
Project Report

Lars Pfau

Integrating a RISC-V Secure Firmware into RIOT

Supervision: Prof. Dr. Thomas C. Schmidt
Submitted: June 21st, 2024

Faculty of Engineering and Computer Science
Department Computer Science

Contents

Contents

1 Introduction 1

2 Related Work 2

3 Problem Statement 3

4 Analysis 4

4.1 Libraries . 4

4.2 Findings in Libraries . 4

4.3 Additional Considerations . 9

4.4 Solutions . 10

4.5 Discussion . 13

5 Implementation 13

5.1 Requirements . 14

5.2 Challenges . 14

5.3 Solution . 15

5.3.1 Secure Firmware . 15

5.3.2 RIOT Integration . 16

5.3.3 PSA Crypto API . 17

5.4 Evaluation . 17

6 Conclusion and Outlook 19

References 20

ii

1 Introduction

Abstract This work investigates the possibility of reducing the code size

of trusted execution environments in constrained IoT devices. The goal of

this work is to integrate secure �rmware into the real-time operating system

RIOT while minimizing the duplication of libraries such as for cryptography.

First, an analysis is performed that identi�es numerous problems related to

code sharing between execution contexts. Second, some solutions to these

problems are investigated and an approach using the PSA Crypto API is

selected. Finally, a separate secure �rmware and PSA Crypto driver are

developed and integrated into RIOT. The results show signi�cant code size

advantages from deduplicating crypto algorithms using the PSA Crypto API.

Keywords: IoT Security, Trusted Execution Environments, RISC-V

1 Introduction

IoT security is a research area concerned with the security of constrained devices. The

development of such IoT nodes is driven by cost and power consumption, resulting in

hardware with limited computing and memory resources. RFC 7228 [17] de�nes highly

constrained IoT devices as those with less than 10KiB of SRAM and less than 100KiB of

�ash memory. Until recently, such constrained IoT devices consisted of microcontrollers

that run bare-metal software and did not implement memory isolation. This meant that

all memory and peripherals could be accessed by all software. As a result, simple bu�er

over�ows could lead to information disclosure and remote code execution. With the

introduction of Arm TrustZone-M [12] and RISC-V PMP [34], microcontrollers based on

the ARMv8-M and RISC-V architecture optionally support hardware e�cient memory

isolation mechanisms. This has led to research interest to implement trusted execution

environments on IoT devices.

The idea of trusted execution environments is to separate an application into a normal

execution environment and one or more secure execution environments. The traditional

bare-metal application runs in the normal execution environment with limited memory

and peripheral access, while secure �rmware and enclaves run in a secure execution envi-

ronment. The secure environment guarantees properties such as integrity, authenticity,

and con�dentiality of code and data which can be used to implement features like secure

1

2 Related Work

boot, remote attestation, key stores, sealed storage, and more, increasing the security of

low-end Internet-connected devices.

However, the implementation of trusted execution environments on constrained devices

faces code-size challenges. TEE solutions such as MultiZone [19] work by compiling

and linking the applications and the secure monitor independently. This can result

in code duplication of common libraries between execution environments, such as for

cryptography, potentially wasting scarce �ash memory space.

This report analyzes the potential for reducing redundant code between secure and nor-

mal execution environments. The goal of this work is to integrate a secure �rmware

based on the method described in [27] into the real-time operating system RIOT [14].

2 Related Work

This project report is a continuation of the work in [27]. In the previous work, an

experiment was performed that showed the feasibility of implementing trusted execu-

tion environments on RISC-V microcontrollers with the RIOT operating system. In the

experiment, the RIOT RISC-V port was modi�ed to be able to run in user-mode. A

minimal machine-mode secure �rmware was developed to handle system startup, inter-

rupt handling, and access to privileged instructions. This experimental secure �rmware

was integrated directly into the repository and build system of RIOT. A modi�ed linker

script was used to group all protected code and data sections together to isolate them

from unprivileged access using RISC-V PMP.

While this approach was very simple and e�ective for the purposes of the experiment, it

is important to understand that it only worked because the machine-mode �rmware was

written in assembly, with no dependencies on other code and data. In contrast to the

previous work, which focused on feasibility and performance, this work focuses on build

system integration, code size, and security.

Tamas Ban [15] describes the motivation and design of code sharing between the �rst

stage bootloader and the secure execution environment in Arm Trusted Firmware-M.

He identi�ed the potential to reduce the code size of TF-M for constrained Cortex-

M microcontrollers by eliminating the duplication of cryptographic algorithms between

MCUboot [2] and the MbedTLS PSA Crypto API [9] in the TF-M crypto service. This

was achieved by providing the address of shared symbols via a linker script. The author

2

3 Problem Statement

claims a code size advantage from 1.2 kB up to 15 kB, depending on the con�guration.

However, the author mentions problems with Application Binary Interface (ABI) stability

when performing �rmware updates. In addition, the proposed solution only supports a

limited selection of toolchains.

Boeckmann et al. [16] have worked on the deduplication of cryptographic primitives in

the RIOT operating system. In their work, the authors describe the implementation and

integration of the Arm PSA Crypto API [13] into RIOT. They show that by integrating

di�erent crypto modules for hardware accelerators and software libraries under a common

API, signi�cant code size reductions can be achieved. According to the authors, the code

size of a sample IoT application was reduced from 50 kB to just 15 kB, highlighting the

importance of code deduplication when it comes to crypto libraries in IoT applications.

3 Problem Statement

The goal of this work is to build the foundation of a secure �rmware based on the method

described in [27] and integrate it into RIOT. Design decisions must be made on how to

integrate this secure �rmware into the RIOT build process. For example, if the secure

and normal execution environments were compiled and linked in separate build processes,

this would result in each program having its own copy of libraries. This could result in

a signi�cant waste of ROM space, since code is duplicated across all environments. The

opposite extreme, compiling and linking all code in the same build, could reduce memory

footprint but also introduce security issues.

