Federated Communication
for the Lingua Franca:
Reactor-pC Runtime

Faculty of Computer Science and Digital Society

Supervising examiner: Prof. Dr. Thomas Schmidt

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Contents

1 Introduction

1.1 Background on Lingua Franca . ..
1.2 Motivation
1.3 Objective

1.3.1 Lingua Franca Requirements

1.3.2 Hardware Constraints

1.4 Outline

2 Implementation

2.1 Communication Protocols

2.2 Architecture

2.3 Federated Communication API . .
2.3.1 State Machine
2.3.2 CoAP Implementation
2.3.3 TCP Implementation

2.3.4 UART Implementation

3 Memory Overhead Evaluation
3.1 ROM Overhead
3.2 RAM Overhead

4 Conclusion

5 Outlook

5.1 Implement UART over CoAP and LoRaWAN over CoAP

5.1.1 Implementation Strategy . . .

5.2 Evaluation of Message Throughput
Glossary

Bibliography

11
11
13

14

15
15
15
16

17

18

ii

1 Introduction

1.1 Background on Lingua Franca

Lingua Franca [1] is a Coordination Language for building distributed systems.

It guarantees deterministic reactive concurrency, allows specifying timed behaviors, and
supports concurrent and distributed execution with the help of a runtime, such as

Reactor-C or Reactor-nC.

Based on the selected runtime it transpiles to target programming languages, such as C,
C++, Python, Typescript, and Rust.

1.2 Motivation

Reactor-pC is a new runtime implementation for Lingua Franca built for constrained (low
in power, Read-only memory (ROM), Random-access memory (RAM), ...) devices. It is
written in the C programming language and runs on various (IoT) operating systems,
such as RIOT [2], as well as on Linux, but it does not yet include an implementation
of Lingua Franca Federation. Lingua Franca Federation describes the communication

between and not only within runtimes.
Reliable communication between nodes is helpful in in the following use cases.

Drone Swarm Coordination: When multiple drones form a swarm and need to
interact with each other, it is helpful that this communication occurs reliably, in-order
and within a specified time. Unreliable communication may lead to collisions between
drones due to incorrect or outdated information about other drone locations in 3D space.
Lingua Franca enables the specification of such constraints and the definition of fallback

actions when they are not met to ensure safe operation.

Distributed Health Monitoring Applications: For applications within the medical
sector, it can be helpful to have strong guarantees on reliability and determinism. If
a medical applications fail because of a deadlock or a lost message it can have dire

consequences. Lingua Franca helps to prevent many of these problems out of the box.

1 Introduction

1.3 Objective

The focus of the research is to design a minimal abstraction layer within Reactor-
pnC for federated communication. The abstraction layer is the interface between the
Reactor-nC runtime and various implementations for wireless communication. We need
this abstraction layer not only to hide the complexity of the federated communication
implementation from the runtime, but also as a way for users of Reactor-nC to contribute
their own 3rd party implementations of it, giving them more flexibility to make their

own choices on implementation details.

Furthermore, the abstraction layer must be designed so that implementations can fulfill
all strict requirements of the Lingua Franca language while operating on constrained

hardware.

1.3.1 Lingua Franca Requirements

Lingua Franca introduces certain requirements that must be fulfilled in order to maintain

its guarantees, such as deterministic execution.

Acknowledged message delivery: Messages between Lingua Franca nodes must be
acknowledged. The Lingua Franca application can optionally specify how long timeouts
should last and how many retransmissions should occur before the message delivery is
considered as failed. The implementation needs to align to what is specified in Lingua
Franca while providing reasonable default values. In the case of a timeout, the runtime
shall be informed and will handle this case according on how it is specified in the Lingua

Franca application.

In-Order message delivery: Messages between Lingua Franca nodes need to be
processed in-order, otherwise Lingua Franca can not guarantee to execute reactions in

the correct order, which will cause its guarantee for determinism to fail.

1.3.2 Hardware Constraints

Reactor-uC runs on constrained devices, which are limited in power, ROM, RAM,
transmission speed and processing speed. The Federated Communications Application
Programming Interface (API) and its implementation thus need to be flexible and allow
for implementations that maximize performance for the more powerful devices, while also
allowing other implementations to prioritize energy efficiency, low memory consumption

and other metrics.

