, reflecting
the original packets length, thus we do not need the whole packet.
We post-processed the capture file by extracting the packet level summary information
into an psml file (see Listing 5 page 24). That xml-file is further processed to extract
the throughput and retransmission statistics listed in Listing 2 on page 23.

Capture statistics file The capture statistics file (Listing 4 page 24) is collected from all
the nodes just to display it once. The important information is the included amount
of dropped packets. If too much packets have been dropped the measure is useless,
because the throughput calculation and maybe also the amount of retransmits are
falsified. The measurement run needs to be redone. Hence the file is just used to
display it and let the user decide how to continue.

File transfer statistics The file transfer statistics file (Listing 3 page 23) is created by the
client program. Thus it just exists on CCNx1, the node acting as the sink of the data
transfer.
Every single line contains the necessary information of the transfer of one file. The file
url, the time that the file transfer started, the time it finished as well as the size of the
file.

4 MEASUREMENT 12

Packet capture files

Packet summary
xml file

Routing process
logfiles

Processed packet
capture statistic

File transfer
statistics file

(14)
Export Wireshark

packet summary as
XML

(15)
Process Wireshark
summary creating

csv statitics

Capture statistics
files

(22)
Normalize

timestamps of
logfiles

Normalized packet
capture statistic

files

Routing process
logfiles

File transfer
statistics file

(19)
Drop corrupt lines
of routing process

logfile

(13)
copy all

measurement data
into local folder

(10)
Display all remote

packet capture
summary dropped

packet statistics

(23)
Plot overview

statistics

Figure 5: Datacentric workflow that the measurement results undergo

5 RESULTS 13

5 Results

We utilise our testbed described in Section 4 to perform various tests with the aim to examine
the effects of the afore mentioned threads of Resource Exhaustion and State Decorrelation.
Starting by taking a look at Resource Exhaustion through the bulk emission of Interests we
continue with a deeper analysis of performance flaws in overloaded systems.
The remainder of this chapter is segmented into two subsections. Basic 5.1.1 and Extended
Experiments 5.2. In the Basic Experiments we take a closer look at the Resource Exhaustion
case and the behaviour of CCNx in case of rising load through an increased amount of chunk
requests. All this is done through the use of the three node route ccnxshort. The Extended
Experiments on the other hand utilise the five node route ccnxlong. In this part we focus our
attention on content router heterogeneity and how it influences the content routing states.

5.1 Basic experiments: Resource exhaustion

For the Basic Experiments we used the short chain of content router nodes consisting of the
three nodes CCNx1, 2 and 5 as illustrated in Figure 3. The connection between the content
routers is established through the use of TCP connections.
At first we take a look at a case where Interests are issued for non-existing content before
moving on to a real content dissemination scenario.

5.1.1 Resource exhaustion

To explore the behaviour of CCNx in cases of an overwhelming arrival of Interests, we made
CCNx1 issue 2000 Interests ever 6 seconds until an overall of 150.000 Interests linger
in pending state. The requested content in this case matches the prefix that follows the
ccnxshort route of Figure 3 thus the Interests are forwarded towards CCNx5. Instead of
requesting data that is available non-existing content is requested. This leads to the situ-
ation that PIT entries will not be cleared by the arrival of content chunks but stay alive until
the soft-state timer times out. A timeout of the soft-states is also prevented by the Interest
Retransmission mechanism that is used by CCNx to keep the PIT entries alive. Figure 6 de-
picts the resulting Pending Interest, CPU Load and Memory Consumption values of CCNx2,
the first-hop router. It shows that the CPU Load is at a 100% when ≈ 120.000 Interest are
received. The Pending Interest count is not rising any further indicating that the router oper-
ates at its performance limit. The content router is not able to handle the imposed load. This
condition does not even change in time because all of the 150.000 Interests are refreshed
after the refresh timer expires on the subscriber node. The load is not decreasing until the
run is manually interrupted.
This behaviour illustrates a severe issue of CCNx. Through issuing masses of Interests the
network infrastructure is easily overloaded in terms of local resources (CPU, Memory) result-