Given that RIOT already provides its own implementation of crypto algorithms, the

questions arise whether it is possible to share this code with the secure �rmware, what

the obstacles are, and what possible solutions exist. To answer these questions, the next

section will �rst provide an analysis of all code and libraries that could potentially be

shared across execution environments. Each of these libraries will then be analyzed for

functional issues and potential security issues. Other factors to consider are highlighted.

Following this analysis, potential solutions to the issues raised are discussed. Based

on these �ndings, the foundation of a secure �rmware is then built and integrated into

RIOT.

3

4 Analysis

4 Analysis

4.1 Libraries

The �rst step in our analysis is to identify code or libraries in the RIOT code base

that could potentially be shared with a secure �rmware. To achieve this, the latest

RIOT 2024.01 release was systematically evaluated. Mainly, all crypto modules in the

system and package folders were listed. In addition, relevant system libraries of the GCC

toolchain were selected. Based on this search, a selection of modules and libraries that

are relevant to this discussion and potentially duplicated between execution environments

are listed in Table 1.

Table 1: Libraries and RIOT Modules of Interest

Module / Library Functions of Interest
sys/crypto symmetric ciphers and message authentication codes

sys/hashes cryptographic hashes

sys/random pseudo random number generators

pkg/mbedtls symmetric ciphers, asymmetric ciphers,
digital signatures, cryptographic hashes,
cryptographic random number generators

pkg/micro-ecc elliptic curve digital signatures

libc stdio: String formatting
string: memcpy, memset, strlen, . . .

libgcc RISC-V save-restore routines

These modules and libraries were then further analyzed by building the RIOT exam-

ples/default application with all libraries included. Next, the generated object �les were

examined using binutils. This included the symbol tables and the generated assembly

with the goal of identifying potential security vulnerabilities. The �ndings of the analysis

are documented in the following sections.

4.2 Findings in Libraries

Denial of Service in sys/hashes

The RIOT hashes module provides implementations of common cryptographic hash al-

gorithms such as MD5, SHA1, SHA224, SHA256, SHA512, and SHA3. These algorithms

4

4 Analysis

are also needed in trusted execution environments to support features such as secure

boot and sealed storage. The symbol tables of the object �les indicate that the imple-

mentation of the MD5, SHA1, SHA512, and SHA3 hash algorithms in the sys/hashes

module are stateless because all code and data contained in the object �le is read-only

and have no side e�ects caused by external symbols. This makes the implementation of

these algorithms suitable for sharing with the secure �rmware.

The implementation of the SHA224 and SHA256 hash algorithms di�er. The symbol

tables of these algorithms reference a writeable variable called PAD, which is located in

RAM. When cross-referencing the source code with the object �le, as shown in Listing 1,

it appears that this variable is used in the sha2xx_pad function which is called when

�nalizing SHA224 or SHA256 hashes.

Listing 1: RIOT SHA256 and SHA224 Implementation (Excerpt from

sys/hashes/sha2xx_common.c in [3])

static unsigned char PAD[64] = {

0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

};

...

void sha2xx_pad(sha2xx_context_t *ctx)

{

...

sha2xx_update(ctx, PAD, (size_t) plen);

...

}

It is a potential problem if the implementation is shared with the secure �rmware. An

attacker could use an out-of-bounds write in RIOT to change the value of the PAD variable.

This would cause all hashes to be computed incorrectly, a�ecting not only RIOT, but

all secure applications. After some investigation, it appears that this is a programming

error. The PAD variable is incorrectly declared as non-const1.

1A �x for this issue has been submitted to upstream RIOT and was merged with PR #20729
https://github.com/RIOT-OS/RIOT/pull/20729 (accessed 2024-06-21)

5

https://github.com/RIOT-OS/RIOT/pull/20729

4 Analysis

Information Disclosure in sys/random

The sys/random module in RIOT provides several implementations of pseudo random

number generators. Random numbers are important for trusted execution environments

to generate nonces for features such as remote attestation [8] and digital signatures [35].

By default, RIOT uses a linear congruential generator (LCG) [21]. Alternatively, a more

secure SHA256-based pseudorandom number generator or hardware-based true random

number generators can be selected.

The symbol tables of the sys/random object �les reveal that both the LCG and the

SHA256PRNG use global variables. A lookup of the symbols in the source code shows

that these global variables also contain the state of the pseudo-random number generator.

(See Listing 2)

Listing 2: RIOT Random Number Generator (Excerpt from sys/random/musl_lcg.c

in [3])

static uint64_t _seed;

uint32_t random_uint32(void)
{

_seed = 6364136223846793005ULL*_seed + 1;

return _seed>>32;

}

From a security perspective, this is a problem because pseudo-random number generators

are deterministic, which would allow the normal execution environment to predict all

future random numbers generated by secure applications. It could also be used to change

the state to a known value controlled by the attacker. Therefore, it is not possible to

share the PRNG implementation provided by RIOT. However, it is important to note

that this is due to a design choice made by RIOT. If the API were stateless, like is done

in MbedTLS (See Listing 3), where the caller passes the context of the PRNG to the

library as a parameter, this would not be a problem.

Listing 3: MbedTLS Random Number Generator (Excerpt from

include/mbedtls/ctr_drbg.h in [9])

int mbedtls_ctr_drbg_random(void *p_rng,

unsigned char *output, size_t output_len);

6

4 Analysis

Thread Safety in pkg/mbedlts

MbedTLS is a crypto library that can be optionally included as a package in RIOT. It

provides an alternative implementation of cryptographic algorithms for ciphers, hashes,

and signatures. It also provides an implementation of the TLS and DTLS protocols.

