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The processing power of modern many core hardware such as graphics processing
units (GPUs) or coprocessors is increasingly available for general-purpose computation.
The seamless way of actor systems to addresses concurrent and distributed programming
makes it an attractive approach to integrate these novel architectures. In this work, we
introduce OpenCL-enabled actors to the C++ Actor Framework (CAF). This offers a
high level interface for accessing any OpenCL device without leaving the actor paradigm.
The new type of actor is integrated into the runtime environment of CAF and gives rise
to transparent message passing in distributed systems on heterogeneous hardware. New
actors are instantiated by the function spawn cl, while the runtime environment handles the
discovery and setup of OpenCL devices in the background. Our evaluations on a commodity
GPU, an Nvidia TESLA, and an Intel PHI reveal the expected linear scaling behavior when
offloading larger work items. For sub-second duties, the efficiency of offloading was found
to largely differ between devices. Moreover, our findings indicate a negligible overhead over
programming the native OpenCL API.
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1 Introduction

The stagnating clock speed forced CPU manufacturers into steadily increasing the number

of cores on commodity hardware to meet the ever-increasing demand for computational

power. Still, the number of parallel processing units on a single GPU is higher by orders

of magnitudes. This rich source of computing power became available to general purpose

applications as GPUs moved away from single purpose pipelines for graphics processing

towards compact clusters of data-parallel programmable units [29].

Algorithms that can be mapped to the data-parallel architecture of GPUs can ex-

pect a massive boost in performance. Combined with the widespread availability of

general-purpose GPU (GPGPU) devices on desktops, laptops and even mobiles, GPGPU

computing has been widely recognized as an important optimization strategy. In addition,

accelerating coprocessors that better support code branching established on the market.

Since not all tasks can benefit from such specialized devices, developers need to

distribute work on the various architectural elements. Managing such a heterogeneous

runtime environment inherently increases the complexity. While some loop-based compu-

tations can be offloaded to GPUs using OpenACC [7] or recent versions of OpenMP [11]

with relatively little programming effort, it has been shown that a consistent task-oriented

design exploits the available parallelism more efficiently. Corresponding results achieve

better performance [21] while they are also applicable to more complex work loads. How-

ever, manually orchestrating tasks between multiple devices is an error-prone and complex

task.

The actor model of computation describes applications in terms of isolated software

entities—actors—that communicate by asynchronous message passing. Actors can be

distributed across any number of processors or machines by the runtime system as they are

not allowed to share state and thus can always be executed in parallel. The message-based

decoupling of software entities further enables actors to run on different devices in a

heterogeneous environment. Hence, the actor model can simplify software development

by hiding the complexity of heterogeneous and distributed deployments.

This work is a version of the paper “Manyfold Actors: Extending the C++ Actor

Framework to Heterogeneous Many-Core Machines using OpenCL” [16] we presented

at the SPLASH conference 2015 as part of the Agere workshop and introduces actors

programmed with OpenCL—the Open Computing Language standardized by the Khronos

Group [32]. We integrate heterogeneous programming into the C++ Actor Framework

[8], and thoroughly examine the runtime overhead introduced by our abstraction layer in

more detail than in our previous work [10]. We aim at integrating heterogeneous hardware

to the existing benefits of CAF such as network-transparency, memory-efficiency and high
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performance.

The remainder of this paper is organized as follows. Section 2 introduces the actor

model as well as heterogeneous computing in general and OpenCL in particular. Our

design goals and their realization are discussed in Section 3 as well the limitations of

our approach. In Section 4, we evaluate the performances of our work with a focus on

overhead and scalability. Finally, Section 5 concludes and gives an outlook to future

work.

2 Background and Related Work

Before showing design details, we first discuss the actor model of computation, heteroge-

neous computing in general, and OpenCL.

2.1 The Actor Model

Actors are concurrent, isolated entities that interact via message passing. They use unique

identifiers to address each other transparently in a distributed system. In reaction to a

received message, an actor can, (1) send messages to other actors, (2) spawn new actors

and (3) change its own behavior to process future messages differently.