5 RESULTS 14

0 , 0

5 0 , 0 k

1 0 0 , 0 k

1 5 0 , 0 k

0
2 0
4 0
6 0
8 0

1 0 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 00
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0

R e t r a n s m i s s i o n O n l y P h a s e

Pe
nd

ing
 In

ter
es

ts
[#]

1 5 0 k I n t e r e s t s r e c e i v e d

CP
U L

oa
d [

%]

Me
mo

y [
MB

]

T i m e [s]

Figure 6: Load at the designated router of the receiver while requesting non-existing con-
tent [5]

ing in service degradation for all dependent nodes. This also underlines the findings in [14]
that testifies the Interest state handling high resource requirements.

5.1.2 Chunk-based state multiplication

To analyse the performance of an actual content dissemination, we utilized CCNx1 to request
a fixed amount of 10 Mbit files with varying frequency from CCNx5. Depicted in Figure 7 are
the resulting graphs consisting of the Download Time, Pending Interests, Interest Retrans-
missions and the Network Load of the first hop node.
The three subfigures illustrate the measurement values for scenarios where 2 files (Fig-
ure 7(a)), 10 files (Figure 7(b)) and 100 files (Figure 7(c)) are requested per second. The
topmost graph shows that at a rate of 2 files per second the time to complete the download
of each file is fixed. There is no notable variation in time. Moving on to the 10 files per
second case the Download Times diverges non-linear while at the same time the amount
of Pending Interests increases in comparison to the 2 files per second case. This effect is
even more concise when compared with Figure 7(c) where the Pending Interest rate ramps
up to ≈ 2000 PI’s and remains at that level until the end of the content dissemination. At
the same time the Network Load remains at a level of roughly 30% in both cases (10 and
100 files per second). This effect arises due to the increased number of PIT entries that are
generated due to the increased file count. A second factor arises in this case, the Interest
Retransmission mechanism that is responsible for the other share of the increased Interest
amount. Corresponding to this, the states that the CCNx router has to maintain cause an
increase in CPU and Memory resource consumption (not depicted). For the reason of this
state management overhead the router is not able to utilize the full link capacity resulting
in the increase in Download Time. The difference in Download Time between Figure 7(b)

5 RESULTS 15

0
2 0 0
4 0 0

0
1 5 0
3 0 0

0
5 0

1 0 0

0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 50
3 0
6 0

i-th
 Fi

le
[#]

PI
[#]

IR
[#]

NL
 [M

bit
/s]

T i m e [s]

(a) 2 files per second

0
2 0 0
4 0 0

0
1 5 0 0
3 0 0 0

0
5 0

1 0 0

0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 50
3 0
6 0

i-th
 Fi

le
[#] D o w n l o a d T i m e

PI
[#]

IR
[#]

NL
 [M

bit
/s]

T i m e [s]

(b) 10 files per second

0
2 0 0
4 0 0

0
1 5 0 0
3 0 0 0

0
5 0

1 0 0

0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 50
3 0
6 0

i-th
 Fi

le
[#]

PI
[#]

IR
[#]

NL
 [M

bit
/s]

T i m e [s]

D o w n l o a d T i m e

(c) 100 files per second

Figure 7: Parallel download of 10 Mbit files: Start and stop time of the download per file at
the receiver & resource consumption at its designated router [Pending Interests (PI), Interest
retransmits (IR), and Network Load (NL) including the mean goodput] [5]

and 7(c) are the direct outcome of this overload situation. Further due to the combination of
an increased rate of Interest receipts and the overload, the router randomly misses Interest
packets that it is thus not able to process. This effect results in an excessively increased,
nearly uniform distribution of Download Times for all files.

5.2 Extended experiments: State propagation & correlation

For our Extended Experiments, we utilize the longer chain of CCNx router nodes (ccnxlong)
depicted in Figure 3. Further we changed the testbed to utilize UDP for the underlying
communication protocol to connect the CCNx nodes. All forwarding nodes continue running
within the virtualized environment and they are equipped with 3 GB of RAM, two cores à
2.4GHz.
The focus in this subsection resides on the long chain of CCNx nodes in our testbed. First
we start again by taking a look at a homogeneous network before moving on to different
heterogeneous constellations.