The object �le generated by MbedTLS contains writable global variables. Analyzing the

source code reveals that these variables are function pointers used for a platform-speci�c

mutex implementation. When compiling MbedTLS for an RTOS like RIOT, the library

relies on implementation-provided locking primitives to allow concurrent use by multiple

preemptible threads [11].

Listing 4: MbedTLS Threading API (Excerpt from include/mbedtls/threading.h in [9])

void mbedtls_threading_set_alt(void (*mutex_init)(mbedtls_threading_mutex_t *),

void (*mutex_free)(mbedtls_threading_mutex_t *),

int (*mutex_lock)(mbedtls_threading_mutex_t *),

int (*mutex_unlock)(mbedtls_threading_mutex_t *));

extern void (*mbedtls_mutex_init)(mbedtls_threading_mutex_t *mutex);

extern void (*mbedtls_mutex_free)(mbedtls_threading_mutex_t *mutex);

extern int (*mbedtls_mutex_lock)(mbedtls_threading_mutex_t *mutex);

extern int (*mbedtls_mutex_unlock)(mbedtls_threading_mutex_t *mutex);

RIOT provides adapters to its own threading API via the interface shown in Listing 4.

When RIOT boots, it initializes MbedTLS by calling the mbedtls_threading_set_alt func-

tion. This makes the library unsuitable for sharing with secure �rmware because the

secure execution environment cannot rely on the scheduler and mutex implementation of

an application in the normal execution environment.

Control Flow Hijack and Privilege Escalation in pkg/micro-ecc

uECC [22] (micro-ecc) is a library that provides functionality for creating and verifying

elliptic curve digital signatures. Trusted execution environments rely on digital signatures

to implement features such as secure boot, keystores, remote attestation, and sealed stor-

age. Inspection of the uECC object �les generated by the RIOT build system shows that

the uECC library is not stateless. The library contains a writeable symbol g_rng_function

that is located in RAM. This symbol is used in the uECC_sign function and is part of the

API shown in Listing 5.

7

4 Analysis

Listing 5: uECC API (Excerpt from uECC.h in [22])

typedef int (*uECC_RNG_Function)(uint8_t *dest, unsigned size);

void uECC_set_rng(uECC_RNG_Function rng_function);

uECC_RNG_Function uECC_get_rng(void);

Because the RNG function is implemented as a function pointer in global memory, it is

not suitable for shared use between the secure and normal execution environments for

the functional reasons already mentioned in the previous section. But this is not the only

problem. A shared function pointer in RAM can also be used to hijack control �ow from

the secure world. By changing the value of this variable, an attacker can cause a secure

application to jump to a speci�c location in memory, resulting in privilege escalation.

System Calls and Constructors in libc

The C Standard Library (libc) is a common library used by many embedded applica-

tions. It includes ubiquitous functions from the standard string library such as memcpy,

memset, and strcmp. It also includes the standard I/O library, which provides functions

to format strings. RIOT supports two libc implementations: Newlib and picolibc. Both

have the same problems when it comes to sharing code with the secure �rmware. They

implement system calls by statically linking against interfaces provided by the RIOT

operating system. This approach has the advantage that the user can use standard func-

tions such as open, read, write, and close to interact with the RIOT vfs subsystem, or

use printf to write to the serial console. However, this makes it unsuitable for use by

other applications in the secure execution environment who wish to use their own version

of system calls.

More fundamental problems arise from the interactions between the C Standard Library

and the toolchain. Languages like C and C++ provide mechanisms for executing code be-

fore the main function [24]. In C, functions marked with the __attribute__((constructor))

decorator are placed in a special .init_array section of the object �le. When the micro-

controller boots, before the main function is called, all constructors are executed through

the __libc_init_array function. A similar mechanism exists for globally constructed C++

objects. This causes problems when integrating multiple applications into the same build

process, because not all constructors belong to the same execution environment. They

should be called at di�erent times in di�erent contexts.

8

4 Analysis

Shareable Libraries

Other libraries such as libgcc and sys/crypto (except for another chacha-based PRNG)

do not hold global state and have no side e�ects. libgcc provides functionality such as

RISC-V save/restore routines and FP emulation. sys/crypto provides implementations

of symmetric cyphers such as AES and Chacha. These libraries can be shared between

the normal and secure execution environments without modi�cation.

4.3 Additional Considerations

Relative Addressing

The default for RIOT is to compile programs with linker relaxations enabled. Linker

relaxations are used to reduce the code size of RISC-V binaries [30]. The RISC-V in-

struction set architecture currently speci�es a 32-bit instruction format with 16-bit com-

pressed instructions [33]. Addressing an arbitrary memory location on a 32-bit RISC-V

microcontroller requires two 32-bit instructions or 8 bytes of code.

To reduce the amount of code needed to access global variables, RISC-V toolchains can

reduce the code needed to access some 32-bit memory addresses by relaxing them against

the global pointer. The RISC-V ABI [18] de�nes the general purpose register x3 as the

global pointer. The value of this register is determined by the linker. The linker can

then represent access to memory locations as a 7-bit o�set from the gp register in only

2 bytes, or as a 12-bit o�set in 4 bytes of code [31].

These gp-relative memory accesses are an obstacle when trying to share code between

the secure and normal execution environments, because the gp register must have the

same value for all code. You must also ensure that an attacker cannot change the value

of the gp register at runtime. Otherwise, the integrity of the code could be compromised.

Linker relaxations can be disabled in the toolchain [1].

Firmware Updates and Secure Boot

Trusted execution environments typically require the implementation of secure boot to

ensure the integrity of the code running on a microcontroller [28]. Secure boot establishes

a chain of trust from an immutable boot loader up to the code of the normal execution

9

4 Analysis

environment. This is achieved by having each boot stage verify the signature of the next

code that is loaded and executed.

