
Lasse Jonas Rosenow

Federated Communication
for the Lingua Franca:
Reactor-µC Runtime

Faculty of Computer Science and Digital Society

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Supervising examiner: Prof. Dr. Thomas Schmidt

Contents

1 Introduction ⁠1

1.1 Background on Lingua Franca . ⁠1

1.2 Motivation . ⁠1

1.3 Objective . ⁠2

1.3.1 Lingua Franca Requirements . ⁠2

1.3.2 Hardware Constraints . ⁠2

1.4 Outline . ⁠3

2 Implementation ⁠3

2.1 Communication Protocols . ⁠3

2.2 Architecture . ⁠5

2.3 Federated Communication API . ⁠6

2.3.1 State Machine . ⁠8

2.3.2 CoAP Implementation . ⁠9

2.3.3 TCP Implementation . ⁠10

2.3.4 UART Implementation . ⁠11

3 Memory Overhead Evaluation ⁠11

3.1 ROM Overhead . ⁠11

3.2 RAM Overhead . ⁠13

4 Conclusion ⁠14

5 Outlook ⁠15

5.1 Implement UART over CoAP and LoRaWAN over CoAP ⁠15

5.1.1 Implementation Strategy . ⁠15

5.2 Evaluation of Message Throughput . ⁠16

Glossary ⁠17

Bibliography ⁠18

ii

1 Introduction

1.1 Background on Lingua Franca

Lingua Franca [1] is a Coordination Language for building distributed systems.

It guarantees deterministic reactive concurrency, allows specifying timed behaviors, and

supports concurrent and distributed execution with the help of a runtime, such as

Reactor-C or Reactor-µC.

Based on the selected runtime it transpiles to target programming languages, such as C,

C++, Python, Typescript, and Rust.

1.2 Motivation

Reactor-µC is a new runtime implementation for Lingua Franca built for constrained (low

in power, Read-only memory (ROM), Random-access memory (RAM), …) devices. It is

written in the C programming language and runs on various (IoT) operating systems,

such as RIOT [2], as well as on Linux, but it does not yet include an implementation

of Lingua Franca Federation. Lingua Franca Federation describes the communication

between and not only within runtimes.

Reliable communication between nodes is helpful in in the following use cases.

Drone Swarm Coordination: When multiple drones form a swarm and need to

interact with each other, it is helpful that this communication occurs reliably, in-order

and within a specified time. Unreliable communication may lead to collisions between

drones due to incorrect or outdated information about other drone locations in 3D space.

Lingua Franca enables the specification of such constraints and the definition of fallback

actions when they are not met to ensure safe operation.

Distributed Health Monitoring Applications: For applications within the medical

sector, it can be helpful to have strong guarantees on reliability and determinism. If

a medical applications fail because of a deadlock or a lost message it can have dire

consequences. Lingua Franca helps to prevent many of these problems out of the box.

1

1 Introduction

1.3 Objective

The focus of the research is to design a minimal abstraction layer within Reactor-

µC for federated communication. The abstraction layer is the interface between the

Reactor-µC runtime and various implementations for wireless communication. We need

this abstraction layer not only to hide the complexity of the federated communication

implementation from the runtime, but also as a way for users of Reactor-µC to contribute

their own 3rd party implementations of it, giving them more flexibility to make their

own choices on implementation details.

Furthermore, the abstraction layer must be designed so that implementations can fulfill

all strict requirements of the Lingua Franca language while operating on constrained

hardware.

1.3.1 Lingua Franca Requirements

Lingua Franca introduces certain requirements that must be fulfilled in order to maintain

its guarantees, such as deterministic execution.

Acknowledged message delivery: Messages between Lingua Franca nodes must be

acknowledged. The Lingua Franca application can optionally specify how long timeouts

should last and how many retransmissions should occur before the message delivery is

considered as failed. The implementation needs to align to what is specified in Lingua

Franca while providing reasonable default values. In the case of a timeout, the runtime

shall be informed and will handle this case according on how it is specified in the Lingua

Franca application.

In-Order message delivery: Messages between Lingua Franca nodes need to be

processed in-order, otherwise Lingua Franca can not guarantee to execute reactions in

the correct order, which will cause its guarantee for determinism to fail.

