
1

Watr.li – Developing a showcase application
for the RIOT operating system

Lucas Jenß lucasandreas.jenss@haw-hamburg.de
Lotte Steenbrink lotte.steenbrink@haw-hamburg.de

F

1 INTRODUCTION

The Internet of Things (IoT) is a promising
paradigm capable of changing the way we in-
teract with the world– and the way it interacts
with us. It describes the vision of small sensors
and computers embedded into everyday objects,
which autonomously communicate with each other,
the Internet, and their surroundings. Since those
embedded devices are typically very constrained
in memory as well as computation and energy
capacities, operating systems powering them must
be lightweight, energy-efficient and possess a small
memory footprint. RIOT [1], an Operating System
(OS) for the Internet of Things, was designed with
these criteria in mind. And while the development
on the operating system is thriving, it is lacking on
the application side. All existing demo applications
focus on technical details, which are often hard to
communicate and less eye-catching for the broader
public. Additionally, experiences with operating a
network of RIOT nodes in a long-term, real world
scenario are sparse.

To patch these gaps, this paper presents a RIOT-
based plant monitoring application which can be
shown at fairs, used in workshops, extended and
referenced for new projects. Using IoT hardware
and sensors, the wellbeing of plants can be moni-
tored and communicated to the user through a web
interface. This is challenging in terms of network-
ing, used standards, heterogeneity of hardware and
covers a broad array of RIOT features. The diverse
nature of the setup also shows domain experts how
RIOT integrates with other IoT technologies such as
IEEE 802.15.4, 6LoWPAN, and CoAP. Additionally,
it makes RIOTs capabilities approachable and visi-
ble to observers of varying technical knowledge. To
many people, the problem of keeping plants alive is

relatable, and a table full of flowers and hardware
can help spark the curiosity of passers by.

The remainder of this paper is structured as follows.
An outline of the use case for the system presented
in this paper is given in Section 2. Section 3 explores
the literature pertaining to the use case, followed
by an introduction of the main open standards
used (Section 4). The system concept, beginning
at the hardware layer and working its way to the
application layer, is presented in Section 5. This is
followed by a description of the implementation of
the aforementioned concept (Section 6) as well as
the issues found and insights gained during that
phase (Section 7). Finally, the community building
aspects of the project are outlined in Section 8,
concluding the paper with an outlook and future
work in Section 9.

2 TOWARDS THE INTERNET OF PLANTS

Keeping plants alive in an office without regular
hours is hard. Either everybody thinks their col-
leagues have already watered the plants or mul-
tiple people water the same plant, resulting in
either drought or overhydration. This can be solved
with technology: If each plant humidity status is
displayed publicly, co-workers can take matters
into their own hands without fear of interfering
with an absent colleagues’ plant-watering scheme.
Over the course of this paper, such a system,
dubbed “Watr.li” (pronounced “waterli”) will be
introduced.

To the end user, Watr.li consists of two different
entities: one wireless sensor node per plant, which
is plugged into its flower pot, and a web interface
which displays the status of monitored plants. Be-
cause Watr.li should make life easier for the user, it
should require minimal installation effort and thus



2

be self-configuring. This means the user will not
have to re-program their nodes when they change
plants, or register each new plant with the Watr.li
network. Whenever a new plant is detected by
Watr.li, the web interface will show a new, blank
spot for this plant. Now, the humidity needs and a
picture of the plant can be added by the user.

A plant has three statuses: happy, okay or thirsty.
Whenever a member of the Watr.li network feels
thirsty, it will send a tweet and/or E-Mail. After it
has been watered, it will tweet and/or E-Mail again
to prevent overhydration. Additionally, the status of
all plants can be checked through the web interface.
This way, users can see that they should water an
“okay” plant before a long weekend even though
its humidity status has not dropped to thirsty yet.

3 RELATED WORK

Over the course of less than ten years, availability
of hardware targeted at Wireless Sensor Network
(WSN) has increased while costs have decreased
significantly. This has increased the range of op-
portunities for WSN, with plant monitoring being
but one of the many opportunities. In large-scale
agricultural irrigation, water usage is reduced on
the basis of sensor data, which is collected and
transmitted with the help of WSN [2, 3]. Large-
scale pastures can be monitored in order to improve
irrigation schemes with the use of a low-cost Tmote
Sky based system, as presented by [4].

But with decreasing cost, applications in a smart
home context are also becoming economically vi-
able. For example, a WSN based system for gar-
den watering built with TinyOS on TelosB motes
(ZigBee compliant) has been built and evaluated,
including plans to add remote control capabilities
in future work [5].This system is able to sense plant
humidity through a moisture sensor and directly
control the irrigation of each plant using an electro-
valve. A more recent example is the commercial
product “Parrot Flower Power” [6] which does not
allow for automatic irrigation of the plants but pro-
vides customers with a light-, humidity-, fertilizer-
and moisture sensor. Based on this data transmitted
to a corresponding smartphone app via Bluetooth,
the user can accurately determine whether a plant
should be watered, fertilizied or moved to another
position based on temperature and light readings.

4 TECHNOLOGIES

The difference between Watr.li and existing solu-
tions presented in Section 3 is that Watr.li relies
exclusively on Open Standards and Open Source
software to achieve its goals. The main technolo-
gies that were employed in the Watr.li project are
introduced in this section.

IEEE 802.15.4 The IEEE 802.15.4 standard specifies
the physical (PHY) and media access control
(MAC) layers for low-rate wireless communi-
cation in personal area networks [7]. It was
specifically designed for embedded devices: its
hardware is cheap to produce, energy efficient
and uses small packets – with a frame size of
128 bytes, only 81 bytes of payload are left to
the upper layers. For comparison: the size of a
IPv6 base header alone is 40 bytes.

6LoWPAN To adapt all IPv6 packets to the re-
strictions of an IEEE802.15.4 transceiver, a
6LoWPAN [8] adaption layer was used. This
adaption is achieved through compression
of IP headers down to 3 bytes and packet
(de)fragmentation, if necessary.

RPL The Routing Protocol for Low Power and
Lossy Networks (RPL) [9] is specifically de-
signed for networks in which all traffic is di-
rected towards one central, strong node, the
root node. RPL achieves this by generating a
Destination Oriented Directed Acyclic Graph
(DODAG) topology which originates at the
root node. Routes to the root node are then es-
tablished via parent node, i.e. each node sends
its data to a parent which is located closer to
the root node in the tree topology. The data is
then forwarded recursively until the root node
is reached [10].

CoAP The Constrained Application Protocol
(CoAP) [11] is an application layer transfer
protocol designed to meet the requirements
of highly resource-constrained devices and
machine-to-machine (M2M) scenarios such as
those encountered in Low-power and Lossy
Networks (LLN) [12]. Its messages can also
be statelessly translated to HTTP requests,
thus allowing for a proxy between an LLN
and the Internet. This is done to facilitate the
integration of constrained nodes into Internet.



3

5 SYSTEM CONCEPT

This section describes the underlying concept of
the Watr.li system, which is comprised of two main
components: several Plant Nodes (PNs) and a single
Display Node (DN). Every monitored plant has its
own PN which measures the soil humidity and
transmits it wirelessly to the DN. If the DN is not
directly reachable from the PN (i.e. it is not a one-
hop neighbor), the PN will use intermediary PNs to
send its data towards the DN. The DN then stores
and evaluates the received sensor data, making it
available for display to the user or further prop-
agation into the Internet, for example to Twitter.
Figure 1 illustrates a possible Watr.li setup.

The remainder of this section will detail the differ-
ent layers of the Watr.li concept, beginning at the
hardware level and working its way up to the User
Interface (UI) concept.

5.1 Hardware

The PN is battery-powered since it is impractical to
wire up every monitored plant with a power cord.
To achieve long lifetime while on battery power, the
PNs hardware must also be energy efficient. There-
fore, a resource-constrained sensor node with only
a few kilobytes of RAM/ROM and low computing
power was chosen as suitable hardware: the Atmel
SAM-R21. This board features an IEEE 802.15.4
transceiver allowing for energy efficient communi-
cation with the DN. Plant moisture is sensed using
a DFROBOT SEN0114 humidity sensor [13]. An
optional USB/UART converter can be attached for
debugging.

The DN on the other hand is more focused on
reliability. It has to manage all incoming traffic from
the PNs as well as maintain a steady connection to
the Internet. Since it is a single device per Watr.li
set-up and thus can be connected to a power outlet,
energy-efficiency is not a concern. The ARMv6-
based Raspberry Pi (RasPi) was therefore chosen as
supporting hardware due to its low cost and ade-
quate performance. Since the RasPi is not equipped
with an IEEE 802.15.4 transceiver, a Rosand Tech-
nologies R-IDGE 6LoWPAN USB “Router”1 [14]

1. Despite its slightly misleading name, the R-IDGE device is
mainly an IEEE 802.15.4 transceiver with optional 6LoWPAN
and RPL functionality.

was used as an external transceiver. This compo-
nent is capable of receiving IEEE 802.15.4 transmis-
sions and transforming the contained 6LoWPAN
packets into regular IPv6 packets, thus acting as a
gateway between the IEEE 802.15.4 network and the
RasPi.

5.2 Operating Systems

The tasks of the DN are processing PN information,
hosting a web server to display PN data to the user,
and working as a border gateway between IEEE
802.15.4 and an Ethernet connection to the Internet.
Since the DN is connected to a stable power source
it is not required to be especially energy-efficient.
Linux was chosen as the most suitable operating
system for these tasks for two main reasons. First, it
is well supported on the chosen hardware platform,
the RasPi, which comes with an official distribution
(Raspbian) specifically tailored to the platform. Sec-
ond, drivers for the employed USB gateway were
only available for Linux.