Depending on how the boot stages of the secure �rmware are de�ned, this raises the

question of how the shared code is signed and veri�ed in the chain of trust. For example,

in Arm Trusted Firmware-M, the Secure Processing Environment (SPE) and the Non-

Secure Processing Environment (NSPE) can be signed separately [10]. While it may be

reasonable to assume that a later boot stage can trust the code of an earlier boot stage,

this makes the chain of trust more complicated and harder to verify.

It also complicates the installation of software updates. It may be necessary to update

software in di�erent execution environments independently of each other. For exam-

ple, upgrading RIOT without upgrading the secure �rmware. Some parts of the secure

�rmware may be immutable [7]. This can create problems when updating shared depen-

dencies that contain API- or ABI-breaking changes.

TCB Complexity

Finally, the testing and veri�cation of the secure �rmware has to be taken into account

to ensure the security and safety of systems that use it. A larger and more complex

trusted computing base (TCB) makes it more di�cult to verify its correctness [23].

For trusted execution environments, it is even desirable to formally verify parts of the

�rmware [28], which requires it to be small and of low complexity. Therefore, sharing

code between secure and normal execution environments is opposed to formal veri�cation

and, in general, to the security of the secure �rmware.

4.4 Solutions

The last section identi�ed barriers to sharing code between RIOT and the secure �rmware.

This section discusses solutions to these problems. For simplicity, the previous �ndings

can be further grouped into three categories:

1. Issues with global variables.

2. Issues with the toolchain and build process.

3. Issues with complexity and testing.

10

4 Analysis

First, libraries or shared code that hold global state are vulnerable to information dis-

closure, denial of service, and control �ow hijacking. This is because global variables are

accessible from both normal and secure execution environments. Furthermore, sharing

global state may also be undesirable from a functional perspective.

Second, some libraries are statically linked to interfaces provided by the implementation.

Also, linking secure and normal applications in the same build causes problems with

the toolchain regarding initialization and relative addressing. Even more problems are

caused by software updates and the requirement to sign normal and secure applications

separately.

Third and �nally, there are security bene�ts to not sharing code between security-critical

components, such as the secure monitor, and normal applications. For one thing, it makes

it easier to apply auditing techniques such as testing and formal veri�cation. And even

without formal veri�cation, the attack surface of the secure environment is reduced.

Dynamic Linking

A solution to the �rst problem, and partially to the second, might be dynamic linking.

Dynamic linking is a technique for sharing code between applications in systems with

virtual memory. It works by placing shared libraries in physical memory once, and then

mapping those libraries into the virtual memory of each application in such a way that

it has its own set of global variables. It is made possible by Position Independent Code

(PIC), which is supported by the RISC-V ISA [18]. However, it requires the presence

of an MMU, which is not present on most microcontrollers and is not supported by the

RIOT operating system.

Park et al. [26] describe a method for implementing shared libraries for microcontrollers

without the need for virtual memory. Their technique allows shared libraries to be placed

at �xed locations in ROM. The paper shows a signi�cant 35% reduction in �ash size with

only a 4% performance penalty. However, it requires modi�cations to the toolchain.

PSA APIs

Another approach can be seen in Arm Trusted Firmware-M. Arm has solved the dupli-

cation of cryptographic algorithms in its TF-M solution for Cortex-M microcontrollers

using Remote Procedure Calls (RPCs). The Arm PSA architecture de�nes a common

11

4 Analysis

Figure 1: PSA Crypto Service in Arm TF-M (Image Source: [6], Visually Enhanced)

PSA Crypto API [13] that provides generic interfaces for symmetric and asymmetric

cryptography. This API is then implemented by a crypto service within the secure en-

vironment. An application in the normal environment and enclaves are then compiled

against stubs of the PSA Crypto API as shown in Figure 1.

The stubs (Client Interface) intercept calls to the PSA Crypto API, then package the

parameters into I/O vectors and make a system call to invoke the TF-M crypto service.

This service then unpacks the parameters and calls the PSA Crypto implementation of

the MbedTLS library contained in the crypto service. After the request is completed,

the results are returned to the stub, which unpacks the results and returns them to the

caller.

The Arm approach is a very simple solution to the code duplication problem. However,

there are a few minor problems. First, not all software is built and ready to use the PSA

Crypto API. Second, the generic design of the PSA Crypto API makes it very complex

to implement. Both the PSA implementation in MbedTLS and RIOT contain over 20 k

LOC. Problems have been found with PSA in MbedTLS [29]. Third, Arm does not

provide numbers on the performance overhead of the RPC. And �nally, the approach

is incompatible with RIOT, which provides its own implementation of the PSA Crypto

API [16].

12

5 Implementation

A solution to the last problem might be to intercept calls to the crypto libraries at the

driver level instead of calls to the PSA Crypto API itself. This way, the implementation

of PSA Crypto can reside inside RIOT. Calling the PSA backends will invoke the crypto

library of the secure �rmware.

4.5 Discussion

This research began with the goal of �nding ways to reduce the duplication of code

shared by applications in the secure and normal execution environments. An analysis

showed that there are many security-related problems when trying to share code between

security-critical and insecure applications. Some solutions to these problems can be found

in both the literature and in practice.

Ultimately, there is a trade-o� between code size and code complexity. Given the ex-

perimental status of dynamic linking in microcontrollers, it is clear that sharing code

across isolation boundaries is not a good idea at this time. Therefore, a more traditional

approach of linking each application against its own set of libraries is the only reasonable

choice at this time. Code size reduction of crypto libraries can be achieved using the

PSA Crypto API.

5 Implementation

Based on the results of the previous analysis, this section describes the implementation

and integration of a secure �rmware into RIOT. The �rmware is developed for the SiFive

FE310 microcontroller [32]. It is based on the same method for running RIOT in RISC-V

user mode described in [27]. However, it has been completely rewritten to meet the new

requirements.