These characteristics lead to several advantages. Since actors can only interact via

message passing, they never corrupt each others state and thus avoid race conditions

by design. Work can be distributed by spawning more actors in a divide and conquer

approach. Further, the actor model addresses fault-tolerance in distributed systems by

allowing actors to monitor each other. If an actors dies unexpectedly, the runtime system

sends a message to each actor monitoring it. This relation can be strengthened through

bidirectional monitors called links. By providing network-transparent messaging and fault

propagation, the actor model offers a high level of abstraction for application design and

development targeted at concurrent and distributed systems.

Hewitt et al. [15] proposed the actor model in 1973 as part of their work on artificial

intelligence. Later, Agha formalized the model in his dissertation [1] and introduced

mailboxing for processing actor messages. He created the foundation of an open, external

communication [2]. At the same time, Armstrong took a more practical approach by

developing Erlang [5].

Erlang is a concurrent, dynamically typed programming language developed for

programming large-scale, fault-tolerant systems [4]. Although Erlang was not build with

the actor model in mind, it satisfies its characteristics. New actors, called processes

in Erlang, are created by a function called spawn. Their communication is based on
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asynchronous message passing. Processes use pattern matching to identify incoming

messages.

To combine the benefits of a high level of abstraction and native program execution,

we have developed the C++ Actor Framework (CAF) [9]. Actors are implemented as

sub-thread entities and run in a cooperative scheduler using work-stealing. As a result,

the creation and destruction of actors is a lightweight operation. Uncooperative actors

that require access to blocking function calls can be bound to separate threads by the

programmer to avoid starvation. Furthermore, CAF includes a runtime inspection tool to

help debugging distributed actor systems.

In CAF, actors are created using the function spawn. It creates actors from either

functions or classes and returns a network-transparent actor handle. Communication is

based on message passing, using send or sync_send. Note that the latter function only

suspends an actor until the response arrives but does not block any system resources.

CAF offers dynamically as well as statically typed actors. While the dynamic approach

is closer to the original actor model, the static approach allows programmers to define a

message passing interface which is checked by the compiler for both incoming and outgoing

messages.

Messages are buffered at the receiver in order of arrival before they are processed.

The behavior of an actor specifies its response to messages it receives. CAF uses partial

functions as message handlers, which are implemented using an internal domain-specific

language (DSL) for pattern matching. Messages that cannot be matched stay in the buffer

until they are discarded manually or handled by another behavior. The behavior can be

changed dynamically during message processing.

In previous work [8], we compared CAF to other actor implementations. Namely

Erlang, the Java frameworks SALSA Lite [12] and ActorFoundry (based on Kilim [31]),

the Scala toolkit and runtime Akka [33] and Charm++ [18]. We measured (1) actor

creation overhead, (2) sending and processing time of message passing implementations,

(3) memory consumption for several use cases and (4) picked up a benchmark from the

Computer Language Benchmarks Game. The results showed that CAF displays consistent

scaling behavior, minimal memory overhead and very high performance.

2.2 Heterogeneous Computing

Graphic processing units (GPUs) were originally developed to calculate high resolution

graphic effects in real-time [26]. High frame rates are achieved by executing a single

routine concurrently on many pixels at once. While this is still the dominant use-case,

frameworks like OpenCL [30] or CUDA (Compute Unified Device Architecture) [19] offer

an API to use the available hardware for non-graphical applications. This approach is
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called general purpose GPU (GPGPU) computing.

The first graphics cards were build around a pipeline, where each stage offered a different

fixed operation with configurable parameters [23]. Soon, the capabilities supported by

the pipeline were neither complex nor general enough to keep up with the developing

capabilities of shading and lighting effects. To adapt to the challenges, each pipeline

stage evolved to allow individual programability and include an enhanced instruction set

[6]. Although this was a major step towards the architecture in use today, the design

still lacked mechanisms for load balancing. If one stage required more time than others,

the other stages were left idle. Further, the capacities of a stage were fixed and could

not be shifted depending on the algorithm. Eventually, the pipelines were replaced by

data-parallel programable units to achieve an overall better workload and more flexibility

[29]. All units share a memory area for synchronization, while in addition each unit has

a local memory area only accessible by its own processing elements. A single unit only

supports data parallelism, but a cluster of them can process task parallel algorithms as

well.

