
Implementation and Evaluation of a
DHT-based content distribution

system using WebRTC
Max Jonas Werner, Christian Vogt

Research Report

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Max Jonas Werner, Christian Vogt

Research Report

Implementation and Evaluation of a
DHT-based content distribution system using WebRTC submitted in the context of Projekt 2

in the course Master of Science
at the Department of Computer Science
at the Faculty of Engineering and Computer Science
of Hamburg University of Applied Sciences

Submitted on: October 7, 2014

Contents

1 Introduction 1

2 Background and Related Work 3
2.1 Publish/Subscribe Networking . 3
2.2 User-centric Naming and Networking . 4
2.3 WebRTC . 6
2.4 Previous Work and Contribution . 7

3 Conceptional Background 8
3.1 Data Transport Topology . 9
3.2 Message Format and URI Scheme . 9
3.3 ID Assignment . 11
3.4 Bootstrap Procedure . 11
3.5 Name Resolution and Data Routing . 14
3.6 Software Architecture Overview . 15

4 DHT Implementation 17
4.1 Software Overview . 18
4.2 Application Programming Interface . 20
4.3 Chord bootstrapping . 21

5 Emulation Environment 23
5.1 Headless Runtime . 24
5.2 Emulation Host . 25
5.3 Emulation Mediator . 26

6 Evaluation 30
6.1 Con�guration . 31
6.2 Results . 31

7 Conclusions 37

iii

1 Introduction

With the uprise of Web 2.0 technologies over the past ten years, Web platforms have shifted
from pure content silos to services for publishing user-generated content. Today, users also see
the Web as a platform to share media, documents and exchange individual information among
each other. Currently, perceiving user-generated content on the Web follows the client/server
paradigm. Examples for such central content sharing community platforms are Facebook,
Flickr and Youtube.

WebRTC is a new technology that enables Web applications to establish direct connections
and data transmission between two browsers. This ressembles a major paradigmic change in
the client/server dominated world of the current Web. Browser vendors such as Mozilla and
Google already ship working implementations of the current speci�cation status and a further
deployment of WebRTC-enabled browsers from other vendors can be expected shortly.

Information-centric Networking (ICN) describes the idea of moving from a host-centric to
a data-centric networking paradigm. It abstracts publishing and accessing content from the
underlying infrastructure facilitated by a location-independent naming scheme. ICN potentially
fosters the decoupling of user-generated publishing from a dedicated distribution system.

In our previous work, we introduced a decentralized, name-based publishing architecture
called Browser-based Open Publishing (BOPlish) that pursues a similar objective. A BOPlish
application runs in the Web browser and connects participating peers directly via WebRTC
Data Channels, forming a virtual content-centric infrastructure where each user can publish
and retrieve content. The system does not rely on additional external infrastructure and
prevents common privacy issues present in centralized architectures.

In this project report, we describe the implementation of a name resolution mechanism
used to resolve location-independent names based on the BOPlish URI scheme. Moreover, we
improved the user-facing API to allow for easy development of applications running on top of
BOPlish while hiding the complexity of the P2P system underneath. To verify our concept, we
introduce an emulation component capable of emulating a BOPlish system of a typical size.

Similar to ICN, the accessed content is addressed employing a user-centric naming scheme
decoupled from the delivering host. Our approach enables Web developers to plug-in custom

1

1 Introduction

application protocols that easily integrate into the BOPlish architecture. WebRTC acts as an
enabler for BOPlish. Any device that has a WebRTC-enabled browser installed can join the
overlay without requiring additional software. Encryption and secure transport of arbitrary
data is directly provided by WebRTC.

In the remainder, we give an overview of related work (Sec. 2). Sec. 3 showcases the
concept of the BOPlish architecture. We describe the DHT-based routing layer in Sec. 4 and the
emulation environment in Sec. 5. We follow up with an evaluation in Sec. 6 before concluding
in Sec. 7.

2

2 Background and Related Work

2.1 Publish/Subscribe Networking

The Internet revolution started after the World Wide Web had introduced a uniform, simple
architecture of separating content publication and provisioning from content retrieval. The
decoupling of publishing information from its consumption in space and time is a core element
of the rich publish/subscribe paradigm [1]. In recent years, (proprietary) Content Delivery
Networks have shifted this server-centric approach to the network that mirrors one-to-many
communication for which the initial Internet architecture has not been built [2].

The ideas of Information-centric Networking (ICN) [3] have taken up the well-established
concept of in-network storage and replication towards end-user communities, while adding
the core objective of an open future Internet design. The latter requires resolution of the
three major challenges naming, security, and routing [4]. In ICN, the underlying network layer
must be capable of directing a named data request to a location completely transparent to the
requesting client, and it must provide an independent veri�cation of the supplied content. As a
result the location of data becomes irrelevant, making it simple to introduce caches distributed
throughout the network. Many such architectures have been introduced, prominent examples
being DONA [5] and NDN [6]. These and further solutions di�er in naming, security, and
routing, but all show a high interdependency among these three [7].

Unlike the Web URL-scheme, ICN uses names that are independent of a location or server
instance. Two competing approaches exist, hierarchical and �at (e.g., hashed) names. ICN
implementations like DONA and NDN use �avours derived from either of the two approaches
(Figure 2.1).

ndn://alice/images/image.png
dona://134(...)0f6:dfe(...)164

Figure 2.1: Example for hierarchical identi�ers (NDN) and �at identi�ers (DONA)

Hierarchical names have the bene�t that they can be aggregated, provided name pre�xes
and content locations coincide. When routing on the names itself, it is preferable to reduce

3

2 Background and Related Work

routing table sizes by aggregating names. NDN uses such hierarchical names. Aggregation
could be performed at the ISP level (with ISPs assigning pre�xes to their customers), but this
reintroduces a binding to location. The existence of the location-identity binding is the main
argument for �at names (as used in DONA), which allow for a complete decoupling of location
and identity but cannot easily be aggregated. Coping with a huge amount of unaggregatable
identi�ers requires either huge routing tables or external infrastructure. Finding a scheme
that allows for both, e�ective aggregation and location-independence of the system without
bloating routing tables is still subject to research activities [7].

Another aspect of the debate how to design content identi�ers is the decision between
human-readableness and cryptographic expressions for self-certi�cation. DONA, for example,
uses a cryptographic hash of the content as its identi�er which can be used to verify the
contents integrity. With NDN, this does not work as no natural linkage exists between identi�er
and content. To provide content veri�cation, NDN requires an external trust mechanism as
described in [8].

Each content request in ICN should be directed to a nearby surrogate in the network. When
a location of the content is found, it has to be transferred to the requester. Di�erent routing
approaches exist to �nd a path over which the actual content is transferred. Depending on
the ICN implementation, routing is performed directly on names (e.g., NDN) or decoupled
by some resolution service (e.g., DONA). In a coupled approach, data forwarding follows a
path identi�ed by the name resolution (e.g., a source route). In a decoupled approach, data is
forwarded independently of content routing paths using regular IP/BGP routing [3].

Coupling the data routing means to either a) store routing states in the intermediate hops
traveled by the name resolution query or b) integrate this information into the content query
packets on the way. Decoupled approaches allow for more �exibility, as control and data �ows
can be separated. On an Internet scale, both approaches must be seen as a severe challenge [4].

2.2 User-centric Naming and Networking

Our concept of user-centric content networks revolves around the idea that every participant
of a community is able to name and publish content. All of the (static or dynamic) content
a user wishes to publish is assigned a URI that is derived from the user’s unique name. The
concept of user-centric naming has been explored by other authors. In [9], Allman describes
the concept of a “personal namespace”. The author lays out several problems with current
naming systems such as DNS and URLs: Names are location-bound as is the case with URLs,
where the hostname is resolved to a speci�c location on the network. Additionally, e.g. domain

4

2 Background and Related Work

names are mentioned as ambiguous so that users do not actually know by the domain name
who the owner of the domain might actually be. The author distinguishes three di�erent
parties that are involved in creating and accessing a name for a content item: the consumer,
the content provider (e.g. a user who shares a �le) as well as the service provider (e.g. Flickr or
Facebook).