In the prototype developed in [27], the code of both the machine mode secure �rmware

and the user mode RTOS were interleaved in the same repository. They were both

compiled and linked by the RIOT build process and then �ashed to the microcontroller

as a uni�ed binary.

Additionally, an experimental system call interface and PSA Crypto API driver are

developed to allow RIOT to use cryptographic algorithms implemented by the secure

13

5 Implementation

�rmware. The code size advantages of using the approach are evaluated for the P256R1

elliptic curve implementation of micro-ecc.

5.1 Requirements

From the above analysis, the following requirements should be met:

1. Separate build processes

The secure �rmware and RIOT should be built independently of each other.

2. No direct code sharing

The secure �rmware and RIOT should not be linked against shared library code.

3. Independent updates

The secure �rmware and RIOT can be updated independently.

Additionally, the following properties are desirable:

5. Easy to enable

The secure �rmware should require a single option to enable.

6. Memory footprint

The memory usage should be reduced to �t constrained IoT devices.

5.2 Challenges

Separating the secure �rmware and RIOT into their own repositories and build processes

introduces a few new challenges that must be addressed. First, there is a need for well-

de�ned interfaces between the two pieces of software. This is a problem because there

is a requirement not to share code between execution environments. Some mechanism

must be found to share the interface de�nitions.

Second, both execution environments must agree on a memory layout. Both the se-

cure �rmware and RIOT require their own memory space. Consequently, they must be

assigned disjoint address ranges in RAM and ROM. The problem with this is how to

allocate these address ranges when the build processes are separated.

14

5 Implementation

5.3 Solution

5.3.1 Secure Firmware

For the secure �rmware, a new repository and build process is created. The repository

contains all the source code that runs in machine mode on the microcontroller. This code

includes:

� RAM initialization:

Loading initialized data, clearing zero initialized data.

� Memory protection:

Initialize PMP to protect code and data of the secure �rmware.

� Interrupt delegation to user mode.

� Exception handling.

� System calls for access to machine mode CSRs from user mode.

� Elliptic curve cryptography:

The micro-ecc library and system calls to sign and verify signatures.

The secure �rmware uses make�les as a build system. The toolchain chosen is the xPack

RISC-V GCC [5] compiler for reproducible builds and the picolibc [25] standard C library.

The �rmware repository contains the de�nitions of the user API as well as the de�nitions

of the memory layout. The memory layout is designed so that the �rmware is placed at

the beginning of the ROM and RAM, and RIOT is placed after the �rmware.

When the �rmware is built, the following artifacts are generated:

� Secure �rmware image

� User API headers

� Linker script variables, containing the address range for the user mode RTOS

These artifacts can then be tested and audited and are then packaged for use in RIOT.

15

5 Implementation

5.3.2 RIOT Integration

These artifacts are made available to the RIOT build system as a package. In order to

make the secure �rmware usable within RIOT, a number of speci�c changes have been

made to the RIOT code base. They include:

� Conditionally adjust the start address for ROM and RAM in the linker script.

� Conditional changes to the riscv_common CPU target to allow interaction between

RIOT and the secure �rmware.

� Addition of Make�le targets to �ash the secure �rmware.

To accomplish this, a new pseudo module riscv_user has been added. This module is

used in combination with the IS_USED macro to enable any changes in the RIOT code

base required when the user chooses to use the secure �rmware.

To �ash both secure �rmware and RIOT using the RIOT build system, an approach sim-

ilar to RIOT bootloaders is taken. RIOT already has the ability to �ash bootloaders and

RIOT independently to support software updates. These bootloaders are riotboot [4] and

MCUboot [2]. riotboot essentially provides the Make�le targets riotboot/flash-bootloader,

riotboot/flash-slot1, and riotboot/flash-slot2 to build and �ash the bootloader and im-

ages independently. It also provides a more convenient Make�le target called riotboot/flash,

which �ashes the bootloader and RIOT in one command. MCUboot takes a simpler ap-

proach than riotboot, providing a make target mcuboot-flash-bootloader and a target

named mcuboot-flash that �ashes the bootloader and RIOT at the same time.

Inspired by both the riotboot and MCUboot make commands, the following make targets

have been de�ned for the secure �rmware:

� riscv_user/flash-bootloader

Flashes the secure �rmware onto the microcontroller.

� riscv_user/flash-riot

Flashes the RIOT app onto the microcontroller.

� flash

Flashes both the secure �rmware and the RIOT app onto the microcontroller.

16

5 Implementation

Figure 2: Deduplication of the micro-ecc Library Using the PSA Crypto API

In addition, the �ash dependencies of the RIOT build system have been set up so that

invoking the RIOT flash target causes both the bootloader and RIOT to be built and

�ashed.

5.3.3 PSA Crypto API

Within RIOT, a driver for the PSA Crypto API is implemented that can call the micro-

ecc library residing in the secure �rmware. micro-ecc was chosen for better comparisons

because it is the default ECC library used by the PSA Crypto implementation in RIOT.

Figure 2 illustrates how code deduplication works with the PSA Crypto API. On the

left, you can see how the micro-ecc library is duplicated across isolation boundaries.

Both RIOT and the secure �rmware contain their version of the micro-ecc library. This

duplication can be avoided by using a custom PSA ECC backend. On the right, a PSA

driver that interfaces with the secure �rmware via system calls can use the micro-ecc

library included in the secure �rmware. This eliminates the need to include the micro-

ecc library in RIOT, resulting in a potentially signi�cant reduction in code size and

increased protection of the micro-ecc code and state variables.

5.4 Evaluation

Functional Tests

The newly written secure �rmware was evaluated in several ways. First, the secure

�rmware was functionally tested using the RIOT test suite. More speci�c, the RIOT

17

5 Implementation

core, timer, and PSA subsystem tests were run with the secure �rmware. All tests

pass.