5.2.1 Homogeneous network

Plotted in Figure 8 are the results of a file transfer run where 500 files with a size of 10 Mbit
each are requested at a rate of 100 files per second. The graphs show the Pending Interests,
Interest Retransmits as well as the Network Goodput. The Pending Interest graph shows
that the closer a node is located towards the source of the content the lower the amount of
Pending Interests. In direct correlation to this also the Interest Retransmission-Rate declines
from subscriber towards the source. This effect is caused by the fact that arriving data chunks

5 RESULTS 16

0
1 k
2 k

0
1 k
2 k

0
1 k
2 k

0 5 0 1 0 0 1 5 0 2 0 0 2 5 00
1 k
2 k C C N x 4

C C N x 3

C C N x 2

Pe
nd

ing
 In

ter
es

ts
[#]

C C N x 1

T i m e [s]

(a) Pending Interests

0
8 0 0

0
8 0 0

0
8 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 00
8 0 0

C C N x 1

C C N x 2

C C N x 3

C C N x 4

Int

ere
st

Re
tra

ns
mi

ts
[#]

T i m e [s]

(b) Interest Retransmits

0
1 0

0
1 0

0
1 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 00
1 0

C C N x 1

C C N x 2

C C N x 3

C C N x 4Go
od

pu
t [M

bit
/s]

T i m e [s]

(c) Network Utilization

Figure 8: Routing and forwarding performance in a homogeneous five-hop network [5]

clear the PIT entries and the interval between arrival of the Interest and the arrival of the data
chunk diminishes towards the content source. This conclusion is supported by the Network
Utilization graph that contrary to the declining Pending Interests and Interest Retransmission
graph shows an equal Network Utilization for all involved nodes.

5.2.2 Heterogeneous network

After exploring the behaviour of a homogeneous router infrastructure we now take a look at
a heterogeneous infrastructure setup. Hence node CCNx4 is reconfigured to have just 600
MHz of CPU capacity (25% of the other nodes CPU capacity) available.
For the measurement we choose the same parameters that we already used in Section 5.1.1
from 80.000 up to 150.000 Interest for non-existing content. Figure 9 shows the CPU and
Memory consumption. Effected by the CPU capacity reduction a peek in CPU Load accrues
at CCNx4. The last nodes CPU Load drops distinctly caused by the bottleneck, CCNx4, that
is just able to process and pass on a fraction of the incoming content Interests.
Also the Memory graph (Figure 9(a)) indicates that CCNx4 is lacking resources to process
the stream of Interests. Hence on CCNx3 the memory consumption is magnitudes higher
than on CCNx4. This effect is also reflected back towards the Interest issuer. The CPU
Load off all preceding nodes is also on a very high level, instead of adjusting to the weakest
nodes performance. Thus a bottleneck node within the network is negatively influencing the
resource consumption and tuhus the performance of all its preceding nodes.

5.2.3 Heterogeneity magnitudes

To further identify the influence of network node heterogeneity a measurement run, including
a bottleneck node, where actual files are downloaded is also performed. The CPU capacity
of CCNx4 in different runs is configured to 600, 1200 and 2400 MHz. The latter case of 2400
MHz just represents the homogeneous case and is taken into account for the purpose of
comparison.

5 RESULTS 17

1 2 3 4 5
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0

Ma
x.