By now, this architecture can be found in non-GPU hardware as well. Accelerators

with the sole purpose of data-parallel computing are available on the market. While some

have a more similar architecture to GPUs, for example the Nvidia Tesla devices [27], others

are build closer to x86 machines, most prominently the Intel Xeon Phi coprocessors [17].

Both have many more cores than available CPUs and require special programming models

to make optimal use of their processing power.

Naturally, algorithms that perform similar work on independent data benefit greatly

from the parallelism offered by these architectures. Since most problems cannot be mapped

solely to this category, calculations on accelerators are often combined with calculations

on the CPU. This combination of several hardware architectures in a single application is

called heterogenous computing.

2.3 OpenCL

The two major frameworks for GPGPU computing are CUDA (Compute Unified Device

Architecture) [19]—a proprietary API by Nvidia—and OpenCL [30]—a standardized

API. In our work, we focus on OpenCL, as it is vendor-independent and allows us

to integrate a broad range of hardware. The OpenCL standard is developed by the

OpenCL Working Group, a subgroup of the non-profit organization Khronos Group [32].

Universality is the key feature of OpenCL, but has the downside that it is not possible to

exploit all hardware-dependent feature. The OpenCL framework includes an API and a

cross-platform programming language called “OpenCL C” [25].

A study by Fang et al. [13] examines the performance differences between OpenCL
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Figure 1: The OpenCL view on a computation device.

and CUDA. Their benchmarks are divided into two categories. The first category consists

of synthetic benchmarks, which measure peak performance and show similar results for

OpenCL and CUDA. The second category includes real-world applications and shows a

better overall performance for CUDA. However, the author explain the gap with differences

in the programming model, optimizations, architecture and compiler. They continue to

define a fair comparison that includes several steps such as individual optimizations and

multiple kernel compilation steps.

Figure 1 depicts a computing device from the perspective of OpenCL. Each device

is divided into compute units (CU), which are further divided into processing elements

(PE) that perform the actual calculations. OpenCL defines four different memory regions,

which may differ from the physical memory layout. The global memory is accessible by all

PEs and has a constant memory region with read-only access. Each local memory region

is shared by the PEs of a single CU. In addition, each PE has a private memory region

which cannot be accessed by others.

Each OpenCL program consists of two parts. One part runs on the host, normally a

CPU, and is called host program. The other part consists of any number of kernels that

run on an OpenCL device. A kernel is a function written in an OpenCL-specific C dialect.

OpenCL does not require a binary interface, as kernels can be compiled at runtime by the

host program for a specific GPGPU device.

A kernel is executed in an N -dimensional index space called “NDRange”. Derived

from three dimensional graphic calculations, N can be either one, two or three. Each

tuple (nx, ny, nz) in the index space identifies a single kernel execution, called work-item.
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These tuples are called global IDs and allow the identification of work-items during the

kernel execution. Further organization is achieved through work-groups. The number

of work-items per work-group cannot exceed the number of processing elements in a

compute unit. Similar to the global index space, work-items can be arranged in up to

three dimensions inside a work-group. All items in a work-group run in parallel on a

single CU. Depending on the available hardware, work-groups may run sequentially or in

parallel.

The host program initializes data on the device, compiles kernels, and manages their

execution. This requires a series of steps before running a kernel on an OpenCL device.

Available device drivers offer an entry point in form of different platforms. These can be

queried through the OpenCL API. Once a platform is chosen, all associated device IDs

can be acquired. The next step is to create a context object for managing devices of the

platform in use.

Communication with a device requires a command queue. The number of command

queues per context or device is not limited, though a queue is associated with a single

device. Multiple commands can be organized with events. Each command can generate

an event which can than be passed to another command to define a dependency between

them. Alternatively, OpenCL allows associating an event with a callback. In this way, an

asynchronous workflow can be implemented.

Before a kernel—usually stored as source code in the host application—can run on a

device, it needs to be compiled using the API of OpenCL. The compilation is then wrapped

in a program object. Each program can compile multiple kernels at once and allows

their retrieval by name. Running a kernel requires the transfer of its input argument

to the target device, as the memory regions of host and GPGPU device are usually

disjoint. OpenCL organizes chunks of memory as memory buffer objects that can be

created independently and set as read-write, read-only or write-only. Once each argument

is assigned to a buffer and the programmer has specified all dimensions in the index space,

the kernel can be scheduled. The last step in this process is copying any produced results

from the GPGPU device back to the host.