2 Implementation

Wired Transmission: We intend to support wired communication over Ethernet to
connect our federated system to the Internet and over serial for on board communication

between multiple processors.

Wireless Transmission: We want to support short- and long-distance wireless commu-
nication. For this we plan to use IEEE 802.15.4 for short distance wireless communication
and Long Range Wide Area Network (LoRaWAN) for long distance wireless communi-

cation.

1.4 Outline

In Section 2 we identify communication protocols that fulfill the strict requirements of
Lingua Franca specified in Section 1.3.1 while remaining compatible with the hardware
constraints specified in Section 1.3.2. Furthermore, we implement the Federated Commu-

nication API for each selected protocol.

In Section 3 we evaluate the memory overhead of each solution in terms of both ROM
and RAM usage.

In Section 4 we summarize the results of the evaluation chapter and discuss whether
Constrained Application Protocol (CoAP) and Transmission Control Protocol (TCP)
and Universal Asynchronous Receiver Transmitter (UART) were correct choices for

implementing the Federated Communications API.

Finally, in Section 5 we outline the future work to extend the [CoAP]-based implemen-
tation to LoRaWAN (with Static Context Header Compression (SCHC)), and UART. In

addition we plan to evaluate message throughput across physical layers.

2 Implementation

2.1 Communication Protocols

For the implementation of federated communication for Lingua Franca, we first needed
to decide on top of which network protocols to build on. The objective was to find
protocols that work well for Ethernet based transmission, serial based transmission and
low power wireless transmission. Based on this we chose a total of three protocols and on

top of each, we implemented the Federated Communication API for Reactor-pC. These

2 Implementation

three protocols fulfill varying use cases and meet the requirements (see Section 1.3.1 and

Section 1.3.2) to varying degrees.
Table 1 illustrates the selected protocols and their compliance with the requirements.

We chose TCP for more powerful and less constrained devices that support high band-
width, high data rate, and reliable communication without power constraints, also known
as broadband communication. Furthermore TCP is widely adapted on the Internet and
allows us to connect our Lingua Franca nodes to the Internet. This for example can be
realised by a single more powerful node, that connects a local edge cloud of nodes to the
rest of the Internet via TCP over Ethernet or WLAN. But we cannot use TCP for low-
power and lossy networks as its congestion control mechanism does not work well with it,
similarly we can also not recommend using TCP over serial. Regarding the requirements
of Lingua Franca (see Section 1.3.1), it fulfills both acknowledged message delivery and
in-order message delivery. Furthermore, it includes a built-in checksum verification for

data integrity.

We chose CoAP over User Datagram Protocol (UDP) for communication over low-power
and lossy networks that usually exhibit low bandwidths, low data rates, are usually less
reliable, and focus on energy efficiency, such as LoRaWAN or IEEE 802.15.4. Regarding
the requirements of Lingua Franca (see Section 1.3.1) CoAP supports acknowledged
message delivery natively via its confirmable message type (there is also a non-confirmable
message type), however it does not provide built-in in-order message delivery, so we will
need to implement an in-order message delivery solution on top of the existing CoAP
stack. Furthermore, CoAP messages also contain a checksum in the UDP header!, which

gives us data integrity guarantees.

We chose UART for serial communication. This allows us to quickly communicate
between multiple processors on a single board without the overhead of a full Ethernet
network stack and hardware, while still profiting from the advantages of wired commu-
nication. UART does not fulfill any of the Lingua Franca requirements for federated
communication. We need to devise a custom solution for “message acknowledgement”,

“in-order message delivery” and “checksum verification”.

'"The checksum is optional when using IPv4.

2 Implementation

. Protocol | 1.0p | CoAP over UDP | UART
Requirement
Works well on broadband networks Yes No No
Works well on low-power and lossy net- . i i
No Yes Yes
works
Works well for serial transmission No No? Yes
Acknowledged message delivery Yes Yes No
In-Order message delivery Yes No No
Checksum verification Yes Yes? No

Table 1: Chosen Communication Protocols and their Supported Requirements of the

Federated Communication in Lingua Franca

2.2 Architecture

We introduce a new Federated Communication API layer between the Reactor-pC
runtime and the various protocols on top of which we transmit messages between different

Lingua Franca nodes.