Me
mo

ry
Co

ns
um

pti
on

 [M
B]

C C N x N o d e [#]

 8 0 k
 1 0 0 k
 1 2 0 k
 1 5 0 k

(a) Memory Consumption

1 2 3 4 5
0

2 0

4 0

6 0

8 0

1 0 0

Av
era

ge
 CP

U L
oa

d [
%]

C C N x N o d e [#]

 8 0 k
 1 0 0 k
 1 2 0 k
 1 5 0 k

(b) Average CPU Load

Figure 9: Load per hop for a chain of 5 routers while initiating a 80k, 100k, 120k, and 150k
different Interests for non-existing content [5]

As long as the measurement environment consists of homogeneous nodes the retransmits
decay the closer the content router is located towards the publisher node (Figure 10). This
follows the findings we already made in Section 5.2.1.
But, as soon as the path contains a bottleneck node the whole picture shifts, the retransmis-
sion values of all preceding nodes ramp up to the highest level experienced in the homogen-
eous case. This effect indicates how sensitive the system behaves in case of bottlenecks.
Preceding nodes continue to retransmit their Interests. Instead of getting cleared through
arriving content while traversing the chain of content routers, they are propagated without
any throttling mechanism up to the bottleneck, where they are finally dropped because of the
CPU resource issues.

5.2.4 Increased inhomogeneities

Since ICN aims to become a leading technology in the distribution of content throughout the
Internet it is even more likely that more than one bottleneck exists within the network path
from subscriber towards publisher. Thus some kind of resource fluctuation over different
nodes where systems are utilized and influenced in various intensities is very likely to occur.
Since we identified the CPU as the core perpetrator for bottlenecks we reflect this fluctuating
load behaviour through the introduction of competitive CPU consuming processes on our
content routers. The competitive processes alternate in status. For a period of 10s they
consumes 90% of the CPU resources before switching into a sleep state for another 20s. The
interleaving of these processes we choose for the nodes of the ccnxlong route is depicted in
Figure 11.

5 RESULTS 18

2 4 0 0 1 2 0 0 6 0 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0

H e t e r o g e n o u s P a t h

<In
ter

es
t R

etr
an

sm
its>

 [#
]

C P U C a p a c i t y o f C C N x 4 [M H z]

 C C N x 1 C C N x 2
 C C N x 3 C C N x 4

H o m o g e n o u s P a t h

Figure 10: The effect of router strengths on Interest trading [5]

CCNx2 (10s) CCNx4 (10s)CCNx3 (10s)

CCNx5 (10s)CCNx1 (10s) (5s)(2.5s) (2.5s)

(30s)

Timeframe

Figure 11: Interleaving of the competitive processes

Figure 12 illustrates the results of this measurement scenario. When taking a look at the
Network Utilization graph it is obvious that the overall Network Performance is degraded by
magnitudes. The Pending Interests and Interest Retransmits are influenced by the compet-
itive process in a way that the spikes get thinner the closer a node is located towards the
publisher. This effect is an outcome of the behaviour that the subscription node issues In-
terests and Interest Retransmissions, meaning that these Pending Interests can just decline
from subscriber towards publisher. These findings illustrate once again that the perform-
ance is highly dependent on cross traffic traversing a content router and the basic resource
configuration of the content router.

0
1 k
2 k

0
1 k
2 k

0
1 k
2 k

0 1 8 0 3 6 0 5 4 0 7 2 0 9 0 00
1 k
2 kPe

nd
ing

 In
ter

es
ts

[#]

T i m e [s]

C C N x 1

C C N x 2

C C N x 3

C C N x 4

(a) Pending Interests

0
8 0 0

0
8 0 0

0
8 0 0

0 1 8 0 3 6 0 5 4 0 7 2 0 9 0 00
8 0 0

C C N x 4

C C N x 3

C C N x 2

C C N x 1

Int
ere

st
Re

tra
ns

mi
ts

[#]

T i m e [s]

(b) Interest Retransmits

0
1 0

0
1 0

0
1 0

0 1 8 0 3 6 0 5 4 0 7 2 0 9 0 00
1 0

C C N x 1

C C N x 2

C C N x 3

C C N x 4

Go
od

pu
t [M

bit
/s]

T i m e [s]

(c) Network Utilization

Figure 12: Routing and forwarding performance in a five-hop network with alternating CPU
reductions [5]

6 CONCLUSION 19

1 2 3 40
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0
2 0 0 0

Pe
nd

ing
 In

ter
es

ts
[#]

C C N x N o d e [#]

 P e n d i n g I n t e r e s t s

0
2
4
6
8
1 0
1 2
1 4 G o o d p u t

Go
od

pu
t [M

bit
/s]