Battery powered embedded devices such as the
Plant Nodes, however, lack the hardware resources
to support common desktop/server operating sys-
tems such as Linux or Windows, which are aimed at
supporting multi-tasking of dozens of applications
and providing graphical user interfaces. The PNs
do not need most of these features. Instead, they
require an operating system which is memory effi-
cient and supports low-power wireless connectivity,
preferably based on open standards.

Operating Systems such as Contiki [15, 16], TinyOS
[17, 18] and RIOT [19, 20] are designed to operate
in the challenging environment of interconnected
embedded devices, differing mainly in kernel ar-
chitecture and the programming models that are
employed for application development.

Event-based operating systems such as Contiki
or TinyOS have adopted a programming model
that differs from conventional C applications and
only support a subset of the C language (Contiki)
or provide a C dialect (TinyOS) for application
development. RIOT, in contrast, offers a “tradi-
tional” threading and scheduling scheme, POSIX-
compliance as well as full C and partial C++
language support. This significantly decreases the
learning curve for novice IoT developers, as they
do not need to learn new paradigms and can code
using most of the techniques they already know.



4

Figure 1. An example of a Watr.li network. The blue antennas depict Plant Nodes and the monitor in the
center is the Display Node. The connections between the nodes shows a possible tree topology formed
towards the Display Node acting as root node.

Additionally, external libraries can be ported to
RIOT with just a few patches, as shown by the
example of the microcoap port [21].

5.3 Network Stack

In order to establish communication, all nodes re-
quire a common set of protocols which both PNs
and the DN need to be able to speak. Figure 2
illustrates how Watr.li’s network stack accomplishes
this: Every information exchange between PN and
DN is wrapped in a CoAP packet and transmitted
via UDP/IPv6 over IEEE 802.15.4. The appropri-
ate header compression and packet fragmentation
is performed by a 6LoWPAN adaption layer. All
packets destined for the global Internet, such as
webpages or notification tweets, are sent via HTTP
and Websockets over traditional TCP/IP over Eth-
ernet.

5.3.1 Routing Protocol

A direct connection to the Display Node can not be
guaranteed for every Plant Node. Thus, a routing
protocol is needed to connect all Plant Nodes into
a multi-hop network and facilitate communication
with the Display Node. At the time of implementa-
tion, RIOT was equipped with two different rout-
ing protocols: Ad Hoc On-demand Distance Vector

Routing Version 2 (AODVv2) and RPL. The former
is a reactive protocol made for sparse point-to-point
communication, while the latter is a proactive pro-
tocol designed multipoint-to-point communication.
In its current state, Watr.li’s communication pattern
can be described as multipoint-to-point, as all traffic
is flowing from the Plant Node to the Display
Node only. This, and the fact that currently no
implementation of AODvv2 is available for Linux,
made RPL the current routing protocol of choice
for Watr.li. subsection 10.5 discusses circumstances
under which this might change.

5.4 Communication model

To guarantee a smooth startup process and a correct
flow of information, a communication model was
created for the Watr.li system. The sequence dia-
gram in Figure 3 depicts the messages that are sent
during system operation after auto-configuration,
which itself will be performed aided by RPL, the
chosen routing protocol. RPL was chosen as the
routing protocol for the Watr.li network since it is
designed for LLN and an implementation is already
available for RIOT. The auto-configuration itself
will is explained in more detail in subsection 6.5.

Once auto-configuration has completed, the PN has
knowledge of how to send messages to the DN,



5

Figure 2. Employed network stack on both Plant Node (left) and Display Node (right). The center arrow
shows the flow of a CoAP packet from the PN to the DN whereas the right arrow shows the flow of a
HTTP/WebSocket packet from the DN towards the Internet.

thus sending a Register message containing a
unique identifier to alert the DN of its existence.
This prompts the DN to present the new plant
node to the user (here called Display) so that it
can be assigned a name, watering needs, etc (see
subsection 5.6). After registering, the PN will start
to send Humidity status updates to the DN
whenever a change in soil humidity is detected.
On receiving such an update, the DN will both
present the updated information to the user as well
as determine whether a notification must be sent to
one or more notifications endpoints such as E-Mail
or Twitter.

5.5 User interface (UI)

The UI is an important aspect of both a real-
world application as well as a showcase. In the
latter, it is often unnecessary to display the actual
inner workings of a system such as Watr.li: not
only are the routing protocol, sending packets from
constrained nodes, etc. are difficult to visualize in
real-time, they also contain little value to the end

user. Thus, the primary goal of the Watr.li UI is not
to present the actual inner workings of watr.li, but
to communicate the resulting changes clearly.

To achieve this, the user-facing components of the
Watr.li system were modeled as a set of three user
stories. User stories are short feature descriptions
from the user’s point of view and are employed
in Behavior Driven Development (BDD) to describe
the desired features and behavior of an application
or system [22]. The Watr.li user stories are the
following:

1) As a user, I want to monitor the humidity of
my plants tailored to their individual needs

2) As a user, I want to conveniently access the
humidity status of my plant

3) As a user, I want to be notified when a plant
needs to be watered

Story 1 is the most important one, since it outlines
the main functionality of the system. It entails that,



6

In case the received 
status is "thirsty", an 
alert is sent out to one 
or more endpoints 
(e.g. Email, Twitter)

Plant Node Display Node Display Notification Medium

Register
Display new node

Humidity status update
Display updated status

Notify humans

Figure 3. UML sequence diagram showing an abstract overview of the different messages sent by the entities
in the Watr.li system.

when a new PN is added to the system, the user
must be able to:

1) Assign a name, location and/or picture to the
PN (and thus to the plant) to make it easy to
distinguish multiple PNs when more than one
is registered.

2) Calibrate the watering needs of the plant, i.e.
which sensor readings correspond to the three
plant states happy, okay and thirsty.

The second user story is about retrieving the data
of the monitored plant. Users should not have to
be technical experts to retrieve the humidity status
of the plants. Preferably, this should be possible re-
motely, i.e. over the Internet, thus making a website
the ideal form of presentation.
Finally, the third story is about letting the user know
when they have forgotten to water their plants.
Ideally, multiple notification media such as E-Mail,
Twitter and/or Facebook messages should be sup-
ported to adapt to the user’s individual needs.
The UI mockups derived from the user stories are
shown in Figure 4.

5.6 Configuring watering needs of a plant

As can be seen in Figure 4, it should be possible
to configure how much water a plant needs. This
requirement is woven into Story 1 because different
plants have vastly different watering requirements
which must be taken into account. In Figure 4, a
very simple and non-precise approach was taken:
the watering needs are represented as a slider which
the user can customize to indicate if a plant has low,
medium or high water requirements. In reality how-
ever, this is not going to be sufficient to keep a wide
range of plants with different necessities constantly
happy. To achieve this, a plant database, similar
to the one that “Parrot Flower” has developed [6],
would be necessary. The user of the system could
then select the correct plant or family of plants from
a list, with the application automatically download-
ing the required parameters and adjusting notifica-
tions and humidity display accordingly.

6 IMPLEMENTATION

This section covers the implementation details of
both the Display- and the Plant Nodes based on the



7

Figure 4. Conceptual mockups of the Watr.li UI. The plant creation screen (after a new PN has registered
itself) can be seen on the left, the plant status overview to the right.

concept presented in Section 5. It aims to establish
an unterstanding of the important mechanisms that
make up the Watr.li system as well as the design
decisions behind them.

6.1 CoAP communication

In subsection 5.4 the general communication model
designed for Watr.li was introduced. This section
gives an overview of the concepts behind CoAP
and substantiates the abstract overview from sub-
section 5.4.

6.1.1 Representational State Transfer (REST)

CoAP aims to realize the Representational State
Transfer (REST) architecture in a suitable form
for resource constrained nodes, i.e. low processing
power and limited RAM and ROM [11]. REST de-
scribes a set of design criteria initially introduced in
[23, 24], which are outlined in this section alongside
their implemention in CoAP.

• Initially envisioned for Web applications, many
of the architectural critera align closely with
how HTTP (over TCP) and the World-Wide
Web (WWW) work. Unlike HTTP, CoAP
employs an asynchronous datagram-oriented
transport such as UDP, being a better fit for
LLN.

• REST implies a client-server architectural
style, separating data usage concerns from the

data storage and processing concerns. How-
ever, M2M interactions typically result in a
CoAP implementation acting in both client and
server roles [11], although with disjoint inter-
faces for each role.

• All communication in a REST architecture is
stateless in nature. That is, all requests from
client to server must encompass all information
necessary to understand, process and reply to
the request.

• To improve network efficiency, responses must
implicitly or explicitly be defined as cacheable
or not. This enables in-network caching of re-
sponses and makes some request unecessary
if the response is already cached at the entity
issuing the request. In CoAP, this is imple-
mented as the Max-Age option field which, if
not present, defaults to 60 seconds. After this
time, the information contained in the package
becomes stale and must be requested anew.

The key information abstraction in REST is a re-
source. Any named information can be a resource,
e.g., a plant, its humidity or today’s weather in
Hamburg. Individual resources, at which all CoAP
requests are targeted, are identified by a Uniform
Resource Locator (URL) in web-based as well as
CoAP REST systems. In addition to the target URL,
each CoAP request also contains one of four request
methods which define the intention of the request:



8

• The GET method retrieves a representation for
the information that currently corresponds to
the resource identified by the request URL [11].