1.3.2 Hardware Constraints

Reactor-µC runs on constrained devices, which are limited in power, ROM, RAM,

transmission speed and processing speed. The Federated Communications Application

Programming Interface (API) and its implementation thus need to be flexible and allow

for implementations that maximize performance for the more powerful devices, while also

allowing other implementations to prioritize energy efficiency, low memory consumption

and other metrics.

2

2 Implementation

Wired Transmission: We intend to support wired communication over Ethernet to

connect our federated system to the Internet and over serial for on board communication

between multiple processors.

Wireless Transmission: We want to support short- and long-distance wireless commu

nication. For this we plan to use IEEE 802.15.4 for short distance wireless communication

and Long Range Wide Area Network (LoRaWAN) for long distance wireless communi

cation.

1.4 Outline

In Section 2 we identify communication protocols that fulfill the strict requirements of

Lingua Franca specified in Section 1.3.1 while remaining compatible with the hardware

constraints specified in Section 1.3.2. Furthermore, we implement the Federated Commu

nication API for each selected protocol.

In Section 3 we evaluate the memory overhead of each solution in terms of both ROM

and RAM usage.

In Section 4 we summarize the results of the evaluation chapter and discuss whether

Constrained Application Protocol (CoAP) and Transmission Control Protocol (TCP)

and Universal Asynchronous Receiver Transmitter (UART) were correct choices for

implementing the Federated Communications API.

Finally, in Section 5 we outline the future work to extend the [CoAP]-based implemen

tation to LoRaWAN (with Static Context Header Compression (SCHC)), and UART. In

addition we plan to evaluate message throughput across physical layers.

2 Implementation

2.1 Communication Protocols

For the implementation of federated communication for Lingua Franca, we first needed

to decide on top of which network protocols to build on. The objective was to find

protocols that work well for Ethernet based transmission, serial based transmission and

low power wireless transmission. Based on this we chose a total of three protocols and on

top of each, we implemented the Federated Communication API for Reactor-µC. These

3

2 Implementation

three protocols fulfill varying use cases and meet the requirements (see Section 1.3.1 and

Section 1.3.2) to varying degrees.

Table 1 illustrates the selected protocols and their compliance with the requirements.

We chose TCP for more powerful and less constrained devices that support high band

width, high data rate, and reliable communication without power constraints, also known

as broadband communication. Furthermore TCP is widely adapted on the Internet and

allows us to connect our Lingua Franca nodes to the Internet. This for example can be

realised by a single more powerful node, that connects a local edge cloud of nodes to the

rest of the Internet via TCP over Ethernet or WLAN. But we cannot use TCP for low-

power and lossy networks as its congestion control mechanism does not work well with it,

similarly we can also not recommend using TCP over serial. Regarding the requirements

of Lingua Franca (see Section 1.3.1), it fulfills both acknowledged message delivery and

in-order message delivery. Furthermore, it includes a built-in checksum verification for

data integrity.

We chose CoAP over User Datagram Protocol (UDP) for communication over low-power

and lossy networks that usually exhibit low bandwidths, low data rates, are usually less

reliable, and focus on energy efficiency, such as LoRaWAN or IEEE 802.15.4. Regarding

the requirements of Lingua Franca (see Section 1.3.1) CoAP supports acknowledged

message delivery natively via its confirmable message type (there is also a non-confirmable

message type), however it does not provide built-in in-order message delivery, so we will

need to implement an in-order message delivery solution on top of the existing CoAP

stack. Furthermore, CoAP messages also contain a checksum in the UDP header1, which

gives us data integrity guarantees.

We chose UART for serial communication. This allows us to quickly communicate

between multiple processors on a single board without the overhead of a full Ethernet

network stack and hardware, while still profiting from the advantages of wired commu

nication. UART does not fulfill any of the Lingua Franca requirements for federated

communication. We need to devise a custom solution for “message acknowledgement”,

“in-order message delivery” and “checksum verification”.

1The checksum is optional when using IPv4.

4

2 Implementation

Protocol
Requirement

TCP CoAP over UDP UART

Works well on broadband networks Yes No No

Works well on low-power and lossy net

works
No Yes Yes

Works well for serial transmission No No2 Yes

Acknowledged message delivery Yes Yes No

In-Order message delivery Yes No No

Checksum verification Yes Yes3 No

Table 1: Chosen Communication Protocols and their Supported Requirements of the

Federated Communication in Lingua Franca

2.2 Architecture

We introduce a new Federated Communication API layer between the Reactor-µC

runtime and the various protocols on top of which we transmit messages between different

Lingua Franca nodes.