An overview of the architecture is given in Figure 1. The Reactor-nC runtime is
located at the top and can send and receive federated messages through the Federated
Communication API, which is located below it. The Federated Communication API is
simplified for this diagram and only lists the 3 most important functions. (For a complete
explanation of the full API, see Section 2.3.) The API specifies the “is_connected”
function to tell the runtime that it has at least successfully reached the other node and
has since then not had any issues reaching it again. How much time may pass since the
reachability of the other node has been tested is specific to the implementation of the
Federated Communication API. As of now the CoAP based implementation only relies
on the successful delivery of the last Lingua Franca message. So the “is connected”
status only updates if a transmission is successful or not successful*. The TCP imple-
mentation exposes the TCP internal connection status. Furthermore, the API specifies
a “register receive callback” function that allows the runtime to react to incoming

messages, and finally, there is a “send blocking” function, which allows the runtime to

2Sending CoAP over serial is not standardized, but can be achieved using the Serial Line IP Multi-
plexing (SLIPMUX) draft.

3The checksum is optional when using IPv4.

“We plan to implement a heartbeat in the future.

2 Implementation

send messages to the other node. Three example implementations are given and located
below the Federated Communication API in the diagram. The bottom left shows a
UART-based implementation that internally uses the RIOT and Zephyr OS APIs. The
bottom center shows a CoAP-based implementation that uses the GCoAP library for
RIOT and the CoAP client in Zephyr OS. And the bottom right shows an example of a
TCP-based implementation, which is built on top of Portable Operating System Interface
(POSIX) and uses the POSIX wrappers in RIOT and Zephyr OS®.

[Reactor-uC Runtime]

Uses

v
Federated Communication API

[iS_connected] [register_receive_callback(...)] [send_blocking(...)]
A
Implements
Implements Implements
UART CoAP (UDP) TCP
RIOT Zephyr RIOT Zephyr POSIX TCP
UART UART gcoap CoAP ((RIOT | [Zephyr |

Figure 1: Simplified Architecture of Reactor-pC with the Federated Communication API

and a few example implementations.

2.3 Federated Communication API

Listing 1 shows the C header file of the new Federated Communication API.

From lines 1-12, we specify the “FederatedCommunicationState” enum, which is used to
track the current state of the “connection” with the other node. Supported states are
“uninitialized”, “open”, “connection in progress”, “connection failed”, “connected”, “lost
connection”, and “closed”. The relevance of this state is further explained in the state

machine in Figure 2.

5The POSIX wrappers were chosen so that we do not have to implement the TCP channel for RIOT
and Zephyr OS separately.

2 Implementation

Lines 11 to 27 specify the “FederatedCommunication” struct, which is the C implementa-
tion of the Federated Communication API. Line 13 specifies the “is_ connected” function,
which indicates whether the node currently has a connection with the other node and can
send messages. Line 16 specifies the “open_ connection” function, which changes the state
of the Federated Communication implementation to “open”. The specific implementation
will then internally change the state to “connection in progress”, try to reach the other
node, and then change the state to “connected” or “connection failed” depending on the
success of the operation. Line 17 specifies the “close_ connection” function, which enables
the runtime to close the connection with the other node. The specific implementation
will set the state to “closed” and inform the other node that it has closed the connection.
Lines 20 to 23 specify the “send_ blocking” function. This function allows the runtime to
send a message to the other node. The send operation in our current design is blocking
to guarantee in-order message delivery, regardless of the transport protocol used in the
specific implementation®. Lines 26 to 33 specify the “register receive callback” function,
which enables the runtime to register a callback that gets invoked by the specific imple-
mentation of the Federated Communication API whenever a new message is received
from another node. Line 36 specifies the function “free” which handles the cleanup of

storage and other resources when the application is closed.

typedef enum {
FEDERATED COMMUNICATION STATE UNINITIALIZED,
FEDERATED COMMUNICATION_ STATE_OPEN,
FEDERATED COMMUNICATION STATE CONNECTION IN PROGRESS,
FEDERATED COMMUNICATION STATE CONNECTION_ FAILED,
FEDERATED COMMUNICATION STATE CONNECTED,
FEDERATED COMMUNICATION STATE_LOST CONNECTION,
FEDERATED COMMUNICATION STATE_ CLOSED,