Code Size

Second, the code and data size of the secure �rmware and RIOT were analyzed. These

numbers are not very meaningful at this time because the �rmware only implements

interrupt delegation, system calls, startup code, and the micro-ecc library. It does not

yet implement features such as key stores or remote attestation. However, these numbers

do provide a baseline for what to expect.

Table 2: Code Size of the Secure Firmware

Section Size in ELF E�ective
[Bytes] Size [Bytes]

ROM 6590 8192

RAM 1160 2048

.data 0 -

.bss 136 -

.stack 1024 -

Table 2 shows that the compiled secure �rmware requires 6590 bytes of ROM and 1160 bytes

of RAM. An additional 36 bytes of RAM is reserved for shared data between RIOT and

the secure �rmware, bringing the e�ective size to 1196 bytes. The ROM size must be

rounded up to 8KiB because the �ash on the SiFive HiFive 1B board can only be erased

with 4KiB granularity [20]. The RAM must also be rounded up to account for additional

RAM space required by future updates.

Table 3 shows a comparison of the code and data size of RIOT when compiled with the

micro-ecc PSA backend compared to the secure �rmware PSA backend. The ROM size

was reduced by 6448 bytes, a reduction of almost 30%. RAM usage is identical.

Usability

The usability of the new �rmware is optimal in the sense that it can be enabled with

a single pseudo module in RIOT. Listing 6 shows a comparison of a command used to

build and �ash a RIOT application with and without the secure �rmware.

18

6 Conclusion and Outlook

Table 3: Code Size of RIOT with and without Code Deduplication

Section Size w/ PSA Size w/ PSA
micro-ecc riscv_user
Backend [Bytes] Backend [Bytes]

ROM 23086 16638

.init 102 102

.text 21416 15148

.rodata 1568 1388

RAM 5940 5940

.data 212 212

.bss 5472 5472

.stack 256 256

Listing 6: Comparison of Commands to Build and Flash a RIOT Application

make all flash

USEMODULE=riscv_user make all flash

Maintainability

Finally, maintainability has been greatly improved over the previous prototype in [27].

The previous work de�ned separate targets for riscv_common_user, fe310_user, and

hifive1b_user, resulting in signi�cant code duplication within RIOT. The new �rmware

uses �ve conditional changes to the existing riscv_common CPU target in the startup code,

trap handler, and riscv_encodings. This means that any changes to riscv_common do not

need to be applied to other targets, greatly improving maintainability.

6 Conclusion and Outlook

The implementation of the secure �rmware can be considered a success. While it is

suboptimal that some libraries are duplicated between RIOT and the secure �rmware,

the deduplication of crypto libraries, using micro-ecc as an example, via the PSA Crypto

API has shown signi�cant code size bene�ts. With this result, the applications and secure

�rmware will most likely �t within the 100KiB limit set by RFC7228.

19

References

The implementation provided will serve as a solid foundation for future development of

features such as key stores, sealed storage, remote attestation, and more. Further research

should be done on the security of the secure �rmware. This includes non-functional and

security testing, as well as exploration of formal veri�cation techniques.

References

[1] GCC Documentation: RISC-V Options. � URL https://gcc.gnu.org/onli

nedocs/gcc/RISC-V-Options.html. � Accessed 2024-05-10

[2] MCUboot. � URL https://github.com/mcu-tools/mcuboot. � Accessed

2024-05-10

[3] RIOT - The friendly Operating System for the IoT. � URL https://github.c

om/RIOT-OS/RIOT. � Accessed 2024-05-10

[4] RIOT Documentation: riotboot. � URL https://api.riot-os.org/group_

_bootloader__riotboot.html. � Accessed 2024-05-10

[5] The xPack GNU RISC-V Embedded GCC. � URL https://xpack.github.i

o/dev-tools/riscv-none-elf-gcc/. � Accessed 2024-05-10

[6] Angelis, Antonio de: Crypto Service design. � URL https://tf-m-user-gui

de.trustedfirmware.org/design_docs/services/tfm_crypto_desig

n.html. � Accessed 2024-05-10

[7] Arm Limited: BL1 Immutable bootloader. � URL https://tf-m-user-gui

de.trustedfirmware.org/design_docs/booting/bl1.html. � Accessed

2024-05-10

[8] Arm Limited: Initial Attestation Service Integration Guide. � URL https:

//tf-m-user-guide.trustedfirmware.org/integration_guide/ser

vices/tfm_attestation_integration_guide.html. � Accessed 2024-05-

10

[9] Arm Limited: MbedTLS. � URL https://github.com/Mbed-TLS/mbedtls.

� Accessed 2024-05-10

20

https://gcc.gnu.org/onlinedocs/gcc/RISC-V-Options.html
https://gcc.gnu.org/onlinedocs/gcc/RISC-V-Options.html
https://github.com/mcu-tools/mcuboot
https://github.com/RIOT-OS/RIOT
https://github.com/RIOT-OS/RIOT
https://api.riot-os.org/group__bootloader__riotboot.html
https://api.riot-os.org/group__bootloader__riotboot.html
https://xpack.github.io/dev-tools/riscv-none-elf-gcc/
https://xpack.github.io/dev-tools/riscv-none-elf-gcc/
https://tf-m-user-guide.trustedfirmware.org/design_docs/services/tfm_crypto_design.html
https://tf-m-user-guide.trustedfirmware.org/design_docs/services/tfm_crypto_design.html
https://tf-m-user-guide.trustedfirmware.org/design_docs/services/tfm_crypto_design.html
https://tf-m-user-guide.trustedfirmware.org/design_docs/booting/bl1.html
https://tf-m-user-guide.trustedfirmware.org/design_docs/booting/bl1.html
https://tf-m-user-guide.trustedfirmware.org/integration_guide/services/tfm_attestation_integration_guide.html
https://tf-m-user-guide.trustedfirmware.org/integration_guide/services/tfm_attestation_integration_guide.html
https://tf-m-user-guide.trustedfirmware.org/integration_guide/services/tfm_attestation_integration_guide.html
https://github.com/Mbed-TLS/mbedtls