An overview of the architecture is given in Figure 1. The Reactor-µC runtime is

located at the top and can send and receive federated messages through the Federated

Communication API, which is located below it. The Federated Communication API is

simplified for this diagram and only lists the 3 most important functions. (For a complete

explanation of the full API, see Section 2.3.) The API specifies the “is_connected”

function to tell the runtime that it has at least successfully reached the other node and

has since then not had any issues reaching it again. How much time may pass since the

reachability of the other node has been tested is specific to the implementation of the

Federated Communication API. As of now the CoAP based implementation only relies

on the successful delivery of the last Lingua Franca message. So the “is_connected”

status only updates if a transmission is successful or not successful4. The TCP imple

mentation exposes the TCP internal connection status. Furthermore, the API specifies

a “register_receive_callback” function that allows the runtime to react to incoming

messages, and finally, there is a “send_blocking” function, which allows the runtime to

2Sending CoAP over serial is not standardized, but can be achieved using the Serial Line IP Multi
plexing (SLIPMUX) draft.

3The checksum is optional when using IPv4.
4We plan to implement a heartbeat in the future.

5

2 Implementation

send messages to the other node. Three example implementations are given and located

below the Federated Communication API in the diagram. The bottom left shows a

UART-based implementation that internally uses the RIOT and Zephyr OS APIs. The

bottom center shows a CoAP-based implementation that uses the GCoAP library for

RIOT and the CoAP client in Zephyr OS. And the bottom right shows an example of a

TCP-based implementation, which is built on top of Portable Operating System Interface

(POSIX) and uses the POSIX wrappers in RIOT and Zephyr OS5.

Uses

Federated Communication API

Reactor-µC Runtime

Implements

TCP
Implements

CoAP (UDP)

Implements

UART
Zephyr
CoAP

Zephyr
UART

POSIX TCPRIOT
UART

RIOT
gcoap

register_receive_callback(...) send_blocking(...)is_connected

RIOT Zephyr

Figure 1: Simplified Architecture of Reactor-µC with the Federated Communication API

and a few example implementations.

2.3 Federated Communication API

Listing 1 shows the C header file of the new Federated Communication API.

From lines 1-12, we specify the “FederatedCommunicationState” enum, which is used to

track the current state of the “connection” with the other node. Supported states are

“uninitialized”, “open”, “connection in progress”, “connection failed”, “connected”, “lost

connection”, and “closed”. The relevance of this state is further explained in the state

machine in Figure 2.

5The POSIX wrappers were chosen so that we do not have to implement the TCP channel for RIOT
and Zephyr OS separately.

6

2 Implementation

Lines 11 to 27 specify the “FederatedCommunication” struct, which is the C implementa

tion of the Federated Communication API. Line 13 specifies the “is_connected” function,

which indicates whether the node currently has a connection with the other node and can

send messages. Line 16 specifies the “open_connection” function, which changes the state

of the Federated Communication implementation to “open”. The specific implementation

will then internally change the state to “connection in progress”, try to reach the other

node, and then change the state to “connected” or “connection failed” depending on the

success of the operation. Line 17 specifies the “close_connection” function, which enables

the runtime to close the connection with the other node. The specific implementation

will set the state to “closed” and inform the other node that it has closed the connection.

Lines 20 to 23 specify the “send_blocking” function. This function allows the runtime to

send a message to the other node. The send operation in our current design is blocking

to guarantee in-order message delivery, regardless of the transport protocol used in the

specific implementation6. Lines 26 to 33 specify the “register_receive_callback” function,

which enables the runtime to register a callback that gets invoked by the specific imple

mentation of the Federated Communication API whenever a new message is received

from another node. Line 36 specifies the function “free” which handles the cleanup of

storage and other resources when the application is closed.