} FederatedCommunicationState;

struct FederatedCommunication {
/* State */
bool (*is connected) (FederatedCommunication *self);

/* Open / Close Connection */
Lf ret t (*open_connection) (FederatedCommunication *self);
void (*close connection) (FederatedCommunication *self);

/* Send messages */
1f ret t (*send blocking) (

“Blocking while sending significantly decreases the performance with the advantage of saving memory.
An alternative solution is to use receive buffers and reorder the messages on the receiving node, this will
result in higher performance but also consumes significantly more memory. See Section 2.3.2 for more
details.

2 Implementation

FederatedCommunication *self,
const FederateMessage *message
);

/* Register Incoming Message Callback */
void (*register_receive callback) (
FederatedCommunication *self,
void (*receive callback) (
FederatedConnectionBundle *conn,
const FederateMessage *message

)I
FederatedConnectionBundle *conn

);

/* Cleanup Storage / Join Threads */
void (*free) (FederatedCommunication *self);
b
Listing 1: C Header File of the Federated Communication Application Programming

Interface (API).

2.3.1 State Machine

Figure 2 visualizes the hierarchical state machine of the Federated Communication
API. The state machine consists of 2 hierarchical sub-states: “Running” and “Connec-
tionOpen”. Everything in the “Running” state happens after the device is turned on
and before the device is turned off. The “ConnectionOpen” state contains the whole
connection establishment process and can be entered via the open__connection() function

and left via the “close_ connection()” function.

Detailed Lifecycle: After the device is powered on, the Federated Communication
is in the “Uninitialized” state. After the “open_ connection” function is called by the
runtime, it switches into the “Open” state and the main loop of the specific implemen-
tation attempts to establish a connection with the other node and switches to the
“ConnectionInProgress” state. If the connection establishment fails, the state machine
switches into the “ConnectionFailed” state and retries to connect after a specified
amount of time, for which it switches back into the “ConnectionInProgress” state. If the
connection is successfully established, the state machine switches into the “Connected”
state. If the state machine is in the “Connected” state, the runtime can send messages
using the “send_ blocking” function. In the case that the send operation fails, the state
machine switches from the “Connected” into the “LostConnection” state and tries to
reconnect after a specified amount of time, for which it switches back into the “Con-
nectionInProgress” state. From every state inside the “ConnectionOpen” hierarchical

state the state machine can switch into the “Closed” state when the runtime calls the

2 Implementation

“close__connection” function. Finally, from within each state it is possible to terminate

the state machine by powering off the device.

Federated Communication API - State Machine

Power on

/ ConnectionOpen

N

try to connect

[ConnectionInProgress

success \failure

retry after X seconds

ConnectionFailed

timeout in send_ blocking()

LostConnection

reconnect after X secon|

ds

Running
Y
Uninitialized
open__connection() open__connection() close__connection()

/

Power off

Figure 2: Hierarchical State Machine of the Federated Communication API.

2.3.2 CoAP Implementation

The CoAP implementation uses the RIOT native CoAP stack (GCoAP) and UDP as its

transport layer protocol. Internally, each Lingua Franca node acts as both a CoAP server

2 Implementation

and client, so that they can send and receive messages to and from other nodes. A single
node may have multiple CoAP clients to talk to various other nodes, but it only has one
CoAP server, which receives messages from all other nodes that may speak to it. We use
CoAP resources (“/connect”, “/disconnect”, “/message”) for different operations. The
“/connect” and “/disconnect” endpoints are to establish a connection, which is not part
of the CoAP specification. A “connection” in this case means, that a CoAP client issues
a request to the CoAP server of another node and the server replies, if it is ready to
communicate. In a normal case, it should only be used on the bootstrap to make an
initial connection and to check if the other node is reachable. The “/message” endpoint
is used to send Lingua Franca messages to other nodes. Messages are sent in confirmable
mode to fulfill the requirement of acknowledged message delivery. CoAP does not provide
in-order message delivery. To work around this we block on the message send operation
and keep track of the previously sent message ID. This way, we can ensure that the next
message will only be sent after we confirmed that the previous communication is complete.
Blocking while sending has the disadvantage of substantially decreasing the performance
(we can only send the next message, after we have confirmation, that the current message
has arrived). Another way to implement this is by attaching sequence numbers to the
sent messages similar to how TCP does it, store the messages in a receive buffer and
then put them into the correct order. We can use the message id of the CoAP header for
this. The downside of this approach is, that it consumes significantly more memory. So
blocking while sending consumes less memory, but decreases throughput. Using sequence
numbers and receive buffers instead consumes more memory, but increases performance.
In the future we plan to support both use cases. On the receiving side, messages are read
asynchronously, and trigger configured callbacks for each resource endpoint. From the
callback of the “/message” endpoint, we inform the Reactor-pC runtime of the incoming