• The POST method requests that the represen-
tation enclosed in the request be processed.
The actual function performed by the POST
method is determined by the origin server and
is dependent on the target resource. It usually
results in a new resource being created or the
target resource being updated [11].

• The PUT method requests that the resource
identified by the request URL be updated or
created with the enclosed representation [11].

• The DELETE method requests that the re-
source identified by the request URL be deleted
[11].

Thus we can represent an example CoAP request,
which would update the weather for Hamburg, as
follows:

PUT coap://[::1]:5683/weather/hamburg/
Payload: "Sunny"

Note that this is a simplified representation of a
CoAP request; all features not used in Watr.li are
omitted.

6.1.2 Watr.li CoAP messages

As shown in Figure 3, all communication between
PN and DN originates from the PN and is com-
prised of just two uniqe messages:

The registration of the PN with the DN is performed
by the following message:

PUT coap://[DN IPv6 address]:5683/nodes
Payload: Unique node identifier

Humidity status updates are structured like this:

PUT coap://[DN IPv6]:5683/nodes/
<unique node identifier>/humidity

Payload: Humidity value

For the format of humidity values see section 6.2.2.
The unique identifier may be any kind of ASCII
string as long as it does not contain any slashes.

6.2 Plant Node

The PN is conceptually less complex than the DN,
since it has fewer responsibilities. As outlined in
Section 5, it is responsible for registering with the
DN and sending humidity status updates based on
the moisture in a plant’s soil.

The PN application is implemented on top of
the RIOT operating system, which alreay includes
some of the core components chosen for the Watr.li
system: the routing protocol (RPL), a full IEEE
802.15.4/6LoWPAN network stack, drivers for the
Atmel SAM R21 (SAMR) board as well as a minimal
CoAP implementation called microcoap [25].

The implementation [26] consists of three ele-
ments. Sensing humidity data is implemented in
sensor.c/.h, which includes configuration and
initialization of the Analog to Digital Converter
(ADC) as well as reading the ADC information
on demand. Building the CoAP packets is imple-
mented in coap_ext.c/.h. Said implementation
is based on microcoap [25] which had to be ex-
tended in order to provide the needed features,
as detailed in subsubsection 6.2.1. The entry point
to the application is implemented in main.c and
handles the initialization of the necessary RIOT
subsystems: the transceiver, the network stack, the
humidity sensor as well as RPL (and thus the auto-
configuration, see subsection 6.5). In addition it pe-
riodically queries the sensor for data and sends said
data to the DN in case it has diverged more than a
certain threshold from the previously sent values.
The necessity of this mechanism is explained in
subsubsection 6.2.2.

6.2.1 Extending Microcoap

To create and process CoAP requests, the microcoap
library [25], which is provided by RIOT as an
external package, was used. Microcoap has the ad-
vantage of being small and simple to use. However,
like most CoAP implementations [27], microcoap
has also been created with the assumption that IoT
nodes are so constrained that they cannot decide
autonomously when to send data, and thus need
to be asked instead. Therefore, it offers only server
functionality out of the box. An application using
microcoap is able to receive a CoAP request, process
it and respond with another CoAP message, but
it is unable to create a CoAP message without
having received an initial request. Unfortunately,
according to the founder of the company which



9

created microcoap, there are no plans to extend its
functionality [28].

This functionality is needed by Watr.li to au-
tonomously send PUT requests with plant status
updates, however. For that reason, an extension
[29] was created which uses microcoap’s internal
functions to build such a PUT request, which can
then dispatched by the Watr.li application. Due to
time constraints, this extension was not designed
to be modular, and functionality to generate any
request type other than PUT is missing. It should
be considered to extend microcoap to add this
functionality in a more generic way.

While working with microcoap, two other hur-
dles were encountered. First, it was discovered
that, by default, microcoap allows its users to cre-
ate paths to endpoints with a maximum of two
segments. Thus, an endpoint path of /foo/bar
would be legal, while an endpoint path of /foo/
bar/baz would exceed the segment limit. This
posed a problem, since the endpoint path used
by Watr.li, /nodes/<node id>/humidity, ex-
ceeded this limit, too. This could be fixed by in-
creasing the MAX_SEGMENTS constant directly in
the microcoap code. This approach turned out to
be complicated to maintain, since a fork of micro-
coap had to be created on which MAX_SEGMENTS
was changed. The Makefile for RIOT’s microcoap
packet also had to be adjusted to point to this
dedicated fork instead of the main microcoap re-
postory, and this change had to be maintained in a
dedicated RIOT branch. To eliminate this overhead,
a patch was added to RIOT which allows to change
MAX_SEGMENTS at compile time [30].

Second , while the micocoap codebase consists of
only 702 Lines of Code (LOC), it was entirely un-
documented, which complicated the development
efforts. Thus, basic documentation Pull Requests
(PRs) were submitted and accepted into the micro-
coap implementation [31].

6.2.2 Sensing humidity values

The ADC and the humidity sensor are the main
components for sensing the moisture of a plant’s
soil. After calibrating the ADC (Section 12), the
ADC returns values between 0 and 212 − 1 = 4095
since it is configured with a 12-bit sampling width.

Due to minor fluctuations in electric current flow,
there are always tiny divergences in the measured
values. With a spectrum of 0 (completely dry) to

4095 (submerged in water), sending a value change
of 1 (i.e., 0.02%) is a waste of bandwidth and
battery. This is why the PN application remembers
the last value that was sent to the DN and only
sends an update whenever the new value differs
by a predefined threshold, currently set to 10. This
value is subject to change, should it prove to be
impractical during long-term usage.

It should be noted that, for the Watr.li system, it was
assumed that the relation between humidity of the
soil and the value sampled by the ADC is linear. It
was later discovered however, that the relationship
between resistance and moisture potential is a non-
linear function, which other researchers have de-
termined through laboratory calibration [4]. For the
purpose of this paper, however, assuming a linear
relation proved to be sufficient for demonstration
purpose.

6.3 Display Node

From the user perspective, the purpose of the DN
is to collect plant data and make it available to
the plant maintainers by visualizing the status of
all plants as shown in the conceptual mockups of
Figure 4. From the system perspective, it serves
as a gateway between the wireless Watr.li network
(wirelessly communicating via IEEE 802.15.4) and
the Internet (to which it is connected via Ethernet).
This gateway functionality is vital, since it translates
the protocol stack used by Watr.li internally (mainly
CoAP and IPv6+6LoWPAN) to the protocols used
in the Internet (HTTP and IPv4/v6). In addition,
the Display Node hosts the application which re-
ceives PN data, displays it to the user and posts
notifications.

As has been established in subsection 6.2, the PN
communicates with the DN via CoAP. While the
PN employs microcoap to do so, on the DN the
Californium CoAP framework was used instead.
In contrast to microcoap, Californium is a feature-
complete CoAP implementation written in Java, not
targeted at resource constrained nodes.
To develop the web application the Play frame-
work [32] was chosen, primarily because it also
runs inside the JVM (as does Californium). This
made it easy to relay the incoming CoAP mes-
sages to the web application. The communication
between the two components is establishde via an
Akka [33] Actor, which is the conventional solution
for asynchronous communication within the Play



10

Framework.
Lastly, the user’s browser communicates with the
Play application server using HTTP as well as the
WebSockets. The latter is used to provide near real-
time updates without forcing the user to reload the
website.

Figure 5 shows an overview of the DN archi-
tecture. In the bottom left, a resource-constrained
node sends CoAP packets towards the DN. These
packets are received by Californium and then re-
layed through Akka actors to the web application
implemented in Play. Once received, the Play ap-
plication stores the received data and updates the
UI (Figure 6) in the user’s browser (bottom center)
accordingly via WebSockets. In case a notification
needs to be sent (e.g. Figure 7), the Play application
contacts one or more notification endpoints (bottom
right) (e.g. an E-Mail server or the Twitter API) to
dispatch the notification. In this last case, the pro-
tocol depends on the endpoint and is thus omitted.

Note that Figure 5 only describes the main appli-
cation that was developed for the DN. Since RPL
operates independently of said application, it is
discussed separately in subsection 6.4.

6.4 State of RPL on Linux

Finding a working RPL implementation to use on
the border gateway proved to be more challenging
than anticipated, due to the state of IPv6 over Low
power Wireless Personal Area Network (6LoW-
PAN) and RPL support on Linux.

At least three distinct RPL implementations cur-
rently exist for the Linux kernel [34]. In descending
order of latest update to the source code, these are:

Unstrung [35] is a userspace implementation of
RPL written in C++ and C. It was last updated
on 2015–01–02. While it features a test suite, the
contained tests were not passing at the time of
access (see bibliography) and some of the tests
resulted in a segmentation fault.

linux-rpl [36] is a kernelspace implementation of
RPL written in C, comprised of several patches
for the Linux kernel mainline versions 3.10 to
3.12 (current stable release is 3.19). The author
has stated [37] that he intends to further work
on this implementation but is currently unable
to do so. A guide on how to use linux-rpl
on the RasperryPi is available at [34]. Since

Java Runtime

Californium
CoAP Server

Californium
Server Actor

Play Framework

WebSocket
Actor

WebSocketHTTP

CoAP

Plant Node Browser Notification
Endpoint

Figure 5. Overview of the Display Node’s architec-
ture and the involved communication protocols

Figure 6. The dashboard web page as served by the
Plant Node.



11

Figure 7. A tweet indicating that “Horst” has just
been watered.

the RasperryPi does not come with an IEEE
802.15.4 transceiver though, additional hard-
ware has to be purchased to follow the guide.