1 typedef enum {

2 FEDERATED_COMMUNICATION_STATE_UNINITIALIZED,

3 FEDERATED_COMMUNICATION_STATE_OPEN,

4 FEDERATED_COMMUNICATION_STATE_CONNECTION_IN_PROGRESS,

5 FEDERATED_COMMUNICATION_STATE_CONNECTION_FAILED,

6 FEDERATED_COMMUNICATION_STATE_CONNECTED,

7 FEDERATED_COMMUNICATION_STATE_LOST_CONNECTION,

8 FEDERATED_COMMUNICATION_STATE_CLOSED,

9 } FederatedCommunicationState;

10

11 struct FederatedCommunication {

12 /* State */

13 bool (*is_connected)(FederatedCommunication *self);

14

15 /* Open / Close Connection */

16 lf_ret_t (*open_connection)(FederatedCommunication *self);

17 void (*close_connection)(FederatedCommunication *self);

18

19 /* Send messages */

20 lf_ret_t (*send_blocking)(

6Blocking while sending significantly decreases the performance with the advantage of saving memory.
An alternative solution is to use receive buffers and reorder the messages on the receiving node, this will
result in higher performance but also consumes significantly more memory. See Section 2.3.2 for more
details.

7

2 Implementation

21 FederatedCommunication *self,

22 const FederateMessage *message

23);

24

25 /* Register Incoming Message Callback */

26 void (*register_receive_callback)(

27 FederatedCommunication *self,

28 void (*receive_callback)(

29 FederatedConnectionBundle *conn,

30 const FederateMessage *message

31),

32 FederatedConnectionBundle *conn

33);

34

35 /* Cleanup Storage / Join Threads */

36 void (*free)(FederatedCommunication *self);

37 };

Listing 1: C Header File of the Federated Communication Application Programming

Interface (API).

2.3.1 State Machine

Figure 2 visualizes the hierarchical state machine of the Federated Communication

API. The state machine consists of 2 hierarchical sub-states: “Running” and “Connec

tionOpen”. Everything in the “Running” state happens after the device is turned on

and before the device is turned off. The “ConnectionOpen” state contains the whole

connection establishment process and can be entered via the open_connection() function

and left via the “close_connection()” function.

Detailed Lifecycle: After the device is powered on, the Federated Communication

is in the “Uninitialized” state. After the “open_connection” function is called by the

runtime, it switches into the “Open” state and the main loop of the specific implemen

tation attempts to establish a connection with the other node and switches to the

“ConnectionInProgress” state. If the connection establishment fails, the state machine

switches into the “ConnectionFailed” state and retries to connect after a specified

amount of time, for which it switches back into the “ConnectionInProgress” state. If the

connection is successfully established, the state machine switches into the “Connected”

state. If the state machine is in the “Connected” state, the runtime can send messages

using the “send_blocking” function. In the case that the send operation fails, the state

machine switches from the “Connected” into the “LostConnection” state and tries to

reconnect after a specified amount of time, for which it switches back into the “Con

nectionInProgress” state. From every state inside the “ConnectionOpen” hierarchical

state the state machine can switch into the “Closed” state when the runtime calls the

8

2 Implementation

“close_connection” function. Finally, from within each state it is possible to terminate

the state machine by powering off the device.

Federated Communication API - State Machine

Running

ConnectionOpen

Uninitialized Closed

Open

ConnectionInProgress

Connected ConnectionFailed

LostConnection

open_connection() open_connection() close_connection()

try to connect

su c c e s s failure retry after X seconds

timeout in send_blocking()

reconnect after X seconds

Power on

Power off

Figure 2: Hierarchical State Machine of the Federated Communication API.

2.3.2 CoAP Implementation

The CoAP implementation uses the RIOT native CoAP stack (GCoAP) and UDP as its

transport layer protocol. Internally, each Lingua Franca node acts as both a CoAP server

9

2 Implementation

and client, so that they can send and receive messages to and from other nodes. A single

node may have multiple CoAP clients to talk to various other nodes, but it only has one

CoAP server, which receives messages from all other nodes that may speak to it. We use

CoAP resources (“/connect”, “/disconnect”, “/message”) for different operations. The

“/connect” and “/disconnect” endpoints are to establish a connection, which is not part

of the CoAP specification. A “connection” in this case means, that a CoAP client issues

a request to the CoAP server of another node and the server replies, if it is ready to

communicate. In a normal case, it should only be used on the bootstrap to make an

initial connection and to check if the other node is reachable. The “/message” endpoint

is used to send Lingua Franca messages to other nodes. Messages are sent in confirmable

mode to fulfill the requirement of acknowledged message delivery. CoAP does not provide

in-order message delivery. To work around this we block on the message send operation

and keep track of the previously sent message ID. This way, we can ensure that the next

message will only be sent after we confirmed that the previous communication is complete.