message.

Furthermore, the CoAP-based implementation internally uses a dedicated worker thread
that executes the main communication loop. This thread is responsible for establishing

and maintaining connections based on the current state (see Section 2.3.1).

2.3.3 TCP Implementation

To establish the initial connection, the TCP implementation divides the Lingua Franca
nodes that want to communicate into a client and a server, determined by the “is_server”
boolean flag. The “server” node binds to a specified address and port and listens for

incoming connections using the POSIX “accept()” function. The “client” node attempts

10

3 Memory QOverhead Evaluation

to connect to a remote server using the POSIX “connect()” function. After that, both

nodes have an active socket to the other node for communication.

The TCP implementation internally uses a dedicated worker thread that executes the
main communication loop. This thread is responsible for establishing and maintaining
connections based on the current state (see Section 2.3.1). Furthermore, this thread
monitors the socket for incoming data without blocking using the POSIX “select()”
function, updates the state and calls the Reactor-nC runtime through the registered

receive callback when messages arrive.

2.3.4 UART Implementation

The UART implementation of the Federated Communication API is only minimal for
now. Currently, messages are only transmitted via UART without acknowledgements, in-
order guarantees, or checksums. These capabilities are not part of UART as a protocol, so
we need to implement these on top of it. More details about our current plan is described

in Section 5.1.

3 Memory Overhead Evaluation

To confirm that the Reactor-pC runtime is still suitable to run on constrained devices,
we evaluate the memory consumption of the new Federated Communication API and its

various implementations on RIOT.

To measure ROM and RAM, we use the make cosy tool’, which analyzes the ROM and

RAM consumption of the built binary, and starts a web server to visualize its results.

3.1 ROM Overhead

We measured the ROM usage of the CoAP and TCP-based implementation of the
Federated Communication API for RIOT using the “BOARD=adafruit-feather-nrf52840-

sense make cosy” command.

The results are visualized in Table 2 and Figure 3. We can see that in total, the TCP
and the CoAP-based implementation both consume not more than 117 kilobytes, TCP
needing 116.949 kilobytes and CoAP needing 109.879 kilobytes, which are small enough

"https://github.com/RIOT-0OS/cosy

11

3 Memory QOverhead Evaluation

to fit on a microcontroller. The Federated Communication API and its implementations
together only use 1.689 kilobytes of ROM for the CoAP-based implementation and 3.168
kilobytes of ROM for the TCP-based implementation.

So the increase in ROM usage by adding the new Federated Communication APT and its

implementation does not substantially increase the ROM consumption of Reactor-nC.

CoAP TCP
Federated Communication | 1.689 KB 3.168 KB
Reactor-pC - Runtime 27.832 KB | 28.736 KB
RIOT - Network Stack 34.678 KB | 34.472 KB
RIOT - Other 45.680 KB | 50.573 KB
Total 109.879 KB [116.949 KB

Table 2: Read-only memory (ROM) Usage of the Federated Communication Application
Programming Interface (API) on RIOT.

ROM Usage of the Federated Communication API

on RIOT OS
1209 RIOT OS - Other
RIOT OS - Network Stack
100 Reactor pC
Federated Communication
80 1
5}
2
>
S 601
o
40 1
20 1
O T T
CoAP TCP

Figure 3: Read-only memory (ROM) Usage of the Federated Communication Application
Programming Interface (API) on RIOT Visualized Using a Stacked Bar Chart.

12

3 Memory QOverhead Evaluation

3.2 RAM Overhead

We measured the RAM usage of the CoAP and TCP-based implementation of the
Federated Communication API for RIOT using the “BOARD=adafruit-feather-nrf52840-

sense make cosy” command.