References

[10] Arm Limited: Secure boot. � URL https://tf-m-user-guide.trustedfi

rmware.org/design_docs/booting/tfm_secure_boot.html. � Accessed

2024-05-10

[11] Arm Limited: Thread safety and multithreading: concurrency issues. � URL

https://mbed-tls.readthedocs.io/en/latest/kb/development/thr

ead-safety-and-multi-threading/. � Accessed 2024-05-10

[12] Arm Limited: Arm TrustZone Technology for the Armv8-M Architecture, Version

2.1. (2018). � URL https://developer.arm.com/documentation/1006

90/0201/?lang=en. � Accessed 2024-05-10

[13] Arm Limited: PSA Crypto API 1.1. Februar 2022. � URL https://develope

r.arm.com/documentation/ihi0086/latest/. � Accessed 2024-05-10

[14] Baccelli, Emmanuel ; Gündo§an, Cenk ; Hahm, Oliver ; Kietzmann, Pe-

ter ; Lenders, Martine S. ; Petersen, Hauke ; Schleiser, Kaspar ; Schmidt,

Thomas C. ; Wählisch, Matthias: RIOT: An Open Source Operating System for

Low-End Embedded Devices in the IoT. In: IEEE Internet of Things Journal 5

(2018), Nr. 6, S. 4428�4440. � URL https://doi.org/10.1109/JIOT.2018.

2815038

[15] Ban, Tamas: Code sharing between independently linked XIP binaries. Mai 2020. �

URL https://tf-m-user-guide.trustedfirmware.org/design_docs

/software/code_sharing.html. � Accessed 2024-05-10

[16] Boeckmann, Lena ; Kietzmann, Peter ; Lanzieri, Leandro ; Schmidt,

Thomas C. ; Wählisch, Matthias: Usable Security for an IoT OS: Integrating the

Zoo of Embedded Crypto Components Below a Common API. In: Proc. of Embedded

Wireless Systems and Networks (EWSN'22). New York, USA : ACM, October 2022,

S. 84�95. � URL https://dl.acm.org/doi/10.5555/3578948.3578956

[17] Bormann, Carsten ; Ersue, Mehmet ; Keränen, Ari: Terminology for

Constrained-Node Networks. RFC 7228. Mai 2014 (Request for Comments). �

URL https://www.rfc-editor.org/info/rfc7228. � Accessed 2024-05-10

[18] Cheng, Kito ; Clarke, Jessica: RISC-V ABIs Speci�cation, Document Version

1.0. November 2022. � URL https://github.com/riscv-non-isa/riscv

-elf-psabi-doc/releases/tag/v1.0. � Accessed 2024-05-10

21

https://tf-m-user-guide.trustedfirmware.org/design_docs/booting/tfm_secure_boot.html
https://tf-m-user-guide.trustedfirmware.org/design_docs/booting/tfm_secure_boot.html
https://mbed-tls.readthedocs.io/en/latest/kb/development/thread-safety-and-multi-threading/
https://mbed-tls.readthedocs.io/en/latest/kb/development/thread-safety-and-multi-threading/
https://developer.arm.com/documentation/100690/0201/?lang=en
https://developer.arm.com/documentation/100690/0201/?lang=en
https://developer.arm.com/documentation/ihi0086/latest/
https://developer.arm.com/documentation/ihi0086/latest/
https://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.1109/JIOT.2018.2815038
https://tf-m-user-guide.trustedfirmware.org/design_docs/software/code_sharing.html
https://tf-m-user-guide.trustedfirmware.org/design_docs/software/code_sharing.html
https://dl.acm.org/doi/10.5555/3578948.3578956
https://www.rfc-editor.org/info/rfc7228
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/releases/tag/v1.0
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/releases/tag/v1.0

References

[19] Hex Five Security, Inc.: Hex Five MultiZone Security Datasheet. 2020. � URL

https://hex-five.com/wp-content/uploads/2020/01/multizone-d

atasheet-20200109.pdf. � Accessed 2024-05-10

[20] Integrated Silicon Solution, Inc.: IS25LP032D IS25WP032D. August 2023.

� URL https://www.issi.com/WW/pdf/25LP-WP032D.pdf. � Accessed

2024-05-10

[21] Knuth, Donald E.: The Art of Computer Programming, Volume 2: Seminumerical

Algorithms. 3rd. USA : Addison-Wesley, 1997. � ISBN 0201896842

[22] MacKay, Ken: micro-ecc. � URL https://github.com/kmackay/micro-e

cc. � Accessed 2024-05-10

[23] McCune, Jonathan M. ; Parno, Bryan ; Perrig, Adrian ; Reiter, Michael K. ;

Seshadri, Arvind: Minimal TCB Code Execution. In: 2007 IEEE Symposium on

Security and Privacy (SP '07), URL https://doi.org/10.1109/SP.2007.

27, 2007, S. 267�272

[24] Packard, Keith: Initializers/Constructors and Finalizers/Destructors in Picolibc.

� URL https://github.com/picolibc/picolibc/blob/main/doc/ini

t.md. � Accessed 2024-05-10

[25] Packard, Keith: picolibc - a C library designed for embedded 32- and 64- bit

systems.. � URL https://github.com/picolibc/picolibc. � Accessed

2024-05-10

[26] Park, Jiyong ; Lee, Jaesoo ; Kim, Saehwa ; Hong, Seongsoo: Quasistatic shared

libraries and XIP for memory footprint reduction in MMU-less embedded systems.