SimpleRPL [38] is a Python implementation of
RPL running in userspace. It is stated in the
project’s README that no interoperability tests
have been performed and that it is meant to
be used only in a “secure environment” where
there can be no malicious attacker on the net-
work. The last update to this implementation
was on 2013–06–09.

In summary, currently no feature-complete inter-
operable RPL implementation exists for Linux. In
addition, the IEEE 802.15.4/6LoWPAN support of
the Linux kernel is currently under development
in a joint effort of the linux-wpan-next and linux-
bluetooth-next kernel developers [39, 40].

However, Rosand Technologies distributes RPLd
[41], a functioning, feature-complete RPL daemon.
A look inside its source code reveals that this dae-
mon is merely a wrapper around Contiki’s native
mode: RPLd spawns a Contiki instance, which op-
erates as it would on any other embedded device.
RPLs uses the RPL implementation running in this
Contiki instance to execute the protocol operations.
The packets generated by the Contiki instance are
then passed on to the the network device, which
sends them like it would send any other regular
packet. Any received RPL messages are forwarded
to the Contiki instance, which then handles them as
usual. In case the Contiki instance performs a route
update, this is communicated to the Linux routing
table, too. This way, the Linux device running RPLd
learns about all discovered routes. The version of
RPLd available at the time of development was not
compatible with the Linux kernel 3.18.

Due to the time constraints when developing this
project, it was decided to update the RPLd provided
by Rosand Tech to work with the Linux kernel 3.18
and use it on the Display Node.

6.5 Watr.li Auto-Configuration

To keep the maintenance effort as low as possible,
the Watr.li network must be able to bootstrap itself
as well as recognize and integrate new nodes au-
tonomously.

To facilitate this auto-configuration of the PNs, the
RPL DODAG-ID was chosen to be the IPv6 address
of the DN, as mandated by the RPL standard[9].

Thus after joining the RPL tree topology, which
includes receiving the DODAG-ID, the Plant Node
automatically knows the address of the DN. After
joining the DODAG, the PN sends a CoAP regis-
tration message (see subsubsection 6.1.2) to the DN
such that the latter knows of its existence, allowing
the user to create a new plant configuration based
on the registered PN. The unique identifier con-
tained in the CoAP registration message is stored
on the DN alongside the IPv6 address of the PN.

The chosen approach of storing the IPv6 address
as the DODAG-ID has the advantage that it is
automatically distributed to all PNs in the system.

7 TESTING

One goal of the project was to explore the process
of writing a “real-world” RIOT application, and
to document any bumps in the road so that they
may be improved in the future. This documentation
should not be limited to problems purely caused
by RIOT. Information about problems which may
be encountered in the environment a RIOT node
operates in can be just as valuable when planning
such a project in the future. This section documents
the problems encountered and the resulting lessons
learned while designing, implementing and testing
the Watr.li’s components.

7.1 SAMR specific issues

The SAMR evaluation board which was used for
the Plant Nodes features 32Kb of RAM, which is
close to the lower bound of memory into which
RIOT can fit, if used with a full network stack
and routing protocol. In addition, the SAMR is one
of the platforms which have not been thoroughly
tested at the time of this writing. In summary,
the following problems were encountered during
development:



12

• The remote debugger for the SAMR cannot
be stopped manually. Trying to do so (e.g.
by pressing Ctrl+C) results in the debugger
connection being dropped. Thus the only way
of stopping the debugger was through break-
points or special assembly commands. This
made unexpected code paths (such as the hard
fault routine) difficult to debug, as the only
way to see which path the code was taking was
stepping through every line.

• The driver for the Analog to Digital Converter
(ADC) for the SAMR board is currently under
development [42]. While the current state is
functional, additional changes [43] had to be
performed to be able to receive debug output
through the UART interface while the humid-
ity sensor is attached. This is due to the fact
that the UART_0, which is the default standard
output interface, is wired to the same pin as the
reference voltage for the ADC, which is needed
for the humidity sensor. Thus the standard
output had to be set to UART_1. This in turn
required an additional UART to USB converter.

• The Cortex-M0 CPU on the SAMR board does
not permit unaligned memory access. Due
to an issue [44] in the network stack’s IPv6
subsystem, where a pointer was cast to a
uint16_t causing the compiler to emit a “load
halfword” instruction on a non-halfword mem-
ory address, a hard fault was triggered. This
only occurred when sending an IPv6 packet
to a link-local address. This problem highlights
the importance of automated testing of the ex-
ample applications for the supported hardware
platforms.

• Hard faults and other Interrupt Service Rou-
tines (ISRs) that stop the execution of RIOT do
not emit any information. Due to the debug-
ger issue mentioned above, it was not easily
identifiable where the application had stalled.
Emitting some information, for example a stack
trace, when hitting an ISR such as a hard fault
would aid debuggability of RIOT applications.

7.2 Issues due to memory constraints

Due to the low memory available on the SAMR
board, the number of RPL routing entries that are

stored at runtime had to be reduced from 128 (the
default value in RIOT) to only four. Each entry
occupies 32 bytes of RAM, resulting in 4KB ad-
ditional RAM usage with the default number of
entries. While the reduction was particularly drastic
on the SAMR board, routing entry size would be
an issue with slightly less constrained boards also.
It should be noted that, in general, one would
use RPLs non-storing mode in such a resource-
constrained scenario. In non-storing mode, only the
DODAG root maintains all the paths and a Source
Routing Header (SRH) is attached to all point-to-
point packets at the DODAG root [45]. However,
non-storing mode was not available in the RPL
implementation of RIOT at the time Watr.li was
built.

Another problem that ocurred in this regard was
that crashes of the PN application ocurred seem-
ingly at random. In addition, these crashes were
hard to debug due to the SAMR specific debugger
issues described earlier. It was found that the de-
fault thread stacksize for the SAMR board was fairly
low at only 1024 bytes. Doubling this stacksize still
allowed the application with enabled networking to
fit in RAM when including the RPL optimization
previously discussed.

7.3 Neighbor Discovery

The Neighbor Discovery Protocol (NDP) [46] is
used by IPv6 nodes (hosts and routers) to discover
the link-layer addresses for neighbors on the same
link. While RIOT features an NDP implementa-
tion, it was not functional when Watr.li was imple-
mented. The main issues were:

• Only partially sending or answering neighbor
solicitations

• Only partially acting upon router advertise-
ments

As a result, sending to IPv6 nodes in the network
never succeeded, since the link-layer address of the
target node could not be found in RIOT’s neighbor
cache.

Since fixing the Neighbor Discovery (ND) was not a
viable option both due to the time constraints of the
project and because the RIOT network stack is cur-
rently being re-implemented, a workaround for the
ND issue had to be found. This workaround con-
sisted of sending all outgoing packets from RIOT



13

to the link layer broadcast address, but leaving the
correct target IPv6 address intact. This resulted in
the receiving nodes always accepting the packets
on the link layer, but only delivering them to the
application if the IPv6 address matched.

This approach had one unintended side effect:
when trying to reply to the RIOT nodes from Linux,
the responses would never arrive. In addition, after
having tried to send a reply to a RIOT node, all sub-
sequent traffic from that node would be dropped
by the Linux network stack. The reason for this
behavior is that, when responding, Linux tried to
get the link layer address of the target RIOT node
from its own neighbor cache. When failing to find it
(because the RIOT node had never sent out a neigh-
bor advertisement), it sent out up to three neighbor
solicitations, to which it would also not receive a
response. Upon failing to find a link layer address
for the target node, the IPv6 address was marked as
unreachable both for incoming and outgoing traffic.
This issue was avoided by never sending any traffic
from the Display Node to a target node, effectively
removing bidirectional connectivity.

An alternative solution that was initially considered
was that of manually adding the PNs to Linux’s
neighbor cache, thus forcing Linux to deliver the
replies and avoiding NDs being sent. This approach
had the downside of having to figure out the link
layer address of the PN as well as having to add
it to Linux manually, thus adding two additional
steps in the setup of the Watr.li system. It was
thus decided that, since two-way connectivity was
not needed for the current use case, the previously
explained approach was taken instead.

The issues described above were fixed with the
introduction of the gnrc network stack in RIOT
release 2015.09 [47].

7.4 Heterogeneous networking

The creation of Watr.li was also an interoperabil-
ity test: Prior to Watr.li, RIOT had participated in
several scheduled interoperability events, but these
events are rare and it is difficult to catch all bugs
in one day. However, because the Watr.li network
consists of both RIOT and Linux nodes: different
protocol implementations have to interoperate with
each other.
One of the interoperating software components was
RPL, with the implementation running on the DN

being one that has undergone interoperability tests
with other implemenentations [48] as well as per-
formance and correctness tests [49]. This way, it was
discovered that RIOTs RPL implementation used
the wrong byteorder [50] in some places. After this
problem had been fixed, both RPL implementations
interoperated correctly, apart from the limitations
imposed by NDP as explained in subsection 7.3.
Both IEEE 802.15.4 and 6LoWPAN on RIOT interop-
erated without problems with the implementation
on the R-IDGE 6LoWPAN USB Router [sic].

7.5 Timers

The instability of the “vtimer” subsytem in RIOT
[51] made prolonged operation of the Watr.li system
impossible, since it would either crash or period-
ically scheduled events would never happen (i.e.
humidity sensing), effectively freezing the system.
As a result, all information gathered regarding the
reliability and stability of RIOT are constrained to
running the system for under an hour at a time.
While a new timer subsystem called “xtimer” has
been merged into the RIOT source tree at the end
of August 2015 [52], it has not been evaluated in
the context of Watr.li so far.