The results are visualized in Table 3 and Figure 4. We can see that in total, the TCP and
the CoAP-based implementation both consume not more than 43 kilobytes, TCP needing
42.04 kilobytes and CoAP needing 34.768 kilobytes, which are small enough to fit on a
microcontroller. The Federated Communication API and its implementations together
only use 1.565 kilobytes of RAM for the CoAP-based implementation and 0 kilobytes of
RAM for the TCP-based implementation. The TCP-based implementation though, has
an increase in RAM usage of the RIOT network stack by around 5.3 kilobytes compared
to the CoAP-based implementation. This is caused by the additional need for the POSIX
wrappers, which internally allocate RAM for the TCP socket.

Nevertheless, the increase in RAM usage by adding the new Federated Communication

API and its implementation does not substantially increase the RAM consumption of

Reactor-pC.
CoAP TCP
Federated Communication | 1.565 KB | 0 KB
Reactor-pC - Runtime 0 KB 0 KB
RIOT - Network Stack 13.249 KB | 18.558 KB
RIOT - Other 19.954 KB | 23.482 KB
Total 34.768 KB | 42.040 KB

Table 3: Random-access memory (RAM) Usage of the Federated Communication Appli-

cation Programming Interface (API) on RIOT.

13

4 Conclusion

RAM Usage of the Federated Communication API

on RIOT OS
RIOT OS - Other
40 A RIOT OS - Network Stack
Reactor nC
351 Federated Communication
30 1
8251
>
o)
= 20
R4
151
10 1
5 4
0 _ .
CoAP TCP

Figure 4: Random-access memory (RAM) Usage of the Federated Communication Appli-
cation Programming Interface (API) on RIOT Visualized Using a Stacked Bar Chart.

4 Conclusion

Using CoAP for wireless and lossy networks is feasible for Reactor-nC. We were able to
send messages between nodes and at least in terms of the memory usage, it is well within

the limits that a microcontroller offers.

The TCP implementation also works well, even on RIOT. Its overhead is a little higher
than the CoAP-based implementation, but only by a few kilobytes on RIOT.

The message throughput on both wireless and wired connections using TCP and CoAP

still needs to be evaluated.

Furthermore, we have realized that using raw UART for implementing the Federated
Communication API requires a lot of basic work to get acknowledgments, data integrity
and other requirements working. Therefore we decided to use CoAP over UART for now.
This of course comes with additional overhead and the need for a full network stack to
be included in the binary. For devices that are extremely low in ROM and RAM, it will

still make sense to use raw UART, but for now this is out of scope for our use-case.

14

5 Outlook

5.1 Implement UART over CoAP and LoRaWAN over CoAP

Figure 5 illustrates our new architecture strategic design, which aims to consolidate as
many physical layers as possible below the CoAP layer. In particular we now do not have
a separate UART implementation of the Federated Communication API, but instead
integrate with the CoAP-based implementation to send messages over UART. This new
strategy also applies to the not-yet-implemented LoRaWAN-based communication, which

will also be handled by the CoAP implementation.

5.1.1 Implementation Strategy

RIOT already supports sending CoAP packets via SLIPMUX on UART [3].

Sending CoAP messages over LoRaWAN introduces significant overhead due to the
redundancy of the CoAP, UDP and IP headers. For example IP addresses are not needed
when using LoRaWAN], because it generates its own network layer on the network server.
This can be compressed to near-zero overhead using SCHC [4]. The RIOT network stack is
technically capable of sending CoAP messages over LoORaWAN, but this requires further

investigation.
[CoAP]
A A A A
Implements Implements Implements Implements
| | | |
Ethernet 802.15.4 UART LoRa(WAN)
UDP/TCP UDP Slipmux SCHC

Figure 5: New Architecture with Universal Asynchronous Receiver Transmitter (UART)
under Constrained Application Protocol (CoAP) and Long Range Wide Area Network
(LoRaWAN) with Static Context Header Compression (SCHC).

15

5 Outlook

5.2 Evaluation of Message Throughput
Evaluating the message throughput of our Reactor-nC implementation on various phys-

ical layers, including both wired and wireless ones, is outside the scope of this work. We

intend to change this in a future publication once LoRaWAN is supported.