The “pnames” system proposed in [9] acts as an indirection between personal names assigned
to a speci�c user and actual names like URLs or host aliases. This enables users to reference
e.g. Bob’s e-mail address as Bob:mail. For sharing such pnames the author proposes the
usage of a DHT to resolve the �at pname identi�ers.

In a follow-up to “pnames” the authors provide the outline and a prototypical implementation
of a more abstract idea that is based on the concept of storing and referencing meta data of
arbitrary content [10]. That system is called Meta-Information Storage System (MISS). MISS is
meant to be operated on a global scale at ISP level. All MISS servers are interconnected in a
global DHT that is used to �nd the MISS server that holds a speci�c information item. The
authors thus introduce a lookup layer for retrieving meta-information of content.

A high-level description of user-centric networking is presented in [11]. The authors start
with the idea that each user in a speci�c interest group o�ers a set of services to the group. For
interconnecting users the authors propose to leverage existing social networks such as Twitter
or Facebook and retrieve unique user identi�ers from there. This way it is possible to leverage
existing relationships between persons. A tuple of (user name, service name) is
proposed to address services o�ered by a speci�c user. This makes it possible to decouple the
service name from the host that o�ers the service while at the same time coupling the service
with the user o�ering it (e.g. to ensure authenticity).

The IETF is currently working on an Internet Draft for a user-centric SIP (Session Initiation
Protocol) approach [12] that is based on RELOAD speci�ed in [13]. RELOAD de�nes a powerful
framework for P2P storage and messaging, including a security model, NAT traversal and a
pluggable topology mechanism (with a Chord variant as default topology plug-in). RELOAD
is designed so that speci�c overlay applications are to be implemented on top of a RELOAD
network. One such application is the SIP usage speci�ed in [12]. This usage employs RELOAD
to establish SIP sessions via the P2P overlay and de�nes a naming scheme, eventually de�ning
a completely user-centric distributed telephony service. The RELOAD DHT stores a mapping
from their AOR (e.g. alice@dht.example.org) to their node ID in the P2P network.
This mapping is then used by other users to retrieve the node to connect to.

5

2 Background and Related Work

2.3 WebRTC

WebRTC is a protocol suite that enables two Web browsers to communicate directly over a
UDP-channel [14], paired with a JavaScript API for Web applications [15]. WebRTC transfers
A/V data via the Secure Real-time Transport Protocol (SRTP) as well as generic binary and
textual data via the Stream Control Transmission Protocol (SCTP) over Datagram Transport
Layer Security (DTLS). Because most browsers are expected to operate behind a NAT, the
Interactive Connectivity Establishment protocol (ICE) is natively provided. ICE uses the Session
Traversal Utilities for NAT (STUN) and its extension Traversal Using Relay NAT (TURN) to
circumvent connectivity problems in NAT environments. Fig. 2.2 shows a stacked view of the
protocol suite. WebRTC is limited in the way that it allows two browsers to interconnect and
exchange data. The standards neither include topology- nor routing-related topics.

IP

UDP

TURN/STUN/
ICE

SRTP/SRTCP DTLS

SCTP

Data Channels

Connection
Management Audio/Video

Figure 2.2: WebRTC Protocol Stack

Current research based on the WebRTC technology is mostly conducted in the multimedia
conferencing and CDN context. The authors of [16] present a media server component that
exploits the expected broad deployment of WebRTC to converge multimedia conferencing on
di�erent devices like smartphones and desktops. They provide an architecture based on open
source software that handles media mixing, transcoding and �ltering for group communication
use cases.

Maygh [17] is a WebRTC-based system that facilitates P2P content distribution among
participating clients. Maygh uses a centralized P2P lookup system with a coordinator node
to store mappings between content and clients that already downloaded speci�c content.

6

2 Background and Related Work

Succeeding requests from other clients can than be answered by peers that already downloaded
the content with the help of the coordinator.

We build our architecture for application networking on the emerging WebRTC standards,
which are under active implementation in several browsers. The technology is or is expected
to be broadly available on a large number of devices and therefore acts as an enabler for our
system.

2.4 Previous Work and Contribution

We described a �rst implementation of our Browser-based Open Publishing (BOPlish) approach
in [18]. The paper laid out the core software architecture and described applications building
on top of the framework. While being fully functional, the P2P routing layer maintained a
full mesh between all participating peers thus limiting scalability. We further re�ned our
concept in [19] by introducing a naming scheme based on URIs. We validated our concept by
investigating if and how speci�c use cases can be implemented.

The work at hand adds the following contributions. We extend the architecture of the
system and exchange the full mesh routing mechanism with a DHT-based one. The DHT
allows the system to scale without sacri�cing the absence of centralized infrastructure and
adds the functionality of a distributed key/value store. We identify emulation support as a
crucial component to prove our conceptual assumptions and therefore introduce an emulation
environment to conduct measurements of a larger scale. Moreover, we evaluate the system
using realistic numbers of peers to prove our conceptional assumptions.

7

3 Conceptional Background

The solution presented here focuses on the idea that users have complete control over naming
and providing content and eventually introduces a user-centric naming and networking concept,
similar to those presented in [9], [10] or [11].

A user community consists of a number of peers that are connected to each other via a P2P
network. A Web server delivering a BOPlish application serves as bootstrap component for
joining one speci�c community. A user can join the P2P network and may close the connection
to the Web server without losing any functionality provided by BOPlish. Prior to joining a user
community a peer has to acquire a unique peer id (its address) and the user has to authenticate
at an identity provider. The combination of peer id and username is then used to join the user
community and stored in a Distributed Hash Table (DHT) with the username as key and the
peer id as value.

Our reference implementation of this concept consists of a JavaScript library that can be
included in web applications either by running directly in the browser or potentially on a
server using a JavaScript runtime environment like Node.js1. A user navigates to a web page
and automatically joins the user community. After the user has joined the overlay network,
he can request content or publish content himself. This overlay could even span across web
sites so that a user that joined from example.org can communicate with a user from
example.com. This allows for a decentralized, domain independent content distribution
which is not tied to central services. BOPlish uses WebRTC as its transport mechanism,
allowing for direct peer-to-peer connections between the clients’ browsers.

The �rst milestone of our implementation attempt enabled us to build P2P applications like
a chat and a simple game [18]. We built a server component for bootstrapping each peer and
connecting new peers to existing ones. On the client-side we had implemented a Connection
Manager for abstracting the rather complex process of establishing new WebRTC connections
in a P2P network as well as a Router component that forwarded messages to the correct peers.

In this project report we describe the next steps we performed in order to implement
our vision of a generic user-centric, infrastructure-independent content-sharing facility. We

1https://js-platform.github.io/node-webrtc/

8

https://js-platform.github.io/node-webrtc/

3 Conceptional Background

exchanged the full-mesh Router component with a Chord DHT implementation, added the
functionality to handle BOPlish URIs and established a baseline for automatic testing of our
code. On the signaling layer we de�ned the protocol and data types more speci�cally.

3.1 Data Transport Topology

BOPlish is comprised of two transport layers: a signaling layer used for connection establish-
ment messages and a routing layer used for passing application-speci�c messages through
the network to a designated peer. The messages on the signaling layer are exchanged either
via WebSockets through the bootstrap server or via WebRTC Data Channels, depending on
the availability of a Data Channel to the peer. E.g. when connecting to a community, the �rst
message has to be sent through the rendezvous server. The messages on the routing layer are
always exchanged via WebRTC Data Channels and sent through the network to the receiving
peer (possibly passing a number of other peers used as intermediate hops).