OpenCL offers reference counted handles for its components using the cl_ prefix, e.g.,

a kernel is stored as a cl_kernel. The internal reference count needs to be managed

manually. In a similar manner, functions are prefixed with cl, e.g., clGetPlaformIDs.

Most API calls can be executed blocking as well as non-blocking.

The Khronos Group is actively working on advancing OpenCL. The next version of

the specification is available as a provisional document since January 2015. In addition to

OpenCL itself, the group supports projects that build upon or support OpenCL. SYCL

(C++ Single-source Heterogeneous Programming for OpenCL) [22] aims to provide the
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same source code for the CPU and device part, compared to a separate code base for the

OpenCL kernels. Since the code for all targets is written with C++ templates, it can

be shared across platforms. However, the specification keeps to the familiar execution

model from OpenCL and imposes the same restrictions to the SYCL device code as to

OpenCL C.

2.4 Approaches to Heterogeneous Computing

As with multi-core machines, accelerators can be programmed through many different

frameworks. The above-mentioned frameworks OpenCL and CUDA are the main stream

solutions. They offer a lot of control at the price of an extensive API. Many libraries

have emerged that use OpenCL or CUDA as a backend to offer a higher level API and

implementations of often-used algorithms. Examples are Boost.Compute 1 or VexCL 2.

The projects Aparapi [3] and PyOpenCL [20] provide interfaces to write OpenCL

kernels in their respective language, Java and Python. By avoiding the use of OpenCL

C they ease the entrance to heterogeneous computing for developers not familiar with

OpenCL. Having this level of abstraction further allows the execution of code on CPUs

in case no suitable OpenCL devices is available. While Aparapi provides an interface

similar to Java Threads, PyOpenCL relies on annotations to define which functions are

offloaded. In contrast, OCCA [24] has the goal to provide portability and flexibility to

developers. They contribute a uniform interface for programming OpenMP, CUDA and

OpenCL. Writing the offloaded code in macros allows translation depending on the target

platform at runtime. An extensible approach allows the addition of new languages in the

future.

A pragma-based approach uses code annotations to specify which code should be

parallelized by the compiler. A major advantage is the portability of existing code by

adding the annotations to the offloaded code blocks. At the same time the developer has

much less control over the execution and less potential for optimization. OpenACC [28] is

a such standard. It supports data parallel computations distributed on many cores as

well as vector operations. A comparison between OpenCL and OpenACC can be found in

the work of Wienke et al. [34]. Although OpenCL showed much better performance in

their test, the authors conclude that OpenACC opens the field to more programmers and

will improve in performance over time.

Integrating GPU computing into the actor model is also explored by other scientists.

For example, Harvey et al. [14] showed actors running OpenCL code as part of the actor

based programming language Ensemble. By adding an additional compiler step, they

1https://github.com/boostorg/compute (August 2015)
2https://github.com/ddemidov/vexcl (August 2015)
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allow the device code to be written in the same language as the rest of their code. This

approach simplifies the development as it allows the use of language features such as

multi-dimensional arrays. Further optimizations allow the language to keep messages sent

between OpenCL actors on the device instead of copying it back and forth. The code

used as the actors behavior still must be written to address the parallel nature of OpenCL

devices. Their benchmarks compare OpenACC, Ensemble and native OpenCL. In most

cases Ensemble performs close to OpenCL while OpenACC lacks behind in performance.

3 The Design of OpenCL Actors

We are now ready to introduce our approach in detail, discuss its rationales and imple-

mentation challenges along with its benefits as well as its limitations

3.1 Design Goals and Rationales

OpenCL is a widely deployed standard containing a programming language (OpenCL

C) and a management API. Unlike other approaches such as OCCA [24], CAF does

neither attempt to build a new language unifying CPU and GPGPU programming nor to

abstract over multiple GPGPU frameworks. Instead, our approach allows programmers to

implement actors using data-parallel kernels written in OpenCL C without contributing

any boilerplate code. Hence, CAF is hiding the management complexity of OpenCL. We

want to keep CAF easy to use in practice and confine tools to a standard-compliant C++

compiler with available OpenCL drivers. In particular, we do not require a code generator

or compiler extensions.