(a) Homogeneous Network

1 2 3 40
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0
2 0 0 0

Pe
nd

ing
 In

ter
es

ts
[#]

C C N x N o d e [#]

 P e n d i n g I n t e r e s t s

0
2
4
6
8
1 0
1 2
1 4 G o o d p u t

Go
od

pu
t [M

bit
/s]

(b) Single Point of Weakness

1 2 3 40
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0
2 0 0 0

 P e n d i n g I n t e r e s t s

Pe
nd

ing
 In

ter
es

ts
[#]

C C N x N o d e [#]
0
2
4
6
8
1 0
1 2
1 4 G o o d p u t

 G
oo

dp
ut

[M
bit

/s]

(c) Alternating Resources

Figure 13: Comparison of state management and forwarding performance in different net-
work scenarios (mean and standard variation) [5]

5.2.5 Summarising retrospection

The results of our experiments show consistently that the performance of CCNx is strongly
dependent on the performance of the weakest node that is traversed on the path between
publisher and subscriber. Figure 13 illustrates this finding once again. It directly compares
the results of our Extended Experiment results. One can see that as long as an equal
amount of resources is available on the nodes (Figure 13(a)), the Pending Interests which
can be seen as the indicator to load are steadily declining from subscriber to publisher while
the throughput is on a high level in relation to (Figure 13(b) or 13(c)). Compared to this
the Single Point of Weakness case demonstrates that all preceding nodes of a bottleneck
suffer high load in terms of Pending Interests and thus CPU resources. This may lead to
bottlenecks for cross traffic paths in larger deployments.
The identified performance flaw is getting even worse when multiple bottlenecks appear on
the path. Figure 13(a) points out that the Network Goodput is further reduced. The Pending
Interest match the shape of the Homogeneous Scenario which might be misleading to the
conclusion that its caused by the same mechanisms. However the distribution of Pending
Interests in Figure 13(a) is caused by the accumulation of the Pending Interest drop effect of
the preceding bottlenecks of each node whereas the Pending Interest decay in Figure 13 is
caused by the data that is received more recent to the receipt of the Interest.

6 Conclusion

In this paper, we started by examining issues we see in actual ICN concepts and their imple-
mentations. We focused on the two threads of Resource Exhaustion and State Decorrelation.
To verify their existence and to analyse the behaviour in case of exploitation of this threads,
we implemented a testbed consisting of NDN / CCNx content routers.

6 CONCLUSION 20

Our measurements illustrated that the actual design is vulnerable to those threads. Through
a bulky generation of Interests, an end-node is able to overload the routing infrastructure
resulting in an decreased service availability. The overload of the network infrastructure is
shown to be even easier if bottlenecks (with respect to CPU processing capacity) exist within
the network.
All this is caused by the data-driven state that the content routers have to maintain. One ap-
proach to mitigate the issues would be an Interest transmission rate limitation. As far as the
amount of Pending Interests is limited no further data can be requested in that very moment.
This might lead to situations where due to the amount of allowed Pending Interests, it is not
possible to request an appropriate amount of data to fully utilize the available bandwidth of
a link. Further the time that a Pending Interest, that requests available content, resides on
a router varies depending on the RTT between content source and subscriber. If the RTT is
increased the amount of Pending Interests also needs to increase to keep the link utilization
at the same level. Hence an Interest transmission rate limitation would result in some sort
of traffic shaping and rate-limitation and is thus not considered as an appropriate solution to
the problem of router resource exhaustion.
Hence future work needs to be dedicated to the research of state management in case of
ICN to resolve the issues discussed in this work.

REFERENCES 21

References

[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A Survey of
Information-Centric Networking,” IEEE Communications Magazine, vol. 50, no. 7, pp.
26–36, July 2012.

[2] PARC, “The CCNx Homepage,” http://www.ccnx.org/, 2012.

[3] L. Zhang, D. Estrin, J. Burke, V. Jacobson, and J. D. Thornton, “Named Data Networking
(NDN) Project,” PARC, Tech.report ndn-0001, 2010.