16

Glossary

API — Application Programming Interface

POSIX — Portable Operating System Interface

RAM — Random-access memory

ROM — Read-only memory

SCHC(C — Static Context Header Compression
SLIPMUX — Serial Line IP Multiplexing

TCP — Transmission Control Protocol

UART — Universal Asynchronous Receiver Transmitter
UDP — User Datagram Protocol

CoAP — Constrained Application Protocol

IEEFE 802.15./4: A technical standard that defines the operation of a low-rate wireless
personal area network (LR-WPAN) [5]

Lingua Franca: Lingua Franca is a polyglot coordination language built to enrich
mainstream target programming languages (currently C, C++, Python, TypeScript,
and Rust) with deterministic reactive concurrency and the ability to specify timed
behavior. [1]

LoRaWAN — Long Range Wide Area Network
Reactor-C: A Lingua Franca reactor runtime written in C.

Reactor-uC: A lightweight Lingua Franca reactor runtime targeted at distributed

resource-constrained embedded systems.

RIOT: As the Internet of Things (IoT) emerges, compact operating systems (OSs) are
required on low-end devices to ease development and portability of IoT applications.

RIOT is a prominent free and open source OS in this space. [2]

17

Bibliography

1]

M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a Lingua Franca for
Deterministic Concurrent Systems,” ACM Trans. Embed. Comput. Syst., vol. 20, no.
4, May 2021, doi: 10.1145/3448128.

E. Baccelli, C. Giundogan, O. Hahm, P. Kietzmann, M. Lenders, H. Petersen, K.
Schleiser, T. C. Schmidt, and M. Wahlisch, “RIOT: an Open Source Operating
System for Low-end Embedded Devices in the IoT,” IEEE Internet of Things Journal,
vol. 5, no. 6, pp. 4428-4440, Dec. 2018, [Online]. Available: http://dx.doi.org/10.
1109/J10T.2018.2815038

C. Bormann and T. Kaupat, “Slipmux: Using an UART interface for diagnostics,
configuration, and packet transfer,” Internet Engineering Task Force, Internet-Draft
draft-bormann-t2trg-slipmux-03, Nov. 2019. [Online]. Available: https://datatracker.
ietf.org/doc/draft-bormann-t2trg-slipmux/03/

M. Tiloca, L. Toutain, I. Martinez, and A. Minaburo, “Static Context Header
Compression (SCHC) for the Constrained Application Protocol (CoAP),” Internet
Engineering Task Force, Internet-Draft draft-ietf-schc-8824-update-05, July 2025.
[Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-schc-8824-update/
05/

“IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-2024
(Revision of IEEE Std 802.15.4-2020), no. , pp. 1-967, 2024, doi: 10.1109/
IEEESTD.2024.10794632.

18

https://doi.org/10.1145/3448128
http://dx.doi.org/10.1109/JIOT.2018.2815038
http://dx.doi.org/10.1109/JIOT.2018.2815038
https://datatracker.ietf.org/doc/draft-bormann-t2trg-slipmux/03/
https://datatracker.ietf.org/doc/draft-bormann-t2trg-slipmux/03/
https://datatracker.ietf.org/doc/draft-ietf-schc-8824-update/05/
https://datatracker.ietf.org/doc/draft-ietf-schc-8824-update/05/
https://doi.org/10.1109/IEEESTD.2024.10794632
https://doi.org/10.1109/IEEESTD.2024.10794632

	1 Introduction
	1.1 Background on Lingua Franca
	1.2 Motivation
	1.3 Objective
	1.3.1 Requirements
	1.3.2 Hardware Constraints

	1.4 Outline

	2 Implementation
	2.1 Communication Protocols
	2.2 Architecture
	2.3 Federated Communication
	2.3.1 State Machine
	2.3.2 Implementation
	2.3.3 Implementation
	2.3.4 Implementation

	3 Memory Overhead Evaluation
	3.1 Overhead
	3.2 Overhead

	4 Conclusion
	5 Outlook
	5.1 Implement over and over
	5.1.1 Implementation Strategy

	5.2 Evaluation of Message Throughput

	Glossary
	Bibliography