Due to the nature of WebRTC, a permanent rendezvous instance is needed that maintains
connections to at least one active peer. That instance must be constantly reachable (online)
and uniquely addressable (e.g. via a known URI/URL). We call this instance the bootstrap
server. It is used to transfer the initial signaling messages from a newly joined peer to a chosen
existing peer. Since BOPlish applications are served from a Web server we chose to use a Web
server together with the WebSocket protocol as bootstrap server. Furthermore, on the routing
layer that manages the DHT, a bootstrap node has to be chosen to initialize the Chord joining
procedure.

Thus, in the sections of this chapter we di�erentiate between a ’bootstrap server’ and a
’bootstrap node’, where the former is used to open a WebRTC data channel to the latter.

3.2 Message Format and URI Scheme

All messages exchanged in BOPlish are encoded in JSON. A message consists of to and from
�elds which denote the sender and receiver of a message. Moreover, the message contains a
protocol-speci�c string identi�er (type �eld) and a payload �eld for arbitrary data. The
message format thus reads like this:

1 {
2 to: "<peer id receiver>",
3 from: "<peer id sender>",
4 type: "<type identifier>",
5 payload: {

9

3 Conceptional Background

6 <JSON-formatted payload>
7 }
8 }

When the user community is established, content can be published, accessed and shared
among the peers. For this purpose, the design of content identi�ers is a key ingredient to
our solution. We start from URIs, the common meta-scheme for Web resources. For the
further speci�cation, we follow three steps. First, we build on the recent Common API for
(multicast) publish/subscribe [20]. RFC 7046 provides a standard syntax for an identi�er of the
form id@instantiation along with security credentials. Second, we center ids around
users that are ‘instantiated’ by identity providers. Third and last, we add the name of the
application-layer protocol (instead of ports) to facilitate a transparent communication context.

In summary, our proposal for a uniform content naming reads:

bop:username@idp:protocol[/path[?parameters]]

These content URIs are comprised of the scheme bop and a hierarchical component further
built from a unique username veri�ed by an identity provider idp, followed by a proto-
col and path speci�er and optional parameters that can include security credentials.
The protocol speci�er is used for setting di�erent usages in one community, e.g., a chat service
and a document sharing service. A peer uses that identi�er to pass the URI to di�erent modules
of the application. This puts part of the application-speci�c semantics into the URI, with the
consequence that not every BOPlish application may be able to serve every URI. The advantage
of this design is that BOPlish URIs are �exible and extensible enough to easily re�ect future
use cases. Such a URI is generated for every published item and is shared to other users. The
sharing itself is done as with HTTP URLs, e.g., via XMPP or e-mail. These are some examples
of BOPlish URIs:

bop:alice@example.org:document/image.png?sha-256;1234abc...

bop:bob@example.com:search/Music/*tomte*

BOPlish URIs guarantee a location-independence by employing the username instead of a
speci�c peer identi�er. The actual peer id of a peer responsible for a speci�c user is resolved
via the user community itself (using the DHT). A query for one key in the DHT may result in
a list of peer addresses, re�ecting the currently available content publishers.

10

3 Conceptional Background

3.3 ID Assignment

As stated above, we distinguish peer id and BOPlish id. The peer id is a unique but temporary
and location-dependent identi�er. The BOPlish id is a user-friendly unique, persistent and
location-independent name used for addressing content. The peer id has three purposes [13]:

• To address the node itself.

• To determine the node’s position in the DHT.

• To determine the data set for which the node is responsible.

Assigning identi�ers to peers in a secure way is discussed in several publications ([21] gives
a survey) and bears the di�culty that no host shall be able to (intentionally or unintentionally)
be assigned an id that already refers to another host. Three possibilities are most commonly
suggested:

1. Peers self-assign ids randomly (no security).

2. Ids are assigned to peers by a central authority (trust anchor).

3. An implementation of Identity-based Cryptography is employed.

While the �rst option provides no security at all the remaining two alternatives let other
peers verify the id of the peer they are communicating with. With regard to our BOPlish
concept any of the three mechanisms may be employed, depending on the security needs of
the users as well as the complexity of the software architecture. It has to be noted, though,
that centralized approaches such as the usage of a trust anchor may contradict the goal of as
much decentralization as possible.

3.4 Bootstrap Procedure

Every peer in a BOPlish user network �rst acquires a unique id (the peer id) using one of the
mechanisms stated above and establishes a WebSocket connection to the chosen bootstrap
server using that id. After the WebSocket connection to the bootstrap server has been es-
tablished, a new peer sends a bootstrap message to the server (Fig. 3.1 shows the complete
bootstrap process). The generation of that message is triggered by the API call Connection-
Manager.bootstrap(). Such messages are denoted by the “to” �eld set to the value “*”
and the “type” �eld set to “signaling-protocol”. The payload contains the o�er generated by

11

3 Conceptional Background

the WebRTC API call PeerConnection.createOffer()2. The �rst message sent by
a new peer thus looks like this:

1 {
2 to: "*",
3 from: "<peer id sender>",
4 type: "signaling-protocol",
5 payload: {
6 type: "offer",
7 offer: "<offer SDP>"
8 }
9 }

If there is no other peer connected to the bootstrap server, the server answers with a message
where the “type” �eld is set to “denied”. In this case the peer has to wait for an initial connection
establishment by a second peer (indicated by an incoming o�er; this procedure is described in
detail in our PJ1 report [18]). When joining an existing network (with at least one peer), the
initial o�er is passed by the bootstrap server to one of the peers. The algorithm employed to
choose which peer receives the initial o�er is up to the server and may range from pure random
selection to more re�ned algorithms which take into account the online time or authorization
credentials.

The chosen peer, after receiving the initial o�er, answers with a signaling message of type
“answer” and the corresponding answer SDP. This answer is also sent through the bootstrap
server. Upon receiving this answer, the two peers have established a Data Channel connection.

From this point on, the established Data Channel is the only transport channel used by
the new peer for exchanging messages with other peers. The bootstrap server (and thus the
WebSocket connection) does not have an active role anymore. The new Data Channel object is
passed from the Connection Manager to the Router component. The Router now uses that
Data Channel to initiate the bootstrapping of the routing protocol, in our case Chord.

2http://dev.w3.org/2011/webrtc/editor/webrtc.html#widl-
RTCPeerConnection-createOffer-void-RTCSessionDescriptionCallback-
successCallback-RTCPeerConnectionErrorCallback-failureCallback-
RTCOfferOptions-options

12

http://dev.w3.org/2011/webrtc/editor/webrtc.html#widl-RTCPeerConnection-createOffer-void-RTCSessionDescriptionCallback-successCallback-RTCPeerConnectionErrorCallback-failureCallback-RTCOfferOptions-options
http://dev.w3.org/2011/webrtc/editor/webrtc.html#widl-RTCPeerConnection-createOffer-void-RTCSessionDescriptionCallback-successCallback-RTCPeerConnectionErrorCallback-failureCallback-RTCOfferOptions-options
http://dev.w3.org/2011/webrtc/editor/webrtc.html#widl-RTCPeerConnection-createOffer-void-RTCSessionDescriptionCallback-successCallback-RTCPeerConnectionErrorCallback-failureCallback-RTCOfferOptions-options
http://dev.w3.org/2011/webrtc/editor/webrtc.html#widl-RTCPeerConnection-createOffer-void-RTCSessionDescriptionCallback-successCallback-RTCPeerConnectionErrorCallback-failureCallback-RTCOfferOptions-options

3 Conceptional Background

B
C

1

B
C

1

C
M

1

C
M

1

R
1

R
1

W
S

1

W
S

1

B
S

B
S

W
S

2

W
S

2

R
2

R
2

C
M

2

C
M

2

b
o
o
ts

tr
a
p cr
e
a
te

O
ff

e
r(

)
se

n
d
(o
ff

e
r)

se
n
d

(o
ff

e
r)

o
n
m

e
ss

a
g

e
(o
ff

e
r)

o
n
m

e
ss

a
g
e
(o
ff

e
r)

o
n
R

e
ce

iv
e
O
ff

e
r(

o
ff

e
r)

se
n
d

(a
n

sw
e
r)

se
n
d

(a
n

sw
e
r)

o
n
m

e
ss

a
g

e
(a

n
sw

e
r)

o
n
M

e
ss

a
g

e
(a

n
sw

e
r)

o
n
R

e
ce

iv
e
A

n
sw

e
r(

a
n
sw

e
r)

a
d

d
Pe

e
r(

re
m

o
te

Pe
e
r1

)
a
d

d
Pe

e
r(

re
m

o
te

Pe
e
r2

)

Pe
e
r

1
Pe

e
r

2 cr
e
a
te

A
n
sw

e
r(

)

D
a
ta

 C
h

a
n
n

e
l

Figure 3.1: Sequence diagram of the bootstrap process in BOPlish. Peer 1 generates an o�er,
sends it through a WebSocket connection to the bootstrap server which then selects
a candidate used for bootstrapping, in this case, peer 2. Then, peer 2 generates an
answer, sends it back through the bootstrap server, eventually resulting in a Data
Channel between the two peers.