7.6 Hard faults on the SAMR

Even though some of the hard faults were fixed
during development of the Watr.li application, in-
stability during prolonged operation on hardware
still occurred. Due to the fact that current RIOT
hard fault handlers are simple nop loops, it is
hard to notice and impossible to debug a hard
fault without a debugger attached to the hardware.
In combination with the timer problems referred
to in the previous section, this made unattended
operation of any kind unfeasible.

In summary it can be said that the fact that an ap-
plication compiles, can be flashed and runs reliably
for a few minutes currently does not allow any
conclusions on whether unattended long-running
operation is possible on the RIOT platform. To
improve this situation, implementing more sophis-
ticated fault handlers should be a priority. If these
fault handlers would be able to print or even store a
stack trace, debugging capabilities would be greatly
improved when no debugger is attached.



14

8 COMMUNITY BUILDING

Apart from the internal evaluation of RIOT in the
context of a “real-world” application, Watr.li was
and is also used as a means for community build-
ing. To increase visibility for Watr.li as a demo
application, steps in multiple directions were taken,
which are detailed in the following.

8.1 The Eclipse Open-IoT Challenge

The Eclipse IoT working group [53] aims to create
an “open Internet of Things”, that is one built on
Open Source and Open Standards. Among other
things, the Working Group organized the annual
Eclipse Open Iot Challenge to encourage developers
to build IoT applications based on these standards
and software curated by the Eclipse IoT WG. Watr.li,
along with its blog and a presentation video [54]
was submitted to the contest, and made third place.

Participation in the Eclipse Open-IoT Challenge
had several benefits: seeing the other participat-
ing projects evolve served as technological inspira-
tion while the challenge requirement to record the
progress of the project resulted in a steady stream
of documentation, most of which is more widely
applicable than the project itself.

Furthermore, making third place in the Open-
IoT challenge provided additional hardware and
funds to purchase components to further evolve the
project.

8.2 Curation of a Blog

During the participation in the Eclipse Open-Iot
Challenge, tutorials in the form of blog posts were
posted regularly on the Watr.li website [55], which
in June 2015 had about 1125 visitors. The tutorials
aim to help people who are new to RIOT make
their first steps, and illustrate what can be achieved
with RIOT. The hope is that “hands-on” documen-
tation like these appeal to prospective RIOT users
and contributors with a less academic or corporate
background, such as hackers, makers and hobbyists.
Informal feedback has been positive so far, as sev-
eral people have thanked the authors for the helpful
tutorials.

8.3 Planning and realization of a workshop

Members of the RIOT project were invited to host
a workshop at the Eclipse IoT Days in Grenoble.

Figure 8. Oleg Hahm presenting RIOT at the Eclipse
IoT Days

Figure 9. Lotte Steenbrink explaining watr.li to the
workshop attendants

For this workshop, Watr.li was used as a demo
application.

The workshop goal was to build an application
employing the same protocols used for Watr.li to
familiarize people with RIOT as well as core IoT
technologies. To prepare all participants, a short in-
troduction to RIOT [56] was given, and Watr.li was
presented as an outlook showing the development
possibilities that come with a system architecture
comprised of Open Standards and Open Source.

Then, participants were each given a SAMR de-
velopment board and encouraged to build their
own distributed chat application using RIOT and
CoAP step by step. With each step, they would
learn something new about RIOT and networking.
Additionally, the nature of the application could
encourage communication and collaboration.



15

The workshop was structured such that everyone
could perform the tasks at their own pace, aided
by the attending members of the RIOT project. A
set of instructions [57] in the form of a website
was provided to all attendees. These instructions
contained the following set of tasks:

The main task was to create a “chat application”
over IEEE802.15.4 low-power wireless. Each feature
of the chat application was designed as a single sub-
task which attendees could implement at their own
pace. The tasks were as follows:

1) Building and flashing a RIOT application and
then sending basic null-delimited strings over
the wireless network with the built-in shell
commands. This enabled the participants to
familiarize themselves with RIOT.

2) Getting to know the RIOT shell by implement-
ing a custom command to set a chat nickname
which is prepended to every chat message.

3) Using third-party libraries not specifically writ-
ten for RIOT by wrapping chat messages into
CoAP packages with microcoap.

4) Learning about the basic networking capabili-
ties of RIOT by sending and receiving the built
CoAP packages over the wireless network.

5) Using additional networking APIs by imple-
menting a shell command to change the chan-
nel by manipulating the CoAP resource end-
point, /chat/default or /chat/riot.

The tasks were designed such that they would
provide an understanding of the RIOT application
development workflow, showing that it is similar
to writing a C application for other non-embedded
operating systems. A reference implementation of
the chat application can be found on GitHub [58].

8.4 Bayer Digital Summit invitation

The organizers of the Berlin branch of Hacking
Health [59] discovered Watr.li through the Blog.
They invited the project to showcase the prototype
at the Bayer Digital Summit event on “Rising Tech-
nologies” in Düsseldorf on May 11th of 2015. Fig-
ure 10 shows watr.li’s table at the summit. The on-
premises feedback of attendees was positive and the
authors learned about several similar technologies

Figure 10. Lucas Jenß preparing watr.li’s table at the
Bayer Digital Summit

being developed across the different Research and
Development (R&D) branches of the Bayer AG.

9 CONCLUSION

A real-world application has shown that RIOT is in
need of further testing and demo applications, espe-
cially those interacting with hardware not running
RIOT (such as watr.li’s RasPi), in order to further
the stability and interoperability of the system. The
task force currently working on the re-designed net-
work stack is a step in the right direction. A similar
task force for the timer problems is desirable.

Watr.li has enormous expansion potential which
could be used to test RIOT in more detail and
learn about how smart, autonomously interacting
“things” can form a new level of information detail
which hasn’t been accessible before. To get a fully
working Watr.li network running reliably however,
some more work lies ahead in terms of building
upon the solid foundation and flexibility that RIOT
provides in some, but not yet all, of its subsystems.



16

10 OUTLOOK

Once Timers and Network Stack run in a stable and
interoperable fashion, Watr.li should be used to col-
lect valuable experience of running RIOT in a long-
term, real-life deployment. Additionally, Watr.li’s
functionality may be expanded. This would not
only benefit any office plants involved, but would
also unlock new application scenarios for which
the suitability of RIOT can be tested and, in con-
sequence, improved. Such experiments and expan-
sions may be, but are not limited to, the following.

10.1 Battery life experience

During the development process, all Plant Nodes
have been powered by cable or spare battery packs
made for smartphones. The next step will be to con-
nect them to lithium-ion batteries which are smaller
in size (and energy capacity) and experiment with
their lifetime.

10.2 Custom Plant Node cases

Up until now, prototype Plant Nodes have been
lying around close to their plant’s pots. This is not
feasible in the long term, as it is ugly, dangerous
for the electronics involved, and annoying to move
and clean. Designing a case which holds the battery
and the SAM R21 board safely above the soil and
lets the user plug the sensor firmly into the ground
would be a major improvement. One way to create
such a case could be with the help of a 3D printer.

10.3 Improved Plant Node identification

In the currently implemented system, PNs have to
be matched to a plant by knowing which PN has
which IPv6 address. This is not very user-friendly,
since IPv6 addresses are hard to remember and
generally not something that non-technical users
should come into contact with. An alternative ap-
proach to displaying raw IPv6 addresses would
be to generate a string that can be more easily
recalled by the user using a dictionary approach.
As an example, we will consider the following IPv6
address:

2001:0db8:85a3:0000:0000:8a2e:0370:7334

First, the segments of the IPv6 address could be
mapped into a phrase-like structure:

Adjective:Noun:Adverb:Verb:Noun:
Noun:Verb:Adverb

Given a dictionary of words in any language, this
could then be transformed into a phrase such as
this one (“and” inserted for readility):

boastful panda wildly jumping fences
(and) yoghurt looking wisely

The latter, being much more easy to recall as the
IPv6 address above, could be printed onto the
custom PN cases (subsection 10.2) and then be dis-
played in the UI, making it easy to quickly identify
any PN.

One problem with this approach is that each IPv6
address segments has 216 − 1 = 65535 possible
values, whereas there are only about 10000 verbs,
4000 adverbs etc. To circumvent this, the modulo
with the available number of words can be used.
While the modulo causes the relation between IP
addresses and identification clauses to loose its
injectivity, in practice these collissions are not a
problem because they would have to happen for all
IPv6 address segments, which is very improbable.

10.4 Extended sensing

Apart from water, plants also have other needs.
The PNs abilities should be extended to sense a
multitude of other environment variables, such as
oxygen, carbon dioxide, temperature and/or light.
This, in turn, would require a more complex plant
configuration mechanism compared to the one pre-
sented in subsection 5.6.

Another possiblity of extended sensing is of visual
nature: attaching a camera to the PN would allow it
to identify pests affecting the plant through image
recognition.

10.5 Plant-to-plant coordination

In the current network, Plant Nodes only com-
municate with the Display Node, forming a tree-
like traffic pattern with the Display Node at its
root, acting as a so-called “sink node”. This is
perfectly common for many IoT environments. In
fact, the Routing Protocol for Low power and Lossy
Networks (RPL) [9], which Watr.li currently uses
to establish connections throughout the network, is
optimized for exactly this scenario.



17

However, the IoT is not just about conversations be-
tween things and humans. Machine to machine (or
rather, thing to thing) communication is a central as-
pect of the IoT, and it should be part of Watr.li, too.
In the future of Watr.li, plants may be enabled to
talk amongst each other in addition to talking to the
display node. This could enable plants to coordinate
their findings amongst each other, report new or
more detailed data, and even provide instructions
on how to change the Watr.li ecosystem. Suppose,
for example, all Plant Nodes are equipped with a
light sensor. In case of under- or overexposure, the
plants could coordinate amongst themselves who
should switch places, and provide their humans
with the resulting instructions.