A possible design option would be to specify a domain-specific language (DSL) for

GPGPU programming in C++ based on template expressions. Such a DSL essentially

allows a framework to traverse the abstract syntax tree (AST) generated by C++ in order

to enable lazy evaluation or to generate output in a different language such as OpenCL

C. However, programmers would need to learn this DSL in the same way they need to

learn OpenCL C. Further, we assume GPGPU programmers to have some familiarity

or experience with OpenCL or CUDA. Introducing a new language would thus increase

the entry barrier instead of lowering it. Also, this would force users to re-write existing

OpenCL kernels. For this reason, we chose to support OpenCL C directly.

Our central goals for the design of OpenCL actors are (1) hiding complexity of OpenCL

management and (2) seamless integration into CAF with respect to access transparency

as well as location transparency.
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Hiding Complexity The OpenCL API is a low-level interface written in C with a

style that does not integrate well with modern C++. Although OpenCL does offer a

C++ header that wraps the C API, it shows inconsistencies when handling errors and

requires repetitive manual steps. The initialization of OpenCL devices, the compilation

and management of kernels as well as the asynchronous events generated by OpenCL can

and should be handled by the framework rather than by the programmer. Only relevant

decisions shall be left to the user and remain on a much higher level of abstraction than

is offered by OpenCL.

Seamless Integration OpenCL actors must use the same handle type as actors running

on the CPU and implement the same semantics. This is required to make both kinds

of actors interchangeable and hide the physical deployment at runtime. Further, using

the same handle type enables the runtime to use existing abstraction mechanism for

network-transparency, monitoring, and error propagation. Additionally, the API for

creating OpenCL actors should follow a conformal design, i.e., the OpenCL abstraction

should provide a function that is similar to spawn.

3.2 Core Approach to the Integration of OpenCL

The asynchronous API of OpenCL maps well to the asynchronous message passing found in

actor systems. For starting a computation, programmers enqueue a task to the command

queue of OpenCL and register a callback function that is invoked once the result has

been produced. This naturally fits actor messaging, whereas the queue management is

done implicitly and a response message is generated instead of relying on user-provided

callbacks.

metainfo
+ kernel_name: string
+ input_mapping: function
+ output_mapping: function

actor_facade

+ ctx: cl_context
context

+ queue: cl_command_queue
+ id: cl_device_id

device

+ kernels: map<string,
                          cl_kernel>

program
command 1

*

1

1

1 *
1

*

1

*

Figure 2: Class diagram for the OpenCL integration.
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OpenCL actors introduce easy access to heterogeneous computing within the context

of CAF actors. Our main building block is the class actor_facade which is shown in

Figure 2. The facade wraps the kernel execution on OpenCL devices and provides a

message passing interface in form of an actor. For this purpose, the class implements

all required interfaces to communicate with other components of CAF (omitted in the

diagram for brevity). Whenever a facade receives a message, it creates a command which

preserves the original context of a message, schedules execution of the kernel and finally

produces a result message. The remaining classes implement the bookkeeping required by

OpenCL.

• metainfo is a singleton that performs device discovery lazily on first access, creates

one command queue per device, and provides the global OpenCL context;

• context wraps a cl_context which stores OpenCL-internal management data;

• device describes an OpenCL device and provides access to its command queue;

• program stores compiled OpenCL kernels and provides a mapping from kernel

names to objects.

CAF handles all steps of the OpenCL workflow automatically, but allows for fine-tuning

of key aspects. For example, developers can simply provide source code and names for

kernels and have CAF create a program automatically by selecting a device and compiling

the sources. Particularly on host systems with multiple co-processors, programmers may

wish to query the metainfo object for accessible devices manually and explicitly create

a program object by providing a device ID, source code, kernel names, and compiler

options.

3.3 Use Case for OpenCL Actors

We illustrate our concepts and give source code examples referring to the use case of

multiplying square matrices. This problem is a very good fit and a common use case for this

programming model as each index of the result matrix can be calculated independently.