13

3 Conceptional Background

3.5 Name Resolution and Data Routing

Our concept of user-centric content networks revolves around the idea that every participant
in a speci�c P2P browser network is able to name and publish content. All of the (static or
dynamic) content a user wishes to publish is assigned a URI that is derived from the user’s
unique name.

A mechanism is needed to unbind the relation between a current location and the content
identi�er. ICN features such a mechanism but operates on the network layer and therefore
requires deep changes to the network infrastructure. BOPlish introduces an overlay that does
not depend on external infrastructure but is formed solely from the participating peers. The
overlay provides a distributed hash table (DHT) which uses a hash of the user identi�er as
key and a reference to the node that holds the content as value. This indirection allows the
system to handle names and locations separately which we identi�ed as a requirement for a
content-centric architecture above.

DHTs tend to be fragile when peers join/leave the network in a high frequency [22]. The
grave reason for this is the need to re-organize the key space which requires to move the DHT
content from one peer to another. Our approach uses only a sparsely �lled data structure to
prevent re-organizing from having a big impact on the system. This is achieved by only storing
the identi�er-location linkage, not the content itself. As a result, the DHT can be designed to
be highly churn-resistant and redundant.

The name resolving mechanism scales with the number of identi�ers stored. Instead of
spanning the Web as a whole and hold all BOPlish identi�ers in one DHT, we de�ne a group
of users as a BOPlish community. Such a community consists of users with interest in speci�c
content. E.g., if the BOPlish application is a social network, the community is de�ned as all
users of the social network.

After the name resolution mechanism found a location for the requested URI, the data has
to be routed between the communicating peers. Data routing in the BOPlish architecture is
decoupled from the name resolution overlay. Instead of using the reverse path of the name
resolution, BOPlish opens a direct WebRTC connection between the content receiver and one
or more of the publishers. Coupling the data routing with the name resolution is also possible
but routing the content through the DHT would impose unnecessary load, leading to poor
performance regarding the name lookup. Moreover, depending on the DHT implementation, the
overlay path can be disadvantageous because it is not aware of geographical and performance
properties of the overlay hops.

14

3 Conceptional Background

The reference to a location is obtained by using the return value of the DHT name resolution
procedure. If the connection to the publisher fails, the content receiver can always re-query
the DHT to �nd the updated location information. This allows for mobility of both, the content
receiver and the publisher because the DHT entry can easily be updated without requiring a
name change of the content’s identi�er.

3.6 So�ware Architecture Overview

The design of our architecture is presented in Figure 3.2. At the very top sits the BOPlish
Application which provides a simple interface for developers building their applications on top
of BOPlish. The developer facing part uses the BOPlish Core API to send and receive data and
controls the bootstrap process. Moreover, it instantiates a Router and a Connection Manager
which handles WebRTC-speci�c connection establishment and management.

Connection Manager

WebRTC

Bootstrap

onmessage()

send()

bootstrap()connect()

Router

send()
registerDeli-

 veryCallback()

addPeer()
registerDeliveryCallback()

route()

BOPlish Application
send()

onmessage()

registerProtocol()

BOPlish Core API

route()
get()

onmessage()

Figure 3.2: Overview of the BOPlish software architecture

15

3 Conceptional Background

The Router component is responsible for deciding where to forward messages to and thus
maintains a routing table, eventually forming a peer in the DHT. It exposes a KBR API as
de�ned in [23] that hides the DHT implementation introduced in Sec. 4. The API allows us to
easily exchange the underlying P2P protocol. Our �rst approach included a full mesh which is
still usable for small communities. The Router encapsulates messages into the routing format
(see Sec. 3.2) and maintains the connection to the bootstrap server to recover in case of failures
and during bootstrap.

The Connection Manager component is responsible for handling WebRTC speci�cs like
connection establishment and maintenance. Contrary to our previous work, it does not
maintain a list of open connections alongside the Routers peer table. Instead, the Router is the
only component keeping track of open connections thus reducing complexity. To be able to
join a P2P network, a node has to know at least one other node already part of that network.
The Bootstrap component encapsulates the functionality for discovering an initial node to
connect to. Since this process is tightly bound to the generic connection establishment in our
WebRTC-based implementation, we included this component into the Connection Manager.

16

4 DHT Implementation

As described in Sec. 3, we use a Distributed Hash Table (DHT) as a name resolving mechanism.
In this chapter, we provide a detailed look into our DHT implementation. We opted for the
Chord protocol [24] for the following reasons. Compared to other DHT protocols, the Chord
paper provides detailed implementation information and even pseudo-code; additionally, Chord
has proved to be working in large-scale implementations [13]. Exchanging Chord with another
protocol is unproblematic due to the standardized KBR API that BOPlish uses. The KBR API
exposes a set of well-de�ned program calls and acts as a middle layer between various P2P
protocols and the application itself.

BOPlish di�ers from typical implementations due to the underlying Browser environment.
All existing Chord implementations we know about (such as the widely known OpenChord1)
use a kind of socket-based API or Remote Procedure Calls (RPC). Those implementations are
based on TCP or UDP sockets for communication. Peers are addressed directly, provided the
target IP/port combination is known. BOPlish uses WebRTC, which does not allow such a
direct connection establishment. Instead, signaling information has to be exchanged using an
external channel prior to any data transmission. Standard WebRTC use cases are intended to
use a centralized signaling server for that task. BOPlish applications shall not rely on such
central infrastructure. Therefore, instead of reintroducing centralized components, we shifted
the signaling functionality to the DHT layer, using that layer for connection establishment
itself. Other changes compared to the original Chord implementation were made to adapt to
the environment:

• BOPlish uses recursive instead of iterative routing due to the cost of connection estab-
lishments (i.e., the exchange of signaling messages).

• The Chord �nger table (comparable to a routing table) consists of 160 entries (given, SHA-
1 is used), each containing a peer identi�er (a hash) and an IP/port combination. BOPlish
uses a dynamically sized �nger table (to minimize the number of open connections,

1http://www.uni-bamberg.de/en/fakultaeten/wiai/faecher/informatik/lspi/
bereich/research/software_projects/openchord/

17

http://www.uni-bamberg.de/en/fakultaeten/wiai/faecher/informatik/lspi/bereich/research/software_projects/openchord/
http://www.uni-bamberg.de/en/fakultaeten/wiai/faecher/informatik/lspi/bereich/research/software_projects/openchord/

4 DHT Implementation

which is a constraint imposed by current Browsers) and stores peer ids instead of IP/port
combinations.

• Contrary to other Chord implementations, all communication between BOPlish peers
is asynchronous due to nature of the Data Channel interface. This avoids the common
problem of head-of-line blocking and enables the Router to process multiple requests
simultaneously.

As a future addition to BOPlish, we plan to extend the single predecessor and successor
entries proposed in the original paper to include a list of entries. In the remainder of this
chapter we provide a detailed look into the BOPlish Chord implementation while focusing on
the changes made to the original Chord protocol.