Blocking while sending has the disadvantage of substantially decreasing the performance

(we can only send the next message, after we have confirmation, that the current message

has arrived). Another way to implement this is by attaching sequence numbers to the

sent messages similar to how TCP does it, store the messages in a receive buffer and

then put them into the correct order. We can use the message id of the CoAP header for

this. The downside of this approach is, that it consumes significantly more memory. So

blocking while sending consumes less memory, but decreases throughput. Using sequence

numbers and receive buffers instead consumes more memory, but increases performance.

In the future we plan to support both use cases. On the receiving side, messages are read

asynchronously, and trigger configured callbacks for each resource endpoint. From the

callback of the “/message” endpoint, we inform the Reactor-µC runtime of the incoming

message.

Furthermore, the CoAP-based implementation internally uses a dedicated worker thread

that executes the main communication loop. This thread is responsible for establishing

and maintaining connections based on the current state (see Section 2.3.1).

2.3.3 TCP Implementation

To establish the initial connection, the TCP implementation divides the Lingua Franca

nodes that want to communicate into a client and a server, determined by the “is_server”

boolean flag. The “server” node binds to a specified address and port and listens for

incoming connections using the POSIX “accept()” function. The “client” node attempts

10

3 Memory Overhead Evaluation

to connect to a remote server using the POSIX “connect()” function. After that, both

nodes have an active socket to the other node for communication.

The TCP implementation internally uses a dedicated worker thread that executes the

main communication loop. This thread is responsible for establishing and maintaining

connections based on the current state (see Section 2.3.1). Furthermore, this thread

monitors the socket for incoming data without blocking using the POSIX “select()”

function, updates the state and calls the Reactor-µC runtime through the registered

receive callback when messages arrive.

2.3.4 UART Implementation

The UART implementation of the Federated Communication API is only minimal for

now. Currently, messages are only transmitted via UART without acknowledgements, in-

order guarantees, or checksums. These capabilities are not part of UART as a protocol, so

we need to implement these on top of it. More details about our current plan is described

in Section 5.1.

3 Memory Overhead Evaluation

To confirm that the Reactor-µC runtime is still suitable to run on constrained devices,

we evaluate the memory consumption of the new Federated Communication API and its

various implementations on RIOT.

To measure ROM and RAM, we use the make cosy tool7, which analyzes the ROM and

RAM consumption of the built binary, and starts a web server to visualize its results.

3.1 ROM Overhead

We measured the ROM usage of the CoAP and TCP-based implementation of the

Federated Communication API for RIOT using the “BOARD=adafruit-feather-nrf52840-

sense make cosy” command.

The results are visualized in Table 2 and Figure 3. We can see that in total, the TCP

and the CoAP-based implementation both consume not more than 117 kilobytes, TCP

needing 116.949 kilobytes and CoAP needing 109.879 kilobytes, which are small enough

7https://github.com/RIOT-OS/cosy

11

3 Memory Overhead Evaluation

to fit on a microcontroller. The Federated Communication API and its implementations

together only use 1.689 kilobytes of ROM for the CoAP-based implementation and 3.168

kilobytes of ROM for the TCP-based implementation.

So the increase in ROM usage by adding the new Federated Communication API and its

implementation does not substantially increase the ROM consumption of Reactor-µC.

CoAP TCP

Federated Communication 1.689 KB 3.168 KB

Reactor-µC - Runtime 27.832 KB 28.736 KB

RIOT - Network Stack 34.678 KB 34.472 KB

RIOT - Other 45.680 KB 50.573 KB

Total 109.879 KB 116.949 KB

Table 2: Read-only memory (ROM) Usage of the Federated Communication Application

Programming Interface (API) on RIOT.

CoAP TCP
0

20

40

60

80

100

120

K
ilo

by
te

s

ROM Usage of the Federated Communication API
on RIOT OS

RIOT OS - Other
RIOT OS - Network Stack
Reactor µC
Federated Communication

Figure 3: Read-only memory (ROM) Usage of the Federated Communication Application

Programming Interface (API) on RIOT Visualized Using a Stacked Bar Chart.