[4] M. Wählisch, T. C. Schmidt, and M. Vahlenkamp, “Bulk of Interest: Performance
Measurement of Content-Centric Routing,” in Proc. of ACM SIGCOMM, Poster Session
(SIGCOMM’12). New York: ACM, August 2012, pp. 99–100. [Online]. Available:
http://conferences.sigcomm.org/sigcomm/2012/paper/sigcomm/p99.pdf

[5] ——, “Backscatter from the Data Plane — Threats to Stability and Security
in Information-Centric Networking,” Open Archive: arXiv.org, Technical Report
arXivarXiv:1205.4778, 2012. [Online]. Available: http://arxiv.org/abs/1205.4778

[6] M. Gritter and D. R. Cheriton, “An Architecture for Content Routing Support in the Inter-
net,” in Proc. USITS’01. Berkeley, CA, USA: USENIX Association, 2001, pp. 4–4.

[7] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and
I. Stoica, “A Data-Oriented (and beyond) Network Architecture,” SIGCOMM Computer
Communications Review, vol. 37, no. 4, pp. 181–192, 2007.

[8] V. Jacobson, D. K. Smetters, J. D. Thornton, and M. F. Plass, “Networking Named Con-
tent,” in Proc. of the 5th Int. Conf. on emerging Networking EXperiments and Technolo-
gies (ACM CoNEXT’09). New York, NY, USA: ACM, Dec. 2009, pp. 1–12.

[9] “The PSIRP Homepage,” http://www.psirp.org, 2012.

[10] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and P. Nikander, “LIPSIN: Line
Speed Publish/Subscribe Inter-networking,” in Proc. of the ACM SIGCOMM 2009. New
York, NY, USA: ACM, 2009, pp. 195–206.

[11] B. Ahlgren et al., “Second NetInf Architecture Description,” 4Ward EU FP7 Project,
Tech.report D-6.2 v2.0, 2010.

[12] M. Vahlenkamp, “Information-centric networking - a related work survey,” HAW
Hamburg, Tech. Rep., 2012. [Online]. Available: http://inet.cpt.haw-hamburg.de/
teaching/ss-2012/master-projects/markus_vahlenkamp_aw2.pdf

http://www.ccnx.org/
http://conferences.sigcomm.org/sigcomm/2012/paper/sigcomm/p99.pdf
http://arxiv.org/abs/1205.4778
http://www.psirp.org
http://inet.cpt.haw-hamburg.de/teaching/ss-2012/master-projects/markus_vahlenkamp_aw2.pdf
http://inet.cpt.haw-hamburg.de/teaching/ss-2012/master-projects/markus_vahlenkamp_aw2.pdf

REFERENCES 22

[13] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox, “Information-
Centric networking: Seeing the Forest for the Trees,” in Proc. of the 10th ACM HotNets
Workshop, ser. HotNets-X. New York, NY, USA: ACM, 2011.

[14] T. Lauinger, “Security & Scalability of Content-Centric Networking,” Master’s thesis, TU
Darmstadt, Darmstadt, Germany, 2010.

[15] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “DoS and DDoS in Named-Data Network-
ing,” ArXiv e-prints, Tech. Rep. 1208.0952, August 2012.

[16] L. Wang, A. K. M. M. Hoque, C. Yi, A. Alyyan, and B. Zhang, “Ospfn: An ospf based
routing protocol for named data networking,” Tech. Rep., July 2012. [Online]. Available:
http://www.named-data.net/techreport/TR003-OSPFN.pdf

[17] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Protocol Architecture,” IETF, RFC
4251, January 2006.

http://www.named-data.net/techreport/TR003-OSPFN.pdf

A APPENDIX 23

A Appendix

A.1 Measurement files

1 #Time, INames, IPend, IProp, INoted, CPU, Mem
1335953368,9,0,0,0,0.0,1868

3 1335953368,13,0,0,4,0.0,1868
1335953369,152,68,68,43,33.2,2820

5 1335953370,596,70,70,476,53.0,5372
1335953370,961,60,60,846,19.9,6540

7 1335953371,1422,139,139,1220,72.8,9440
1335953371,2001,111,111,1814,66.3,13136

9 1335953372,2619,231,231,2303,53.0,16768
1335953372,3164,185,185,2882,59.6,18352