4.1 So�ware Overview

As pictured in Figure 4.1, every Chord node that is known to a local Chord instance is rep-
resented by a Node object. When a Chord instance is created it instantiates a Node and
stores it as local_node. This local node object stores the direct successor and predecessor
of the Chord instance and is used to �nd its entry point in the Chord ring. Another specialty
of the local node object is that it does not carry a WebRTC Data Channel but the WebSocket
channel to the bootstrap server. This has two purposes:

1. For joining an existing Chord ring, the bootstrap server is the only known rendezvous
instance.

2. New nodes joining the ring send their initial o�er through the bootstrap server, using
this Chord instance’s local node as end point.

The fact that the local node carries a WebSocket instead of a Data Channel does not have
any e�ect on the generic implementation of our node class because both expose the same
interface (i.e., onmessage and send()).

For every node in the �nger table, such a Node instance is created, encapsulating the
transport channel (a WebRTC Data Channel) and exposing RPC-style methods for �nding its
successor and predecessor, updating the �nger table etc. In our implementation, nodes put
together the speci�c JSON message for every method call and send this message to the remote
node which then handles the speci�c request (e.g., answering with its successor). This way
we have achieved an easy-to-use abstraction between transport messaging and Chord logic,
which makes it easy to implement the various Chord semantics.

18

4 DHT Implementation

Figure 4.1: Class diagram of the BOPlish Chord implementation

19

4 DHT Implementation

Due to the nature of the asynchronous WebRTC Data Channel interface, we had to cope with
the fact that responses to requests sent to a remote node can arrive at any point in time. This
leads to a situation where multiple requests are waiting for a response. Thus, we implemented
a way to map responses that arrive through the Data Channel to the requests sent earlier.
To solve this problem we introduced a mechanism that uses sequence numbers for marking
transactions (consisting of a request and a response). Every Chord message carries a seqnr
�eld and the corresponding request callback is saved in a local map. When the remote node
eventually sends its response carrying that same sequence number, the callback is retrieved
and removed from the map and then called. This makes it easy to issue multiple requests in a
row without blocking the application �ow.

It is possible that other Chord nodes choose the current local Chord instance as bootstrap or
otherwise would like to establish a connection (e.g. for issuing a “put” or “get”). In this case,
such node instances are stored in a map carrying the remote node’s ID as key and the node
object as value. This remote reference list is checked frequently and cleaned, so that it does
not grow to an unbearable size over time. This is especially important because the number of
open WebRTC Peer Connections is constrained by the browser.

The decision between recursive and iterative routing fell for recursive routing for the
following reasons: In an iterative routing scenario, a Chord instance would have to open a
transport channel to every peer on the path to the target peer. In our scenario, where we use
WebRTC Data Channels, opening connections to another peer is a very costly operation due to
the o�er/answer model (as e.g. opposed to IP. See Sec. 6 for a quantitative analysis). Thus, we
implemented recursive routing so that a peer asks one of the known peers in its �nger table
(to which it ideally has already an open Data Channel) to route the message. The next peer
then uses its open Data Channel to the next hop for further routing and so on. The answers
are then passed on the exact reverse path through the already open Data Channels. In this
way, we minimized the overhead for opening new transport channels. This, though, comes at
the cost of having to maintain timeouts, e.g. when an intermediate peer disappears.

4.2 Application Programming Interface

As shown in the class diagram of Figure 4.1 our Chord implementation provides four distinct
interfaces: First, there are the Chord-speci�c API calls for creating, joining and leaving a
Chord network. Second and third, a Key-based Routing (KBR) interface as well as a Distributed
Hash Table Interface for storing and querying for key/value pairs are provided; both APIs
are compatible to the API proposed by Dabek et al. in [23]. The fourth interface is speci�c

20

4 DHT Implementation

to our usage in BOPlish and is called the BOPlishRouter which exposes the method regis-
ter_delivery_callback(). The usage of this method is explained in [18], where it is
called setOnMessageHandler(). A sample usage of the DHT API is illustrated in the
following code snippet:

1 var chord = new Chord();
2 chord.join(42, function(err) {
3 if(err) {
4 throw new Error("Error joining");
5 }
6 chord.put(12345, {
7 name: "Hans Blix",
8 profession: "politician"
9 },

10 function(err) {
11 chord.get(54321, function(obj) {
12 console.log(obj);
13 });
14 });
15 });

Here, a Chord instance is created and then this instance is added to an existing Chord
network using the Peer with ID 42. Since we built all our interfaces in an asynchronous way,
the join() call is passed a callback function which is called after the joining has (successfully
or unsuccessfully) ended.

When the peer has joined, a simple JSON object is stored in the DHT with the key “12345”
using the asynchronous DHT call put(). When this call has succeeded, the value is retrieved
from the DHT using get() and then printed on stdout.

4.3 Chord bootstrapping

For joining an existing Chord network, three operations have to be undertaken:

1. Initialize new node’s �nger table

2. Update existing node’s �nger tables

3. Copy key/value pairs to new node

First, the new peer sends the following message to the bootstrap node to retrieve its own
successor:

21

4 DHT Implementation

1 {
2 to: "<peer id receiver>",
3 from: "<peer id sender>",
4 type: "chord-protocol",
5 payload: {
6 seqnr: 0,
7 type: "FIND_SUCCESSOR",
8 id: "<peer id sender>"
9 }

10 }

The type “chord-protocol” denotes that the message is to be handled by the Chord instance
(and not e.g. by the Connection Manager). The �eld “seqnr” must be present on all “chord-
protocol” messages. Its purpose is for every Chord instance to be able to map responses (e.g. a
successor ID) to requests (e.g. “FIND_SUCCESSOR”) as described in Sec. 4.1. The “id” �eld
contains the ID of the �rst �nger table entry’s start.

The bootstrap node eventually answers with a message of the following form, providing the
requester with a data structure containing the successor’s node ID as well its successor and
predecessor nodes’ ID:

1 {
2 to: "<peer id receiver>",
3 from: "<peer id sender>",
4 type: "chord-protocol",
5 payload: {
6 seqnr: 0,
7 type: "SUCCESSOR",
8 successor: {
9 id: "<successor ID>"

10 successor: "<successor’s successor ID>"
11 predecessor: "<successor’s predecessor ID>"
12 }
13 }
14 }

These messages are exchanged until the �nger table of the new node is completely updated.
For every node in the �nger table, a Chord instance now carries the node’s ID as well as an
open Data Channel. For a detailed explanation of the Chord joining procedure see [24].

22

5 Emulation Environment

We identi�ed emulation support as a crucial requirement to measure system performance
characteristics and run integration tests with large numbers of participants. A headless runtime
has been created that is able to execute the BOPlish core components without the need of a
browser instance. The runtime allows mixing emulated (command-line) with actual (browser-
based) peers. It was initally built for unit-testing purposes but also serves as a basic building
block for the emulation component.

The actual emulation environment can be seperated into two components: the emulation

host is a wrapper around the headless runtime environment and the emulation mediator. The
latter is a component that connects to the emulation hosts and centralizes logging and control.
Fig. 5.1 shows the system architecture.

________________________ ____________
Emulation Host		Emu. Host																		
__________ __________		__________																		
	Head.Run		Head.Run				Head.Run													
	________		________				________													
		App Pr.				App Pr.						App Pr.								
		_____				_____						_____								
			Bop.						Bop.								Bop.			
			Core						Core								Core			
			_____						_____								_____			
		________				________						________								
	__________		__________				__________													
________________________		____________																		

| |
____________|____________________|______

| Emulation Mediator |
|__|

Figure 5.1: Emulation Environment Architecture

Hosts participating in the emulation start an instance of the emulation host. The host can
then spawn multiple workers each representing a BOPlish peer. The host connects to a mediator
and sends status information from its running peers. The mediator instance communicates
with all participating hosts and condenses the transmitted information in a central location.

23

5 Emulation Environment

The mediator supervises the logs and noti�es the user in case of errors. The user can interact
with the mediator node using a administrative web site to control the emulation hosts (e.g,
spawning more workers).