12

3 Memory Overhead Evaluation

3.2 RAM Overhead

We measured the RAM usage of the CoAP and TCP-based implementation of the

Federated Communication API for RIOT using the “BOARD=adafruit-feather-nrf52840-

sense make cosy” command.

The results are visualized in Table 3 and Figure 4. We can see that in total, the TCP and

the CoAP-based implementation both consume not more than 43 kilobytes, TCP needing

42.04 kilobytes and CoAP needing 34.768 kilobytes, which are small enough to fit on a

microcontroller. The Federated Communication API and its implementations together

only use 1.565 kilobytes of RAM for the CoAP-based implementation and 0 kilobytes of

RAM for the TCP-based implementation. The TCP-based implementation though, has

an increase in RAM usage of the RIOT network stack by around 5.3 kilobytes compared

to the CoAP-based implementation. This is caused by the additional need for the POSIX

wrappers, which internally allocate RAM for the TCP socket.

Nevertheless, the increase in RAM usage by adding the new Federated Communication

API and its implementation does not substantially increase the RAM consumption of

Reactor-µC.

CoAP TCP

Federated Communication 1.565 KB 0 KB

Reactor-µC - Runtime 0 KB 0 KB

RIOT - Network Stack 13.249 KB 18.558 KB

RIOT - Other 19.954 KB 23.482 KB

Total 34.768 KB 42.040 KB

Table 3: Random-access memory (RAM) Usage of the Federated Communication Appli

cation Programming Interface (API) on RIOT.

13

4 Conclusion

CoAP TCP
0

5

10

15

20

25

30

35

40

K
ilo

by
te

s
RAM Usage of the Federated Communication API

on RIOT OS
RIOT OS - Other
RIOT OS - Network Stack
Reactor µC
Federated Communication

Figure 4: Random-access memory (RAM) Usage of the Federated Communication Appli

cation Programming Interface (API) on RIOT Visualized Using a Stacked Bar Chart.

4 Conclusion

Using CoAP for wireless and lossy networks is feasible for Reactor-µC. We were able to

send messages between nodes and at least in terms of the memory usage, it is well within

the limits that a microcontroller offers.

The TCP implementation also works well, even on RIOT. Its overhead is a little higher

than the CoAP-based implementation, but only by a few kilobytes on RIOT.

The message throughput on both wireless and wired connections using TCP and CoAP

still needs to be evaluated.

Furthermore, we have realized that using raw UART for implementing the Federated

Communication API requires a lot of basic work to get acknowledgments, data integrity

and other requirements working. Therefore we decided to use CoAP over UART for now.

This of course comes with additional overhead and the need for a full network stack to

be included in the binary. For devices that are extremely low in ROM and RAM, it will

still make sense to use raw UART, but for now this is out of scope for our use-case.

14

5 Outlook

5.1 Implement UART over CoAP and LoRaWAN over CoAP

Figure 5 illustrates our new architecture strategic design, which aims to consolidate as

many physical layers as possible below the CoAP layer. In particular we now do not have

a separate UART implementation of the Federated Communication API, but instead

integrate with the CoAP-based implementation to send messages over UART. This new

strategy also applies to the not-yet-implemented LoRaWAN-based communication, which

will also be handled by the CoAP implementation.

5.1.1 Implementation Strategy

RIOT already supports sending CoAP packets via SLIPMUX on UART [3].

Sending CoAP messages over LoRaWAN introduces significant overhead due to the

redundancy of the CoAP, UDP and IP headers. For example IP addresses are not needed

when using LoRaWAN, because it generates its own network layer on the network server.

This can be compressed to near-zero overhead using SCHC [4]. The RIOT network stack is

technically capable of sending CoAP messages over LoRaWAN, but this requires further

investigation.

CoAP

Implements

LoRa(WAN)

Implements

UART

Slipmux SCHC

802.15.4

UDP

Ethernet

UDP / TCP

ImplementsImplements

UART

Figure 5: New Architecture with Universal Asynchronous Receiver Transmitter (UART)

under Constrained Application Protocol (CoAP) and Long Range Wide Area Network

(LoRaWAN) with Static Context Header Compression (SCHC).

15

5 Outlook

5.2 Evaluation of Message Throughput

Evaluating the message throughput of our Reactor-µC implementation on various phys

ical layers, including both wired and wireless ones, is outside the scope of this work. We

intend to change this in a future publication once LoRaWAN is supported.