Enabling plants to talk amongst each other would
alter the traffic pattern of the IoP significantly. Since
RPL, the underlying routing protocol currently in
use, is optimized for multipoint-to-point traffic and
routes all traffic through the DN, even if the com-
municating nodes are right next to each other,
this may negatively impact the energy resources of
nodes close to the root node in a multi-hop network.
While an extension exists that introduces point-to-
point communication to RPL [60], this does not
change RPL’s default mode of operation. Therefore,
it may be useful to switch to a routing proto-
col specifically designed to work with multipoint-
to-multipoint traffic when this becomes the most
prominent traffic pattern. This requirement is met
by the alternative routing protocols provided by
RIOT, namely AODVv2 [61] and OLSRv2 [62] (in
progress).

10.6 Plant-to-thing coordination

The Internet of Things bears more power than
just connecting sensors to humans: Through
autonomous machine-to-machine communication,
things can cooperate amongst each other to shape
their environment in a way that wouldn’t be possi-
ble otherwise.

In the context of watr.li, some examples for this
could be: plants communicating amongst each other
if their needs are being met and consequently
improving the situation on their own. To achieve
this, the Internet of Plants could cooperate with
other appliances, such as automatic watering sys-
tems (during holiday season), electronic blinds (to
move when there’s too much or too little light), or
thermostats.

However, since home wireless automation over
IEEE 802.15.4 is a comparatively new field with lots
of incompatible, proprietary solutions, this vision
may be a bit out of scope.

11 APPENDIX: WORK DISTRIBUTION IN THIS
PAPER

When the work on this paper started, the system
architecture design as well as the hardware were
discussed and chosen by both authors. Once the
general direction was clear, the authors allocated
some tasks between themselves.

Lucas Jenß

• Assumed responsibility for the Front-End

• Installed Linux on the DN, including configu-
ration of the R-IDGE USB Router

• Implemented the DN web application (subsec-
tion 6.3), the Eclipse Californium integration
and the Watr.li UI

• Set up the blog software used for http://watr.li
and maintained the blog layout

• Debugged issues on the SAMR board, includ-
ing networking problems (subsection 7.1)

• Circumvented ND such that it was possible to
send messages from RIOT to Linux with RIOT
answering neighbor solicitations.

• Connected the humidity sensor to the SAMR
(aided by Peter Kietzmann)

Lotte Steenbrink

• Assumed responsibility for the “Back-End”

• Wrote the RIOT application running on the PN

• Extended microcoap

• “Routing consultant”

• Designed the communication model (subsec-
tion 5.4)

• Implemented Twitter notification support on
the DN



18

• Took care of administrative tasks regarding the
Eclipse Open IoT registration etc.

• Performed the mockups for the UI design

• Updated the Contiki-based RPLd that comes
with the R-IDGE USB Router to work with a
current Linux kernel (subsection 6.4) (aided by
Martin Landsmann)

All forms of outreach were done in teamwork. The
blog was filled by both authors, and the workshops
were prepared and lead with combined efforts. The
promotional video was scripted by both authors.
Lucas Jenß then took care of the technical realiza-
tion. He provided camera equipment as well as a
location. Lotte Steenbrink contributed storyboards
and props.

12 APPENDIX: CALIBRATION OF THE ADC

The employed humidity sensor basically consists
of two electrodes which pass a current. These are
tucked into the soil whose humidity we want to
measure. The soil becomes more electrically con-
ductive the more humid it is, increasing the current
flow. On the sensor, a common collector circuit then
translates the change in current flow to a change in
voltage at its output, which is the sensor’s output
pin.

This value is sampled by the ADC on the SAMR.
It is used in an operation mode that compares
the input signal to a reference voltage and then
quantizes the signal. The maximum sampled value
is reached when the input has the same magnitude
as the reference voltage, 3.3V for the Watr.li sce-
nario. Ignoring small voltage drops caused by the
transistor circuit, the sensor should roughly reach
this maximum value when submerged in water. The
ADC is used with the maximum sampling width of
12-bit, leading to a maximum value of 212–1 = 4095.

Ideally, the correlation between sampled voltage
and value is as shown in Figure 11, i.e. the slope’s
gain is 1 and it’s offset is 0.

A common issue with cheap ADC components is,
however, that the sampled value never drops below
a certain minimum and/or never reaches the maxi-
mum value. As a result, vendors include hardware
capabilities to compensate these inaccuracies, as is
the case on the SAMR. The calibration process is
explained in this section.

Figure 11. Correlation between voltage sampled
voltage and value provided by the ADC

Some changes had to be made to the RIOT
source tree in order to perform calibration.
The configuration relevant to the ADC
is stored in the boards/samd21-xpro/
include/periph_conf.h file. The values
which need to be tweaked for the calibration
are SAMPLE_0_V_OFFSET (the offset) and
SAMPLE_REF_V (the gain). To determine these
values, an ADC test application [63] needs to
be flashed and executed on the SAMR board.
Additionally, the ADC conflicts with the default
STDOUT device (UART_0) on the SAMR. To be able
to see the debug output from the RIOT application
nonetheless, STDOUT has to be moved to UART_1.
Since, in contrast to UART_0, UART_1 does not
have a USB interface, an additional USB/UART
converter had to be connected as illustrated in
Figure 12.

To determine the ADC parameters, two tests need
to be executed. The first one will identify the off-
set, i.e. the minimum value the ADC can return.
For this, SAMPLE_REF_V needs to be initialized
to 0 and ADC_0_CORRECTION_EN has to be dis-
abled, i.e. set to 0 too. A GND pin has to be
connected to the ADC pin PA06 and a 3.3V pin
(the reference voltage) to the PA04 pin (compare
Figure 13). Running the test application mentioned
previously will now print values larger than 0,



19

Figure 12. Wiring diagram connecting a USB/UART
converter to the SAMR board.

which is the offset value. This is the value to which
SAMPLE_0_V_OFFSET has to be set.

The second test will identify the gain correction.
For this, the value that is measured by the ADC
when the reference voltage is connected has to be
retrieved. First, SAMPLE_0_V_OFFSET needs to be
set to the offset value discovered previously. Sec-
ond, SAMPLE_REF_V has to be set to 2048. Now, the
3.3V pin has to be connected to the ADC pin PA06
as well as the reference voltage pin PA04(compare
Figure 14). Running the test application will now
yield values smaller than 4095, which is the “mea-
sured maximum”.

The general equation for the ADC hardware correc-
tion is

e = expected value
m = measured maximum
o = offset value
g = gain value

e = (m− o) ∗ g

For the expected_value we’ll use 4095 since that

Figure 13. Wiring diagram for offset calibration of the
ADC

Figure 14. Wiring diagram for gain calibration of the
ADC



20

is the maximum value the ADC can return with
12-bit resolution. The offset value and measured
maximum were obtained previously by running
the test application. Solving the equation for “gain
value” and substituting the known variables will
yield the needed value:

g =
e

m− o

For the remainder of this section e = 4095, o = 90
and m = 3700 will be assumed, which yields
g ≈ 1.13. To set the microcontroller to the correct
12-bit gain value, a truncated binary fixed-point
representation [64, 65] is needed. Finally, the dec-
imal point is removed from the truncated binary
representation and the resulting binary number is
converted back to the decimal system:

1.1310 = 1.0010000101000111101 . . .2

1.1310 = 1.001000010102 (truncated)
1001000010102 = 231410

The SAMPLE_REF_V parameter of the
periph_conf.h has to be set to the result of
this calculation. SAMPLE_0_V_OFFSET must
remain set to the previously calculated offset value.

REFERENCES

[1] O. Hahm, E. Baccelli, H. Petersen, M. Wählisch,
and T. C. Schmidt, “Demonstration Abstract:
Simply RIOT – Teaching and Experimental
Research in the Internet of Things,” in Proc. of
13th ACM/IEEE Conference on Information Pro-
cessing in Sensor Networks Demo Session (IPSN),
(Piscataway, NJ, USA), IEEE Press, April 2014.

[2] J. Balendonck, J. Hemming, B. Van Tuijl, L. In-
crocci, A. Pardossi, P. Marzialetti, et al., “Sen-
sors and wireless sensor networks for irri-
gation management under deficit conditions
(flow-aid),” in Proceedings of the International
Conference on Agricultural Engineering (AgEng
2008), vol. 3, pp. 452–2, 2008.

[3] M. Dursun and S. Ozden, “A wireless appli-
cation of drip irrigation automation supported
by soil moisture sensors,” Scientific Research and
Essays, vol. 6, no. 7, pp. 1573–1582, 2011.

[4] J. McCulloch, P. McCarthy, S. M. Guru,
W. Peng, D. Hugo, and A. Terhorst, “Wire-
less Sensor Network Deployment for Water
Use Efficiency in Irrigation,” in Proceedings of
the Workshop on Real-world Wireless Sensor Net-
works, REALWSN ’08, (New York, NY, USA),
pp. 46–50, ACM, 2008.

[5] C. M. Angelopoulos, S. Nikoletseas, and G. C.
Theofanopoulos, “A smart system for garden
watering using wireless sensor networks,” in
Proceedings of the 9th ACM International Sym-
posium on Mobility Management and Wireless
Access, MobiWac ’11, (New York, NY, USA),
pp. 167–170, ACM, 2011.