In: ACM Trans. Embed. Comput. Syst. 8 (2009), jan, Nr. 1. � URL https:

//doi.org/10.1145/1457246.1457252. � ISSN 1539-9087

[27] Pfau, Lars: Measuring the Performance Overhead of RIOT Running in RISC-V

User-Mode. (2024), Februar. � URL https://inet.haw-hamburg.de/te

aching/ws-2023-24/project-class/pr1_lars_pfau.pdf. � Accessed

2024-05-10

[28] Sabt, Mohamed ; Achemlal, Mohammed ; Bouabdallah, Abdelmadjid:

Trusted Execution Environment: What It is, and What It is Not. In: 2015 IEEE

Trustcom/BigDataSE/ISPA Bd. 1, 2015, S. 57�64

22

https://hex-five.com/wp-content/uploads/2020/01/multizone-datasheet-20200109.pdf
https://hex-five.com/wp-content/uploads/2020/01/multizone-datasheet-20200109.pdf
https://www.issi.com/WW/pdf/25LP-WP032D.pdf
https://github.com/kmackay/micro-ecc
https://github.com/kmackay/micro-ecc
https://doi.org/10.1109/SP.2007.27
https://doi.org/10.1109/SP.2007.27
https://github.com/picolibc/picolibc/blob/main/doc/init.md
https://github.com/picolibc/picolibc/blob/main/doc/init.md
https://github.com/picolibc/picolibc
https://doi.org/10.1145/1457246.1457252
https://doi.org/10.1145/1457246.1457252
https://inet.haw-hamburg.de/teaching/ws-2023-24/project-class/pr1_lars_pfau.pdf
https://inet.haw-hamburg.de/teaching/ws-2023-24/project-class/pr1_lars_pfau.pdf

References

[29] Shin, SeongHan ; Ogawa, Tomoyuki ; Fujita, Ryo ; Itoh, Mari ; Yoshida,

Hirotaka: An Investigation of PSA Certi�ed. In: Proceedings of the 17th In-

ternational Conference on Availability, Reliability and Security. New York, NY,

USA : Association for Computing Machinery, 2022 (ARES '22). � URL https:

//doi.org/10.1145/3538969.3544452. � ISBN 9781450396707

[30] SiFive: All Aboard, Part 3: Linker Relaxation in the RISC-V Toolchain. August

2017. � URL https://www.sifive.com/blog/all-aboard-part-3-lin

ker-relaxation-in-riscv-toolchain. � Accessed 2024-05-10

[31] SiFive: All Aboard, Part 4: The RISC-V Code Models. September 2017. � URL

https://www.sifive.com/blog/all-aboard-part-4-risc-v-code-m

odels. � Accessed 2024-05-10

[32] SiFive Inc.: SiFive FE310-G002 Manual v1p5. September 2022. � URL https:

//sifive.cdn.prismic.io/sifive/034760b5-ac6a-4b1c-911c-f41

48bb2c4a5_fe310-g002-v1p5.pdf. � Accessed 2024-05-10

[33] Waterman, Andrew ; Asanovi¢, Krste: The RISC-V Instruction Set Manual,

Volume I: User-Level ISA, Document Version 20191213. Dezember 2019. � URL

https://github.com/riscv/riscv-isa-manual/releases/tag/Ratif

ied-IMAFDQC. � Accessed 2024-05-10

[34] Waterman, Andrew ; Asanovi¢, Krste ; Hauser, John: The RISC-V Instruc-

tion Set Manual, Volume II: Privileged Architecture, Document Version 20211203.

Dezember 2021. � URL https://github.com/riscv/riscv-isa-manual/

releases/tag/Priv-v1.12. � Accessed 2024-05-10

[35] Weiser, Samuel ; Schrammel, David ; Bodner, Lukas ; Spreitzer, Raphael:

Big Numbers - Big Troubles: Systematically Analyzing Nonce Leakage in (EC)DSA

Implementations. In: 29th USENIX Security Symposium (USENIX Security 20),

USENIX Association, August 2020, S. 1767�1784. � URL https://www.usenix

.org/conference/usenixsecurity20/presentation/weiser. � ISBN

978-1-939133-17-5

23

https://doi.org/10.1145/3538969.3544452
https://doi.org/10.1145/3538969.3544452
https://www.sifive.com/blog/all-aboard-part-3-linker-relaxation-in-riscv-toolchain
https://www.sifive.com/blog/all-aboard-part-3-linker-relaxation-in-riscv-toolchain
https://www.sifive.com/blog/all-aboard-part-4-risc-v-code-models
https://www.sifive.com/blog/all-aboard-part-4-risc-v-code-models
https://sifive.cdn.prismic.io/sifive/034760b5-ac6a-4b1c-911c-f4148bb2c4a5_fe310-g002-v1p5.pdf
https://sifive.cdn.prismic.io/sifive/034760b5-ac6a-4b1c-911c-f4148bb2c4a5_fe310-g002-v1p5.pdf
https://sifive.cdn.prismic.io/sifive/034760b5-ac6a-4b1c-911c-f4148bb2c4a5_fe310-g002-v1p5.pdf
https://github.com/riscv/riscv-isa-manual/releases/tag/Ratified-IMAFDQC
https://github.com/riscv/riscv-isa-manual/releases/tag/Ratified-IMAFDQC
https://github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12
https://github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12
https://www.usenix.org/conference/usenixsecurity20/presentation/weiser
https://www.usenix.org/conference/usenixsecurity20/presentation/weiser

	Introduction
	Related Work
	Problem Statement
	Analysis
	Libraries
	Findings in Libraries
	Additional Considerations
	Solutions
	Discussion

	Implementation
	Requirements
	Challenges
	Solution
	Secure Firmware
	RIOT Integration
	PSA Crypto API

	Evaluation

	Conclusion and Outlook
	References