16

Glossary

API – Application Programming Interface

POSIX – Portable Operating System Interface

RAM – Random-access memory

ROM – Read-only memory

SCHC – Static Context Header Compression

SLIPMUX – Serial Line IP Multiplexing

TCP – Transmission Control Protocol

UART – Universal Asynchronous Receiver Transmitter

UDP – User Datagram Protocol

CoAP – Constrained Application Protocol

IEEE 802.15.4: A technical standard that defines the operation of a low-rate wireless

personal area network (LR-WPAN) [5]

Lingua Franca: Lingua Franca is a polyglot coordination language built to enrich

mainstream target programming languages (currently C, C++, Python, TypeScript,

and Rust) with deterministic reactive concurrency and the ability to specify timed

behavior. [1]

LoRaWAN – Long Range Wide Area Network

Reactor-C: A Lingua Franca reactor runtime written in C.

Reactor-µC: A lightweight Lingua Franca reactor runtime targeted at distributed

resource-constrained embedded systems.

RIOT: As the Internet of Things (IoT) emerges, compact operating systems (OSs) are

required on low-end devices to ease development and portability of IoT applications.

RIOT is a prominent free and open source OS in this space. [2]

17

Bibliography

[1] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a Lingua Franca for

Deterministic Concurrent Systems,” ACM Trans. Embed. Comput. Syst., vol. 20, no.

4, May 2021, doi: 10.1145/3448128.

[2] E. Baccelli, C. Gündogan, O. Hahm, P. Kietzmann, M. Lenders, H. Petersen, K.

Schleiser, T. C. Schmidt, and M. Wählisch, “RIOT: an Open Source Operating

System for Low-end Embedded Devices in the IoT,” IEEE Internet of Things Journal,

vol. 5, no. 6, pp. 4428–4440, Dec. 2018, [Online]. Available: http://dx.doi.org/10.

1109/JIOT.2018.2815038

[3] C. Bormann and T. Kaupat, “Slipmux: Using an UART interface for diagnostics,

configuration, and packet transfer,” Internet Engineering Task Force, Internet-Draft

draft-bormann-t2trg-slipmux-03, Nov. 2019. [Online]. Available: https://datatracker.

ietf.org/doc/draft-bormann-t2trg-slipmux/03/

[4] M. Tiloca, L. Toutain, I. Martínez, and A. Minaburo, “Static Context Header

Compression (SCHC) for the Constrained Application Protocol (CoAP),” Internet

Engineering Task Force, Internet-Draft draft-ietf-schc-8824-update-05, July 2025.

[Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-schc-8824-update/

05/

[5] “IEEE Standard for Low‐Rate Wireless Networks,” IEEE Std 802.15.4-2024

(Revision of IEEE Std 802.15.4-2020), no. , pp. 1–967, 2024, doi: 10.1109/

IEEESTD.2024.10794632.

18

https://doi.org/10.1145/3448128
http://dx.doi.org/10.1109/JIOT.2018.2815038
http://dx.doi.org/10.1109/JIOT.2018.2815038
https://datatracker.ietf.org/doc/draft-bormann-t2trg-slipmux/03/
https://datatracker.ietf.org/doc/draft-bormann-t2trg-slipmux/03/
https://datatracker.ietf.org/doc/draft-ietf-schc-8824-update/05/
https://datatracker.ietf.org/doc/draft-ietf-schc-8824-update/05/
https://doi.org/10.1109/IEEESTD.2024.10794632
https://doi.org/10.1109/IEEESTD.2024.10794632

	1 Introduction
	1.1 Background on Lingua Franca
	1.2 Motivation
	1.3 Objective
	1.3.1 Requirements
	1.3.2 Hardware Constraints

	1.4 Outline

	2 Implementation
	2.1 Communication Protocols
	2.2 Architecture
	2.3 Federated Communication
	2.3.1 State Machine
	2.3.2 Implementation
	2.3.3 Implementation
	2.3.4 Implementation

	3 Memory Overhead Evaluation
	3.1 Overhead
	3.2 Overhead

	4 Conclusion
	5 Outlook
	5.1 Implement over and over
	5.1.1 Implementation Strategy

	5.2 Evaluation of Message Throughput

	Glossary
	Bibliography