[6] Parrot SA, “Parrot - flower power -
intelligent wireless sensor for your
plants.” http://www.parrot.com/usa/
products/flower-power/, 2015. [accessed
2015-09-09].

[7] “IEEE standard for local and metropolitan area
networks–part 15.4: Low-rate wireless personal
area networks (lr-wpans),” IEEE Std 802.15.4-
2011 (Revision of IEEE Std 802.15.4-2006), pp. 1–
314, Sept 2011.

[8] J. Hui and P. Thubert, “Compression Format
for IPv6 Datagrams over IEEE 802.15.4-Based
Networks,” RFC 6282, IETF, September 2011.

[9] T. Winter, P. Thubert, A. Brandt, J. Hui,
R. Kelsey, P. Levis, K. Pister, R. Struik,
J. Vasseur, and R. Alexander, “RPL: IPv6 Rout-
ing Protocol for Low-Power and Lossy Net-
works,” RFC 6550, IETF, March 2012.

[10] M. Landsmann, H. Perrey, O. Ugus,
M. Wählisch, and T. C. Schmidt, “Topology
Authentication in RPL,” in Proc. of the 32nd
IEEE INFOCOM. Poster, (Piscataway, NJ,
USA), IEEE Press, 2013.

[11] Z. Shelby, K. Hartke, and C. Bormann, “The
Constrained Application Protocol (CoAP),”
RFC 7252, IETF, June 2014.

[12] M. Kovatsch, “Coap for the web of things:
From tiny resource-constrained devices to the
web browser,” in Proceedings of the 2013 ACM

http://www.parrot.com/usa/products/flower-power/
http://www.parrot.com/usa/products/flower-power/


21

Conference on Pervasive and Ubiquitous Comput-
ing Adjunct Publication, UbiComp ’13 Adjunct,
(New York, NY, USA), pp. 1495–1504, ACM,
2013.

[13] DFROBOT, “DFROBOT SEN0114 humidity
sensor.” http://www.dfrobot.com/
index.php?route=product/product&
product_id=599, 2015. [accessed 2015-09-
09].

[14] ROSAND Technologies, “R-Idge.”
http://rosand-tech.com/products/
r-idge/prod.html, 2015. [accessed 2015-
09-10].

[15] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki
- a lightweight and flexible operating system
for tiny networked sensors,” in 29th Annual
IEEE International Conference on Local Computer
Networks, pp. 455–462, IEEE (Comput. Soc.),
2004.

[16] Contiki Project, “Contiki: The Open Source
Operating System for the Internet of Things.”
http://www.contiki-os.org/, 2015. [ac-
cessed 2015-09-10].

[17] D. C. Philip Levis, Sam Madden, Joseph Po-
lastre, Robert Szewczyk, Alec Woo, David Gay,
Jason Hill, Matt Welsh, Eric Brewer, “TinyOS:
An operating system for sensor networks,”
Ambient Intelligence, 2004.

[18] TinyOS Project, “TinyOS Home Page.” http:
//tinyos.net/, 2015. [accessed 2015-09-10].

[19] E. Baccelli, O. Hahm, M. Günes, M. Wählisch,
and T. C. Schmidt, “RIOT OS: Towards an OS
for the Internet of Things,” in Proc. of the 32nd
IEEE INFOCOM. Poster, (Piscataway, NJ, USA),
IEEE Press, 2013.

[20] RIOT, “RIOT - The friendly Operating Sys-
tem for the Internet of Things.” http://
riot-os.org/, 2015. [accessed 2015-09-10].

[21] M. Lenders, “microcoap: initial import
by authmillenon · Pull Request #2383 ·
RIOT-OS/RIOT.” https://github.com/
RIOT-OS/RIOT/pull/2383/files, 2015.

[last update 2015-02-11; accessed 2015-09-10].

[22] M. Landhäusser and A. Genaid, “Connecting
User Stories and Code for Test Development,”
in Proceedings of the Third International Work-
shop on Recommendation Systems for Software
Engineering, RSSE ’12, (Piscataway, NJ, USA),
pp. 33–37, IEEE Press, 2012.

[23] R. T. Fielding and R. N. Taylor, “Principled
design of the modern Web architecture,” in
Proceedings of the 22nd international conference
on Software engineering - ICSE ’00, (New York,
New York, USA), pp. 407–416, ACM Press,
June 2000.

[24] R. T. Fielding, Architectural Styles and the Design
of Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine,
2000.

[25] T. Jaffey, “1248/microcoap · GitHub.” https:
//github.com/1248/microcoap, 2015. [ac-
cessed 2015-09-10].

[26] L. Steenbrink and L. Jenss, “nodes/plant node
at master · watr-li/nodes.” https:
//github.com/watr-li/nodes/tree/
master/plant_node, 2015. [accessed
2015-09-14].

[27] M. Kovatsch, O. Bergmann, and C. Bormann,
“CoAP Implementation Guidance,” Internet-
Draft – work in progress 03, IETF, July 2015.

[28] T. Jaffey, “Toby Jaffey auf Twitter:
”@watr li We’re using it in internal
projects, where it’s doing fine as is.
Accepting pull requests though :)”.”
https://twitter.com/tobyjaffey/
status/568425570574446592, 2015.
[accessed 2015-09-10].

[29] L. Steenbrink, “nodes/coap ext.c at
master · watr-li/nodes · GitHub.”
https://github.com/watr-li/nodes/
blob/master/plant_node/coap_ext.c,
2015. [accessed 2015-09-14].

[30] L. Steenbrink, “microcoap: add patch to
easily increase MAX SEGMENTS by Lotter-

http://www.dfrobot.com/index.php?route=product/product&product_id=599
http://www.dfrobot.com/index.php?route=product/product&product_id=599
http://www.dfrobot.com/index.php?route=product/product&product_id=599
http://rosand-tech.com/products/r-idge/prod.html
http://rosand-tech.com/products/r-idge/prod.html
http://www.contiki-os.org/
http://tinyos.net/
http://tinyos.net/
http://riot-os.org/
http://riot-os.org/
https://github.com/RIOT-OS/RIOT/pull/2383/files
https://github.com/RIOT-OS/RIOT/pull/2383/files
https://github.com/1248/microcoap
https://github.com/1248/microcoap
https://github.com/watr-li/nodes/tree/master/plant_node
https://github.com/watr-li/nodes/tree/master/plant_node
https://github.com/watr-li/nodes/tree/master/plant_node
https://twitter.com/tobyjaffey/status/568425570574446592
https://twitter.com/tobyjaffey/status/568425570574446592
https://github.com/watr-li/nodes/blob/master/plant_node/coap_ext.c
https://github.com/watr-li/nodes/blob/master/plant_node/coap_ext.c


22

leben · Pull Request 2733 · RIOT-OS/RIOT ·
GitHub.” https://github.com/RIOT-OS/
RIOT/pull/2733, 2015. [accessed 2015-09-
10].

[31] github.com, “Commits · 1248/microcoap
· GitHub.” https://github.com/
1248/microcoap/commits?author=
Lotterleben, 2015. [accessed 2015-09-10].

[32] Play Framework, “Play Framework - Build
Modern and Scalable Web Apps with Java and
Scala.” https://playframework.com/,
2015. [accessed 2015-09-10].

[33] akka.io, “Akka.” http://akka.io/, 2015.
[accessed 2015-09-10].

[34] M. Wasilak, “Linux RPL router.”
http://sixpinetrees.blogspot.de/
2014/11/linux-rpl-router.html.
[written 2014-11-16; accessed 2015-04-21].

[35] M. Richardson, “unstrung - an IETF roll - RPL
(ripple) implementation for Linux.” https:
//github.com/mcr/unstrung. [last update
2015-01-02; accessed 2015-04-21].

[36] J. P. Taveira, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks
for Linux.” https://github.com/
joaopedrotaveira/linux-rpl. [last
update 2014-01-29; accessed 2015-04-21].

[37] J. P. Taveira, “Re: [Roll] Looking for Linux
implementation of RPL for interop testing.”
http://www.ietf.org/mail-archive/
web/roll/current/msg09258.html.
[written 2015-04-17; accessed 2015-04-21].

[38] T. Cheneau, “SimpleRPL.” https:
//github.com/tcheneau/simpleRPL.
[last update 2013-06-09; accessed 2015-04-21].

[39] M. Kleine-Budde, “Re: [Linux-zigbee-devel]
Can I get the patches for 3.10 kernel.”
http://www.spinics.net/lists/
linux-wpan/msg01496.html. [written
2015-03-04; accessed 2015-04-21].

[40] A. Aring, “Re: [Roll] Looking for Linux

implementation of RPL for interop testing].”
http://www.spinics.net/lists/
linux-wpan/msg01692.html. [written
2015-04-17; accessed 2015-04-21].

[41] ROSAND Technologies, “RPLd.”
http://rosand-tech.com/downloads/
index.html, 2015. [accessed 2015-09-20].

[42] Wiredsource, “Samr21: ADC implementation
by wiredsource · Pull Request 2063 · RIOT-
OS/RIOT · GitHub.” https://github.com/
RIOT-OS/RIOT/pull/2063, 2015. [accessed
2015-09-10].

[43] P. Kietzmann, “cpu/samd21: Add samd21
UART 1 implementation by PeterKietzmann
· Pull Request 2457 · RIOT-OS/RIOT ·
GitHub.” https://github.com/RIOT-OS/
RIOT/pull/2457, 2015. [accessed 2015-09-
10].

[44] L. Jenss, “Fix unaligned access on
Samr21/Cortex-M0 by x3ro · Pull Request
2727 · RIOT-OS/RIOT · GitHub.” https://
github.com/RIOT-OS/RIOT/pull/2727,
2015. [accessed 2015-09-10].