5.1 Headless Runtime

During the evolution and growth of the project’s code base it became increasingly important to
test the code in an automated way. The browser platform being the main development target
does not provide for a typical unit-testing environment. Code is compiled just-in-time (JIT)
by the browser leading to a tedious debug process with errors occuring during runtime. To
counteract these issues, a headless runtime has been developed to enable traditional unit-testing
from the command-line and provide the necessary foundation for the emulation component.

Di�erent solutions to executing code supposed to run in browsers exist. These approaches
can be broadly seperated into two categories: browser automation frameworks and headless

JavaScript runtimes. Solutions like Selenium1 fall into the �rst category of a browser automation
framework. The idea is to use existing browser environments like the Mozilla Firefox or Google
Chrome browser and interact with them using a pre-recorded script. The script can easily be
conducted by using a browser-plugin. Approaches like Selenium work best for interaction-
intensive applications that are supposed to be controlled manually by a human being. The
main focus lies in the analysis of work�ows from the users perspective. Even though it is
possible to directly invoke JavaScript code, unit-testing abilites are limited. Moreover, using
such a browser automation framework as the basis for an emulation component is problematic.
Running multiple instances introduces a lot of overhead due to the entire browser environment
being started for every test.

Headless JavaScript runtimes, on the other hand, aim for a di�erent goal. Instead of relying
on a stand-alone browser application, the runtime driving the browser is extracted to run on
its own. The Node.js platform2 is an example of such a headless runtime. It is able to compile
and execute JavaScript using the command line interface. On top of Node.js, test frameworks
can be used to simulate interaction with the application in a generic way by using code to
describe test cases. Mocha3 is a widely adopted example of such a framework. Tests are written
in JavaScript code and executed by using a Node.js4-based test runner. This enables running

1http://seleniumhq.org/
2http://nodejs.org/
3http://visionmedia.github.io/mocha/
4http://nodejs.org/

24

http://seleniumhq.org/
http://nodejs.org/
http://visionmedia.github.io/mocha/
http://nodejs.org/

5 Emulation Environment

tests written in code from the command line and seamless integration into JavaScript-heavy
development environments.

A crucial requirement for running the same code base in a browser and in a headless
environment is the support of both environments for the included third-party components.
As an example, Node.js does not natively include the WebRTC technology. Instead, it can be
added as a third-party addon5. Code changes were needed throughout the code to support
cross-platform awareness. These included the introduction of a compatible module dependency
system, the integration into the development environment as well as diverse code changes to
rule out variation between the third-party modules on di�erent platforms.

5.2 Emulation Host

The emulation host can spawn instances of the headless runtime and provides a REST API
for external supervision. Messages directed to the running BOPlish hosts can be proxied to a
emulation mediator via a WebSocket channel. To start an emulation host, a listen port and a
BOPlish bootstrap instance have to be speci�ed:

$./boplish-emulation-host.js --port 9000 --bootstrap\
ws://chris.ac:5000

The host will then allow connections on the speci�ed port, e.g., from a mediator instance. The
REST API used to control the host is designed as shown in Tab. 5.2.

Method Path Comment
1 POST /peer Start new peer; returns {id}
2 DELETE /peer/{id} Shutdown/abort peer by id
3 GET /peer/{id} Returns peer information
4 GET /peers Returns a list of all peer ids
5 DELETE /killAll Shutdown/abort all peers
6 GET /status Return logging handler

Figure 5.2: Emulation Host REST API

Peers can be started and stopped by using the API calls 1 and 2. When starting a peer, the
call returns the id assigned to this instance. Call 3 returns information using the assigned
id, while call 4 returns a list of all the peers currently running on this host. The returned
ids can then be used to stop the peers or gather status information. It is also possible to abort

5https://github.com/js-platform/node-webrtc

25

https://github.com/js-platform/node-webrtc

5 Emulation Environment

all running peers at once by issuing call 5. Call 6 is a special call that upgrades the HTTP
connection to a bi-directional WebSocket channel. After the connection has been established,
all messages returned from the underlying BOPlish peers are sent through that channel. A
Mediator, as described in Sec. 5.3, can therefore gather all messages in a central place. During
the WebSocket initialization, a �lter can be speci�ed to prevent overloading from happening.

5.3 Emulation Mediator

The mediator acts as a central component in an emulation test run. It condenses the log
information and supervises all participating emulated peers. The mediator consists of two
parts: a backend and a frontend. The backend establishes and maintains connections to BOPlish
hosts and uses a NoSQL database to store messages received from them. The mediator itself
also exposes a REST-API. Interaction with that API can be automated by using a scripting
language and a suitable tool like curl6 or the frontend interface described below.

Figure 5.3: Emulation Overview Page

6http://curl.haxx.se/

26

5 Emulation Environment

The frontend interface shown in Fig. 5.3 has been developed to simplify interaction with
the mediator. The built-in chart engine can be used for custom plot generation from the
gathered data. It consists of three pages: host overview, host detail and peer detail which will
now be further elaborated on. Buttons allow a user to register emulation hosts by entering the
corresponding IP and port as described in Sec. 5.2.

When a host is registered at the mediator, it will be shown in the host navigation menu
along with the running peers on that host. More details can ge gathered by clicking on the host
address respectively the peer id as described below. All the gathered data can be downloaded
in JSON-encoded format for later analysis.

Host Overview

The host overview page (Fig. 5.3) gives a summary of the current overall emulation status. All
the gathered data is available to the chart engine7 which can render a multitude of di�erent
chart types and tables. Depending on the required evaluation data, the charts are supposed to
quickly display information which can later be analyzed thoroughly using the gatherd log �les.
The data available to the host overview page include:

• Current bandwidth/sec of all running hosts

• Number of running hosts

• Debug info/warning/error of running hosts

• Uptime of all running hosts

Host Detail

The host detail page is revealed when clicked on a host from the navigation menu as shown
in Fig. 5.4. Just as with the host detail page, the charting engine can be used to display any
information available to the mediator instance. The data available to the host detail page
include:

• Current bandwidth/sec of running host

• Number of running peers

• Debug info/warning/error of running peers

• Total number of received BOPlish messages

• Host uptime
7based on Google Charts (https://developers.google.com/chart)

27

https://developers.google.com/chart

5 Emulation Environment

Figure 5.4: Emulation Host Detail Page

Peer Detail

Clicking on a peer id in the menu opens the peer detail page. It is supposed to show in-depth
information about the running peer and help debugging if a peer fails (using the log �les that
still persist on the mediator). The data available to the host detail page include:

• Peer id

• Peer uptime

• Current bandwidth/sec of running peer

• All received BOPlish messages

As stated above, all BOPlish messages occuring at every peer are stored in a NoSQL database.
The database can be queried for later analysis. Every message contains a timestamp written
by the host the peer is running on. It is therefore crucial to keep the time in sync among the
participating hosts to keep the messages in their absolut order. For that task, NTP can be used
to reduce the time di�erence to a acceptable level (lower than the hop-by-hop delay).

28

5 Emulation Environment

Figure 5.5: Emulation Peer Detail Page

29

6 Evaluation

After laying out the principles of our architecture in Sec. 3 and Sec. 4, we now continue to test
the system for its functionality using the emulation component introduced in Sec. 5. BOPlish
uses a DHT mechanism for its name resolution capabilities that is formed solely from the
participating peers. The underlying DHT protocol used to establish and maintain the DHT
depends on the use case of the BOPlish community.

Currently, the existing WebRTC implementations are neither feature complete nor do the
performance characteristics match the �nalized product. For example, the Chrome implemen-
tation currently does not allow to set options for the SCTP stream that is used for the Data
Channel connections. As such, only reliable transmission can be tested. Another limiting
factor is the number of open Data Channels a peer can cope with. Again depending on the
implementation, we observed that number range from 8 (Android smartphone with Firefox)
to 30 (PC with Chrome x64). For this reason, we do not give an detailed insight on perfor-
mance characteristics at this point but rather test the system for functionality and conceptional
correctness.