Listing 1: OpenCL kernel to multiply two square matrices.

1 constexpr const char* name = "m_mult";

2 constexpr const char* source = R"__(

3 __kernel void

4 m_mult(__global float* matrix1,

5 __global float* matrix2,

6 __global float* output) {

7 size_t size = get_global_size(0);

8 size_t x = get_global_id(0);

9 size_t y = get_global_id(1);
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10 float result = 0;

11 for (size_t idx=0; idx<size; ++idx) {

12 result += matrix1[idx + y * size]

13 * matrix2[x + idx * size];

14 }

15 output[x+y*size] = result;

16 })__";

Listing 1 shows an OpenCL kernel for multiplying two square matrices stored as string

in the variable source. Additionally, the variable name stores the in-source name of the

function implementing the kernel. OpenCL requires all kernels to return void and use

the prefix __kernel. The first two arguments to the function m_mult are two input

matrices and the last argument is the result. All matrices are placed in the global memory

region to be accessible by all work-items (GPU cores). Since OpenCL does not support

multi-dimensional arrays, the matrices are represented as one-dimensional arrays and the

position is calculated from the x and y coordinate. At runtime, each instruction will run

in parallel on multiple GPU cores but use different memory segments (single instruction,

multiple data) identified by the function get_global_id. In this example, we use two

dimensions, which can be queried as index 0 for the x axis and 1 for the y axis. Since we

multiply square matrices get_global_size returns the same value for both axes.

3.4 Programming Interface

While the OpenCL interface can be translated to actor-like communication in a straight-

forward way, generating the behavior of the actor is more complex. Since OpenCL source

code is compiled at runtime from strings, the C++ compiler needs additional information

regarding input and output types.

OpenCL actors are created using a variant of spawn, specifically the function spawn_cl.

The execution of a kernel requires configuration parameters like the number of work-items

to execute it. Listing 2 illustrates how to create an actor for the kernel shown in Listing 1.

Listing 2: Spawning OpenCL actors.

1 using fvec = std::vector<float>;

2 constexpr size_t mx_dim = 1024;

3 auto worker = spawn_cl(

4 source, name,

5 spawn_config{dim_vec{mx_dim, mx_dim}},

6 in<fvec>{}, in<fvec>{}, out<fvec>{});

7 auto m = create_matrix(mx_dim * mx_dim);
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8 scoped_actor self;

9 self->sync_send(worker, m, m).await(

10 [](const fvec& result) {

11 print_as_matrix(result);

12 });

The first two arguments to spawn_cl are strings containing source code and kernel

name. CAF will automatically create a program object from this source code. For more

configuration options, programmers can also create a program manually and pass it as

the first argument instead. The third argument—the spawn configuration—describes the

distribution of work-items in three dimensions. A spawn configuration always contains

the global dimensions and optionally offset for the global IDs and local dimensions (to

override defaults and fine-tune work-groups in OpenCL). The dimensions are passed as

instances of dim_vec, which is a tuple consisting of either one, two, or three integers.

Our example creates one work-item for each index, i.e., matrix size ·matrix size items,

meaning that one GPU core computes one element of the result matrix at a time.

The remaining arguments must represent the kernel signature as list of in, out and

in_out declarations. This type information allows CAF to automatically generate a

pattern for extracting data from messages and to manage OpenCL buffers. While input

arguments are provided by the user, storage for output buffers must be allocated by CAF.

By default, CAF assumes output buffers to have a size equal to the number of work-items.

This default can be overridden by passing a user-defined function to an out declaration

which calculates the output size depending on the inputs at runtime.

In our example, the kernel expects two input arguments and one output argument,

all represented by one-dimensional dynamic arrays of floating point numbers—in C++

named std::vector<float>. In line 11 of Listing 2, we send two input matrices to the

OpenCL actor using sync_send. The message handler for the result in line 12 awaits the

resulting matrix and prints it.

Optionally, programmers can pass two conversion function following the spawn_config

argument as shown in Listing 3. The first function is then responsible for extracting data

from a message while the second function converts the output generated by the kernel

to a response message. This mapping gives users full control over the message passing

interface of the resulting actor. Per default, these functions are generated by CAF. A

message is then matched against all in and in_out kernel arguments, while the output

message is generated from all in_out and out arguments.