[45] J. Ko, J. Jeong, J. Park, J. A. Jun, and N. Kim,
“Towards full rpl interoperability: Addressing
the case with downwards routing interoper-
ability,” in Proceedings of the 10th ACM Con-
ference on Embedded Network Sensor Systems,
SenSys ’12, (New York, NY, USA), pp. 353–354,
ACM, 2012.

[46] T. Narten, E. Nordmark, W. Simpson, and
H. Soliman, “Neighbor Discovery for IP ver-
sion 6 (IPv6),” RFC 4861, IETF, September 2007.

[47] O. Hahm, “RIOT-2015.09 - Release Notes.”
https://github.com/RIOT-OS/RIOT/
blob/2015.09-branch/release-notes.
txt, 2015. [accessed 2016-01-08].

[48] L. Guan, K. Kuladinithi, T. Potsch, and C. Go-
erg, “A deeper understanding of interoperabil-
ity between tinyrpl and contikirpl,” in Intel-
ligent Sensors, Sensor Networks and Information
Processing (ISSNIP), 2014 IEEE Ninth Interna-
tional Conference on, pp. 1–6, April 2014.

https://github.com/RIOT-OS/RIOT/pull/2733
https://github.com/RIOT-OS/RIOT/pull/2733
https://github.com/1248/microcoap/commits?author=Lotterleben
https://github.com/1248/microcoap/commits?author=Lotterleben
https://github.com/1248/microcoap/commits?author=Lotterleben
https://playframework.com/
http://akka.io/
http://sixpinetrees.blogspot.de/2014/11/linux-rpl-router.html
http://sixpinetrees.blogspot.de/2014/11/linux-rpl-router.html
https://github.com/mcr/unstrung
https://github.com/mcr/unstrung
https://github.com/joaopedrotaveira/linux-rpl
https://github.com/joaopedrotaveira/linux-rpl
http://www.ietf.org/mail-archive/web/roll/current/msg09258.html
http://www.ietf.org/mail-archive/web/roll/current/msg09258.html
https://github.com/tcheneau/simpleRPL
https://github.com/tcheneau/simpleRPL
http://www.spinics.net/lists/linux-wpan/msg01496.html
http://www.spinics.net/lists/linux-wpan/msg01496.html
http://www.spinics.net/lists/linux-wpan/msg01692.html
http://www.spinics.net/lists/linux-wpan/msg01692.html
http://rosand-tech.com/downloads/index.html
http://rosand-tech.com/downloads/index.html
https://github.com/RIOT-OS/RIOT/pull/2063
https://github.com/RIOT-OS/RIOT/pull/2063
https://github.com/RIOT-OS/RIOT/pull/2457
https://github.com/RIOT-OS/RIOT/pull/2457
https://github.com/RIOT-OS/RIOT/pull/2727
https://github.com/RIOT-OS/RIOT/pull/2727
https://github.com/RIOT-OS/RIOT/blob/2015.09-branch/release-notes.txt
https://github.com/RIOT-OS/RIOT/blob/2015.09-branch/release-notes.txt
https://github.com/RIOT-OS/RIOT/blob/2015.09-branch/release-notes.txt


23

[49] E. Ancillotti, R. Bruno, and M. Conti, “Reliable
data delivery with the ietf routing protocol
for low-power and lossy networks,” Indus-
trial Informatics, IEEE Transactions on, vol. 10,
pp. 1864–1877, Aug 2014.

[50] BytesGalore, “sys/net/routing/rpl: apply cor-
rect byte order for RPL messages by Bytes-
Galore · Pull Request 2431 · RIOT-OS/RIOT ·
GitHub.” https://github.com/RIOT-OS/
RIOT/pull/2431, 2015. [accessed 2015-09-
10].

[51] O. Hahm, “vtimer: vtimer msg test crashes
after 49’20” · Issue 1753 · RIOT-OS/RIOT ·
GitHub.” https://github.com/RIOT-OS/
RIOT/issues/1753, 2015. [accessed 2015-09-
18].

[52] K. Schleiser, “sys: add new timer subsystem
by kaspar030 · Pull Request 2926 · RIOT-
OS/RIOT · GitHub.” https://github.com/
RIOT-OS/RIOT/pull/2926, 2015. [accessed
2015-09-18].

[53] Eclipse IoT Working Group, “Eclipse IoT
Working Group.” http://www.eclipse.
org/org/workinggroups/m2miwg_
charter.php, 2015. [accessed 2015-09-
10].

[54] watr.li, “Watr.li - Eclipse Open IoT Chal-
lenge 2015 on Vimeo.” https://vimeo.
com/122985560, 2015. [accessed 2015-09-10].

[55] watr.li, “watr.li — Building the Internet of
Plants.” http://watr.li, 2015. [accessed
2015-09-10].

[56] O. Hahm, “Joining the RIOT.” http://watr.
li/downloads/riot-grenoble.pdf, 2015.
[accessed 2015-09-10].

[57] watr.li, “Workshop Guide — watr.li.” http:
//watr.li/workshop-guide.html, 2015.
[accessed 2015-09-10].

[58] watr.li, “applications/chat at workshop
· watr-li/applications · GitHub.”
https://github.com/watr-li/
applications/tree/workshop/chat,

2015. [accessed 2015-09-10].

[59] Hacking Health, “HackingHealth — Bring-
ing innovation to healthcare.” http://www.
hackinghealth.ca, 2015. [accessed 2015-09-
10].

[60] E. Baccelli, M. Philipp, and M. Goyal,
“The p2p-rpl routing protocol for ipv6 sen-
sor networks: Testbed experiments,” in Soft-
ware, Telecommunications and Computer Networks
(SoftCOM), 2011 19th International Conference
on, pp. 1–6, Sept 2011.

[61] C. Perkins, S. Ratliff, J. Dowdell, L. Steen-
brink, and V. Mercieca, “Dynamic MANET On-
demand (AODVv2) Routing,” Internet-Draft –
work in progress 12, IETF, October 2015.

[62] O. Hahm, “routing: add OLSRv2 by
OlegHahm · Pull Request 2294 · RIOT-
OS/RIOT · GitHub.” https://github.
com/RIOT-OS/RIOT/pull/2294, 2015.
[accessed 2015-09-10].

[63] L. Steenbrink and L. Jenss, “nodes/adc test
at master · watr-li/nodes · GitHub.”
https://github.com/watr-li/nodes/
tree/master/adc_test, 2015. [accessed
2015-09-14].

[64] University of Wisconsin, “Binary Fixed
Point.” http://www.cs.uwm.edu/˜cs151/
Bacon/Lecture/HTML/ch03s07.html,
2015. [accessed 2015-09-14].

[65] Exploring Binary, “Decimal/Binary
Converter - Exploring Binary.”
http://www.exploringbinary.com/
binary-converter/, 2015. [accessed
2015-09-14].

https://github.com/RIOT-OS/RIOT/pull/2431
https://github.com/RIOT-OS/RIOT/pull/2431
https://github.com/RIOT-OS/RIOT/issues/1753
https://github.com/RIOT-OS/RIOT/issues/1753
https://github.com/RIOT-OS/RIOT/pull/2926
https://github.com/RIOT-OS/RIOT/pull/2926
http://www.eclipse.org/org/workinggroups/m2miwg_charter.php
http://www.eclipse.org/org/workinggroups/m2miwg_charter.php
http://www.eclipse.org/org/workinggroups/m2miwg_charter.php
https://vimeo.com/122985560
https://vimeo.com/122985560
http://watr.li
http://watr.li/downloads/riot-grenoble.pdf
http://watr.li/downloads/riot-grenoble.pdf
http://watr.li/workshop-guide.html
http://watr.li/workshop-guide.html
https://github.com/watr-li/applications/tree/workshop/chat
https://github.com/watr-li/applications/tree/workshop/chat
http://www.hackinghealth.ca
http://www.hackinghealth.ca
https://github.com/RIOT-OS/RIOT/pull/2294
https://github.com/RIOT-OS/RIOT/pull/2294
https://github.com/watr-li/nodes/tree/master/adc_test
https://github.com/watr-li/nodes/tree/master/adc_test
http://www.cs.uwm.edu/~cs151/Bacon/Lecture/HTML/ch03s07.html
http://www.cs.uwm.edu/~cs151/Bacon/Lecture/HTML/ch03s07.html
http://www.exploringbinary.com/binary-converter/
http://www.exploringbinary.com/binary-converter/

	Introduction
	Towards the Internet of Plants
	Related work
	Technologies
	System concept
	Hardware
	Operating Systems
	Network Stack
	Routing Protocol

	Communication model
	User interface (UI)
	Configuring watering needs of a plant

	Implementation
	CoAP communication
	Representational State Transfer (REST)
	Watr.li CoAP messages

	Plant Node
	Extending Microcoap
	Sensing humidity values

	Display Node
	State of RPL on Linux
	Watr.li Auto-Configuration

	Testing
	SAMR specific issues
	Issues due to memory constraints
	Neighbor Discovery
	Heterogeneous networking
	Timers
	Hard faults on the SAMR

	Community building
	The Eclipse Open-IoT Challenge
	Curation of a Blog
	Planning and realization of a workshop
	Bayer Digital Summit invitation

	Conclusion
	Outlook
	Battery life experience
	Custom Plant Node cases
	Improved Plant Node identification
	Extended sensing
	Plant-to-plant coordination
	Plant-to-thing coordination

	Appendix: Work distribution in this paper
	Appendix: Calibration of the ADC