For small-sized communities, One-Hop DHTs are feasible. Every peer knows every other
peer in the community and can therefore determine the owner of a key in a single step. Lookup
performance is obviously very good (O(1)) as no intermediate hops are involved. On the other
hand, a lot of maintenance tra�c is needed to keep the host tables updated at every peer in
the event of churn. Moreover, as stated above, browsers can only handle a limited number of
open Data Channel connections.

Larger communities will need to use a multi-hop DHT setup. We implemented the Chord
protocol for our test environment but other protocols like Pastry or CAN are certainly possible,
too. The logarithmic scalability of Chord allows for large numbers of peers. In our tests,
we compare One-Hop (as occurring in One-Hop DHTs) as well as Two-Hop and 10-Hop
performance. First up, we provide a look at the system con�guration in Sec. 6.1 and showcase
the results in Sec. 6.2.

30

6 Evaluation

6.1 Configuration

To evaluate BOPlish, we used a total of 4 hosts. All machines use Intel QuadCore CPU with
2,33 GHz to 3 GHz and a total of 40 GB RAM. One of the hosts runs both, the bootstrap server
and the emulation mediator. The three other hosts start an instance of the emulation host
instance that in turn spawns BOPlish peers. During the measurements, the emulation hosts
were monitored for CPU and RAM usage which did not exceed 80% at any time.

The hosts are interconnected using Gigabit Ethernet (GigE) and use public IP addresses.
This turned out to be a problem with the STUN implementation of the Chrome Browser as
it apparently expects to operate in a NATed environment. With the current implementation
the initial STUN connection establishment takes a long time (about 10 seconds), signi�cantly
distorting the delay measurements. As a work around, we used a locally started STUN server1.

Our emulation con�guration does not re�ect the actual Internet environment. Delays will
be higher due to longer routes and bandwidth between peers will be way below the GigE speed
we achieve in our test setup. As a future work, we plan to deploy the emulation environment
to an environment which more closely re�ect the Internet like PlanetLab2.

We currently do not use any caching for the name resolution mechanism. Thus, every
request to a BOPlish id gets resolved to a corresponding peer id prior to the actual content
transmission. We plan to enable lookup caching after the functionality has been veri�ed.

6.2 Results

Lookup Performance

The �rst test is the lookup performance that resembles the name resolution mechanism. We
issue GET requests to the DHT layer using the following code:

1 var counter = 100;
2 var getDelays = [];
3 var hostBopId = ’bwjllzqiitpgb@id.com’;
4 (function getDelay() {
5 var timeStart=new Date();
6 bopclient._get(hostBopId, function(err, msg) {
7 var timeDiff = new Date() - timeStart;
8 console.log(’took’, timeDiff, ’ms’);
9 getDelays.push(timeDiff);

10 if (--counter) {

1https://launchpad.net/ubuntu/trusty/+package/stun
2https://www.planet-lab.org/

31

6 Evaluation

11 getDelay();
12 } else {
13 calculate(getDelays);
14 }
15 });
16 })();
17
18 function calculate(values) {
19 var min = Math.min.apply(null, values);
20 var max = Math.max.apply(null, values);
21 var sum = values.reduce(function(pv, cv) {
22 return pv+cv;
23 }, 0);
24 var avg = sum / values.length;
25 console.log(’avg, min, max:’, avg, min, max);
26 }

Due to the low-delay LAN environment, the measured delays almost solely mirror the actual
delay introduced by the BOPlish overlay and the WebRTC stack. Fig. 6.1 shows the results
of our tests. One-hop performance shows a minimum of 4ms and a maximum of 43ms. As
expected, two-hop delays are roughly doubled. 10-hop delays show a big span between minimal
and maximum values. This result might seem unexpected in a stable LAN environment but
can be explained by the heavy-weight WebRTC stack. We expect the overall delays to decrease
when WebRTC implementations mature over time.

0

20

40

60

80

100

120

2 4 6 8 10

D
el

ay
 [

m
s]

Overlay Hops

Figure 6.1: BOPlish lookup performance

32

6 Evaluation

Bootstrap Delay

To o�er the best user experience, applications that rely on BOPlish must be usable as soon
as possible after the initial Web application has been loaded. A crucial factor to minimize the
time between page load and application initialization on the client is the bootstrap delay. This
factor depends mainly on the time for the new peer to join the DHT, i.e. initialize �nger tables,
�nd its place in the Chord ring and update successor and predecessor.

Fig. 6.2 outlines the gross bootstrap delay in the environment described above and indicates
the total time from instantiating the BOPlishClient object until the peer has fully joined the
DHT. We conducted the numbers by subsequently joining additional peers, thus increasing the
hop count that is necessary to route messages from one peer to another. The chart can roughly
be divided into two parts: The �rst part is the one where only two peers have joined the DHT,
the second part is the one displaying the delay with three and more hops on the X axis.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2 4 6 8 10

D
e
la

y
 [

m
s]

Hop Count

Figure 6.2: Gross BOPlish bootstrapping performance

It can be seen that the maximum delay for bootstrapping remains more or less constant with
increasing hop count. This has two reasons:

1. When joining, a peer connects to at most three other peers: its bootstrap peer, its
successor and its predecessor.

2. The delay for establishing a WebRTC Data Channel is very high.

33

6 Evaluation

Those two aspects combined allow for a reasonable interpretation of Fig. 6.2. The connection
establishment delay is so high that all other operations on the resulting Data Channels are
negligible with regards to delay measurements. The conclusion from this observation is that
Data Channel connections are expensive to establish and it’s important to keep as many of
them open as possible, at least to those peers that are contacted often (like successor and
predecessor).

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10

D
e
la

y
 [

m
s]

Hop Count

Figure 6.3: Net BOPlish bootstrapping performance

We also measured the net bootstrap delay, leaving out the time for connection establishment.
Those numbers provide for a better evaluation of our actual implementation. Fig. 6.3 displays
the time from instantiating the BOPlishClient until the join operation has succeeded as a
function of the hop count used to route the join messages. Here it can be seen that the
bootstrap delay increases with more peers joining the DHT, this increasing the hop count for
join messages.

34

6 Evaluation

DHT Performance Characteristics

To test the overall stability of the DHT, we conducted the maximum number of message per
second that can be routed over an increasing hop count. We learned that the results di�er
depending on the WebRTC implementation respectively the browser we used in our tests. The
following code has been used to conduct the measurements:

1 var hostBopId = ’drnlbbnzs@id.com’;
2 var start = new Date();
3 var j = i = 1000;
4 while (i--) { // send i messages to bop id
5 bopclient._get(hostBopId, function(err, msg) {
6 if (!--j) {
7 // done: all callbacks called
8 var took = new Date() - start;
9 // normalize to msg/sec

10 var msgPerSec = 1000*1000/took;
11 console.log(’msg/sec:’, msgPerSec);
12 }
13 });
14 }

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10

M
es

sa
ge

s
pe

r
se

co
nd

Hop Count

Chrome 37
Firefox 32

Figure 6.4: BOPlish DHT Performance

The results are shown in Fig. 6.4. Chrome one-hop performance tops at 1270 msg
sec and

declines to 130 msg
sec when the messages are routed over ten hops. Firefox performance is

35

6 Evaluation

superior throughout the test and is able to push 1640 msg
sec through the BOPlish infrastructure.

10-hop performance is more than doubled compared to Chrome with 330 msg
sec . The results

leave us con�dent that our solution can sustain even high amounts of messages and does not
break down in case of overloading.

Loss

We did not observe any packet loss during the tests at all. This is due to the reliable transmission
mode of the underlying SCTP connection and the LAN environment.

36

7 Conclusions

In this paper, we introduced two independent extensions to the BOPlish architecture, namely
the DHT extension for the name resolution mechanism and the emulation environment.
Accompanied by the implementation of the URI scheme, BOPlish can now scale to a realistic
community size needed for the implementation of the introduced use cases.