Listing 1: Excerpt of the routing process measure file

#timestamp, data direction goodput(byte/s), interest ↘

→direction goodput(byte/s), data direction throughput(↘
→byte/s), interest direction throughput(byte/s), ↘

→duplicates
2 5,123609,8724,131397,12948,4
6,2993117,73151,3147953,129911,3

4 7,3364644,84604,3533670,139846,2
8,2375390,59386,2497820,111658,1

6 9,3536326,84621,3711424,139995,4
10,4267783,105339,4472977,171603,3

8 11,4306645,106587,4510189,170805,4
12,4604574,110608,4823100,179644,5

10 13,3912582,73946,4103190,144104,1
14,3291866,99610,3472376,194518,0

12 15,4089995,109502,4300205,189164,3

Listing 2: Excerpt of the finally deduced capture information

#no,ccnxName,transferStart,tansferStop,readTotal
2 1,ccnx:/ccnxlong/10Mbit1.txt,5,81,1281250
2,ccnx:/ccnxlong/10Mbit8.txt,5,81,1281250

4 3,ccnx:/ccnxlong/10Mbit4.txt,5,85,1281250
4,ccnx:/ccnxlong/10Mbit2.txt,5,88,1281250

6 5,ccnx:/ccnxlong/10Mbit7.txt,5,91,1281250
6,ccnx:/ccnxlong/10Mbit6.txt,5,92,1281250

8 7,ccnx:/ccnxlong/10Mbit0.txt,5,94,1281250
8,ccnx:/ccnxlong/10Mbit9.txt,5,96,1281250

Listing 3: Excerpt of the file transfer statistics

A APPENDIX 24

1 File: /home/ccnx/tmpfs/capture
Packets captured: 410916

3 Packets received/dropped on interface eth0: 410917/0

Listing 4: Sample content of the capture summary file

1 <?xml version="1.0"?>
<psml version="0" creator="wireshark/1.6.6">

3 <structure>
<section>No.</section>

5 <section>Time</section>
<section>Source</section>

7 <section>Destination</section>
<section>Protocol</section>

9 <section>Length</section>
<section>Info</section>

11 </structure>

13 <packet>
<section>1</section>

15 <section>1337867906.522304</section>
<section>141.22.28.230</section>

17 <section>141.22.28.231</section>
<section>CCN</section>

19 <section>154</section>
<section>Interest, ccnx:/ccnxlong/10Mbit4.txt</section>

21 </packet>

23 <packet>
<section>2</section>

25 <section>1337867906.522701</section>
<section>141.22.28.231</section>

27 <section>141.22.28.230</section>
<section>TCP</section>

29 <section>66</section>
<section>ccnx > 51074 [ACK] Seq=1 Ack=89 Win=227 Len=0 ↘

→TSval=36547264 TSecr=3
31 6544396</section>
</packet>

Listing 5: Excerpt of the capture extracted psml file

A APPENDIX 25

A.2 Measurement run graphs

Figure 14: Per node statistics gathered throughout measurement

Figure 15: Filetransfer statistics

A APPENDIX 26

500F_10Mbit_10ms_N4P90_4

(a) CCNX1 (b) CCNX2

(c) CCNX3 (d) CCNX4

(e) CCNX5 (f) Filestats

1
Figure 16: Measurement run overview page

	Introduction
	Problem statement
	NDN / CCNx overview
	Architecture
	Software components

	Measurement
	Testbed topology
	Measurement workflow
	Measurement components

	Results
	Basic experiments: Resource exhaustion
	Resource exhaustion
	Chunk-based state multiplication

	Extended experiments: State propagation & correlation
	Homogeneous network
	Heterogeneous network
	Heterogeneity magnitudes
	Increased inhomogeneities
	Summarising retrospection

	Conclusion
	References
	Appendix
	Measurement files
	Measurement run graphs