Listing 3: Pre- and post-processing in OpenCL actors.

1 template <size_t Size>

2 class square_matrix { /* ... */ };
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3 using fvec = vector<float>;

4 constexpr size_t mx_dim = 1024;

5 using mx = square_matrix<mx_dim>;

6 auto preprocess = [](message& msg)

7 -> optional<message> {

8 return msg.apply([](mx& x, mx& y) {

9 return make_message(move(x.data()),

10 move(y.data()));

11 });};

12 auto postprocess = [] (fvec& res)

13 -> message {

14 return make_message(mx{move(res)});

15 };

16 auto worker = spawn_cl(

17 kernel_source, kernel_name,

18 spawn_config{dim_vec{mx_dim, mx_dim}},

19 preprocess, postprocess,

20 in<fvec>{}, in<fvec>{}, out<fvec>{});

The example in Listing 3 introduces the class square_matrix, which is used for

message passing. Since OpenCL does not allow custom data types, the OpenCL actor

needs to convert the matrix to a one-dimensional float array before copying data to the

GPU and do the opposite after receiving the result from OpenCL. This pattern matching

step is modeled by the two functions preprocess, which converts two input matrices

to arrays, and postprocess, which maps a computed array to a matrix. It is worth

mentioning that the postprocess function can also be used to send messages to other

actors using the computed result. Further, automatically sending a response message can

be suppressed by returning a default-constructed message.

In addition to making use of a postprocess function, programmers can also use

a client-sided approach for redirecting messages using send_as. This function allows

programmers to send an asynchronous message and specify which actor should receive

the response. Transparent redirection of messages is a feature of CAF and not limited to

OpenCL actors.

3.5 Design Discussion

CAF achieves a very high-level of abstraction in comparison to the management API

provided by OpenCL. Only key decisions such as the work-item distribution is required by

the user. The OpenCL device binding for a kernel defaults to the first discovered device,
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but can be set by the user optionally.

The OpenCL actors presented in this section introduce data-parallel intra-actor con-

currency to CAF. The behavior of an OpenCL actor consists of three parts: (1) a

pre-processing function that pattern-matches input messages and forwards extracted

data to OpenCL, (2) a data-parallel kernel that runs on an OpenCL device, and (3)

a post-processing function that finalizes the message processing step and per default

converts data produced by the kernel to a response message. Since the data-parallel

kernel is running in a separate address space and can only use the limited instruction

set provided by OpenCL C, sending messages or spawning new actors from OpenCL C

directly cannot be achieved. However, the pre- and post-processing functions run on the

CPU and allow programmers to spawn more actors and send additional messages in the

common way. These two functions can be automatically generated for convenience by

deriving all message types from the signature of a kernel.

Transparent message passing and error handling are achieved in our design by mapping

the mailbox of an actor to a command queue of OpenCL. From the perspective of the

runtime system of CAF, an OpenCL actor is not distinguishable from any other actor since

it implements the same interfaces as actors running on the CPU. With the spawn_cl

function, we provide an interface for the creation process of actors that hides most

complexity while still granting access to all performance-relevant configuration options

via optional parameters.

Once created, the actor handle can be used and addressed independent of its location.

The creation process itself has its limitations, though. OpenCL is available for GPUs

and dedicated accelerators as well as CPUs. This suggests to run OpenCL actors on the

CPU if no other devices are available. While this is conceptually possible, device drivers

commonly deployed do not support code compilation for the CPU. Another problem

to consider is the workload caused by an OpenCL actor running on the CPU. It is not

scheduled with other actors, but competes for the same resources. Alternatively, a single

actor could have two implementations, one in OpenCL and one in regular C++. CAF

could then choose the implementation that promises the best performance.