In the process of our implementation e�orts we experienced various pitfalls with current
WebRTC implementations: The API, developed by the W3C in collaboration with the IETF
is still under heavy development and changes are introduced very often with new runtime
releases (e.g. Firefox or Chrome). This drastically reduces the implementation pace of WebRTC-
based applications since debugging errors with new browser releases is a time-consuming task.
Our conclusion from various such situations are that writing unit and integration tests are
not only important but constitute a critical building block in developing WebRTC applications.
Another learning, especially with regards to our emulation component, is that the currently
available WebRTC stacks demand vast CPU and RAM resources. It is not clear whether this
situation will change in the near future since currently, implementors put more e�ort in the
speci�cation and development of the API.

We conducted several measurements to showcase that the principle architecture of BOPlish
works as expected. During the evaluation, we discovered major di�erences in the performance
of current WebRTC implementations. As these implementations are currently considered
work-in-progress we expect to see future performance improvements.

Our BOPlish implementation is now in a state where we are able to put e�ort in the further
development of the conceptional framework. We are currently planning to design a group
communication mechanism that makes use of our name-based publishing architecture.

37

Bibliography

[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The Many Faces of
Publish/Subscribe,” ACM Comput. Surv., vol. 35, no. 2, pp. 114–131, June 2003.

[2] M. Handley, “Why the Internet Only Just Works,” BT Technology Journal, vol. 24, no. 3,
pp. 119–129, Jul. 2006.

[3] G. Xylomenos, C. Ververidis, V. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos, K. Katsaros,
and G. Polyzos, “A Survey of Information-Centric Networking Research,” Communications

Surveys Tutorials, IEEE, vol. PP, no. 99, pp. 1–26, 2013.

[4] D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo, D. Saucez, T. C. Schmidt,
and M. Wählisch, “ICN Research Challenges,” IRTF, IRTF Internet Draft – work in
progress 02, February 2014. [Online]. Available: http://tools.ietf.org/html/draft-kutscher-
icnrg-challenges

[5] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I. Stoica,
“A Data-Oriented (and beyond) Network Architecture,” SIGCOMM Computer Communi-

cations Review, vol. 37, no. 4, pp. 181–192, 2007.

[6] V. Jacobson, D. K. Smetters, J. D. Thornton, and M. F. Plass, “Networking Named Content,”
in Proc. of the 5th Int. Conf. on emerging Networking EXperiments and Technologies (ACM

CoNEXT’09). New York, NY, USA: ACM, Dec. 2009, pp. 1–12.

[7] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker, “Naming in Content-
oriented Architectures,” in Proceedings of the ACM SIGCOMM workshop on Information-

centric networking, ser. ICN ’11. New York, NY, USA: ACM, 2011, pp. 1–6.

[8] D. Smetters and V. Jacobson, “Securing network content,” PARC, Tech. Rep., Oct. 2009.

[9] M. Allman, “Personal Namespaces,” in Proc. of the 6th ACM Workshop on Hot Topics in

Networks (HotNets-VI). New York, NY, USA: ACM, 2007.

38

http://tools.ietf.org/html/draft-kutscher-icnrg-challenges
http://tools.ietf.org/html/draft-kutscher-icnrg-challenges

Bibliography

[10] T. Callahan, M. Allman, M. Rabinovich, and O. Bell, “On Grappling with Meta-information
in the Internet,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 5, pp. 13–23, Oct. 2011.

[11] R. Marques and A. Zuquete, “User-Centric, Private Networks of Services,” in 2013 Interna-

tional Conference on Smart Communications in Network Technologies (SaCoNeT), vol. 01,
June 2013, pp. 1–5.

[12] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, H. Schulzrinne, and T. Schmidt, “A SIP
Usage for RELOAD,” IETF, Internet-Draft – work in progress 13, July 2014.

[13] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne, “REsource LOcation
And Discovery (RELOAD) Base Protocol,” IETF, RFC 6940, January 2014.

[14] H. Alvestrand, “Overview: Real Time Protocols for Browser-based Applications,” IETF,
Internet-Draft – work in progress 11, August 2014.

[15] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan, “WebRTC 1.0: Real-time
Communication Between Browsers,” http://www.w3.org/TR/2013/WD-webrtc-20130910/,
World Wide Web Consortium, W3C Working Draft, 2013.

[16] L. Lopez Fernandez, M. Paris Diaz, R. Benitez Mejias, F. Lopez, and J. Santos, “Kurento: a
media server technology for convergent WWW/mobile real-time multimedia communi-
cations supporting WebRTC,” in Proc. of 14th IEEE International Symposium on a World

of Wireless, Mobile and Multimedia Networks (WoWMoM’13), June 2013, pp. 1–6.

[17] L. Zhang, F. Zhou, A. Mislove, and R. Sundaram, “Maygh: Building a CDN from Client Web
Browsers,” in Proc. of 8th ACM European Conference on Computer Systems (EuroSys’13).
New York, NY, USA: ACM, 2013, pp. 281–294.

[18] M. J. Werner and C. Vogt, “Implementation of a Browser-based P2P Network
using WebRTC,” Hamburg University of Applied Sciences, Technical Report, January
2014. [Online]. Available: http://inet.cpt.haw-hamburg.de/teaching/ws-2013-14/master-
project/Prj1-report-werner-vogt.pdf

[19] M. J. Werner, C. Vogt, and T. C. Schmidt, “Let Our Browsers Socialize: Building User-
centric Content Communities on WebRTC,” in Proc. of 34th Int. Conf. Dist. Comp. Systems

ICDCS – WS HotPost. Piscataway, NJ, USA: IEEEPress, June 2014.

[20] M. Wählisch, T. C. Schmidt, and S. Venaas, “A Common API for Transparent
Hybrid Multicast,” RFC Editor, RFC 7046, December 2013. [Online]. Available:
http://tools.ietf.org/html/rfc7046

39

http://inet.cpt.haw-hamburg.de/teaching/ws-2013-14/master-project/Prj1-report-werner-vogt.pdf
http://inet.cpt.haw-hamburg.de/teaching/ws-2013-14/master-project/Prj1-report-werner-vogt.pdf
http://tools.ietf.org/html/rfc7046

Bibliography

[21] G. Urdaneta, G. Pierre, and M. V. Steen, “A Survey of DHT Security Techniques,” ACM
Comput. Surv., vol. 43, no. 2, pp. 8:1–8:49, Feb. 2011.

[22] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn in a DHT,” in Pro-

ceedings of the Annual Conference on USENIX Annual Technical Conference, ser. ATEC ’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10–10.

[23] F. Dabek, B. Y. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards a Common
API for Structured Peer-to-Peer Overlays,” in Peer-to-Peer Systems II, Second International

Workshop, IPTPS 2003, Berkeley, CA, USA, February 21-22, 2003, Revised Papers, ser. LNCS,
M. F. Kaashoek and I. Stoica, Eds., vol. 2735. Berlin Heidelberg: Springer–Verlag, 2003,
pp. 33–44.

[24] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Bal-
akrishnan, “Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Applications,”
IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 17–32, 2003.

40

	1 Introduction
	2 Background and Related Work
	2.1 Publish/Subscribe Networking
	2.2 User-centric Naming and Networking
	2.3 WebRTC
	2.4 Previous Work and Contribution

	3 Conceptional Background
	3.1 Data Transport Topology
	3.2 Message Format and URI Scheme
	3.3 ID Assignment
	3.4 Bootstrap Procedure
	3.5 Name Resolution and Data Routing
	3.6 Software Architecture Overview

	4 DHT Implementation
	4.1 Software Overview
	4.2 Application Programming Interface
	4.3 Chord bootstrapping

	5 Emulation Environment
	5.1 Headless Runtime
	5.2 Emulation Host
	5.3 Emulation Mediator

	6 Evaluation
	6.1 Configuration
	6.2 Results

	7 Conclusions