Dynamic behavior of OpenCL actors could be emulated by allocating state on the

GPU, which is then passed to each kernel invocation. This would require a per-actor

scheduling to guarantee sequential kernel invocations in order to avoid race conditions on

the state. Per default, OpenCL tries to execute multiple executions of the same kernel in

parallel on supported devices for optimizing performance. Also, OpenCL devices have

very limited RAM resources compared to the host system. Hence, the number of stateful

OpenCL actors must remain small. Exploring this design space is part of ongoing and

future work.
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An advanced aspect is scheduling kernels across multiple similar devices. To enqueue

kernels for concurrent execution, a scheduler needs to keep track of the available resources,

such as processing elements and memory, as these informations are not offered by OpenCL

at runtime. Another aspect is scheduling kernels across different hardware. Depending on

the target device, a kernel must be configured differently to reach optimal performance.

4 Evaluation

We have implemented four benchmark programs to systematically measure runtime

characteristics and overhead introduced by our OpenCL wrapper.

The first benchmark compares the creation time of OpenCL actors to the event-based

actors of CAF. Our next two benchmarks examine the overhead we induce compared

to manually using the OpenCL API. Here, we take a look at single calculation before

comparing our implementation against an optimized scenario. Our final benchmark

examines the scalability in heterogeneous setups by stepwise transferring workload to a

GPU and a coprocessor.

The first benchmarks were performed on a Late 2013 iMac with a 3.5 GHz Intel Core

i7 running OS X and OpenCL version 1.2. The GPU is a NVIDIA GeForce GTX 780M

GPU with 4096 MB memory. The last benchmarks on scalability use a machine with

two twelve-core Intel Xeon CPUs clocked at 2.5 GHz equipped with a Tesla C2075 GPU

as well as a Xeon Phi 5110P coprocessor. The server runs Linux and uses the graphics

drivers provided by Nvidia and the Intel OpenCL Runtime 14.2.

4.1 Spawn Time

Our first benchmark focuses on the time to instantiate OpenCL actors. The creation of

actors is traditionally a lightweight operation. We expect the creation of OpenCL actors

to be more heavy weight than the creation of other actors in CAF. Still, we want to

examine if the OpenCL actor can be created for short calculations as well as for longer

ones.

We compare the creation time of OpenCL actors to that of event-based actors. Both

benchmarks consist of a loop that spawns one actor per iteration. Afterwards we ensure

that all actors are active by sending a message to the last created actor and waiting for

its response.

The time measured is the wall clock time required to spawn an increasing number of

actors. This includes the time required to initialize the runtime environment. To provide

an equal setup, we spawn the event-based actors with the lazy_init flag. It prevents
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Figure 3: Comparison of the wall-clock time required to spawn OpenCL and event-based actors.

them from being scheduled for small initialization tasks unless they receive a message, as

is the case with OpenCL actors.

Figure 3 depicts the wall-clock runtime in seconds as a function of the number of

spawned actors. It plots the mean of 50 runs with error bars showing the 95 % confidence

interval. In all cases the error bars are barely visible. Both implementations show a linear

dependency with minor growth. However, event-based actors take less time than OpenCL

actors and exhibit a smaller slope. The difference in slope indicates a longer spawn time

for each individual OpenCl actor. Similar slopes with a constant distance would have

indicated a similar creation time with longer initialization time of the runtime.

Compared to the time required for a simple calculation, the creation time is reasonably

small. It is worth mentioning that OpenCL actors are parallelized internally by OpenCL.

They are not created as frequently as event-based actors. Hence, creation time is usually

less important.

4.2 Runtime Overhead of Actors Over Native OpenCL Pro-

gramming

Our second benchmark measures the overhead induced by our actor approach compared

to the native API of OpenCL. While the OpenCL actor uses the OpenCL API internally,

it performs additional steps such as the setup of the OpenCL environment and the actor

creation. This benchmark quantifies the overhead added by message passing and wrapping
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Figure 4: Matrix multiplication of N ·N matrices.

the OpenCL API.

It implements a program that executes a simple task on a GPU using an OpenCL

actor. In this case, the benchmark kernel calculates the product of two N ·N matrices.

We sent the actor matrices with 1000, 4000, 8000 and 12000 as values for N . The increase

in problem size should test for a correlation between the message size and the overhead.

Two measurements are of interest in this case. First, the duration required for the

whole calculation, from sending the message to receiving the answer. Second, the time

between enqueuing the kernel until OpenCL invokes the callback, which includes data

transfer as well as the kernel execution. Ideally, both times should be nearly equal.

Figure 4(a) depicts the runtime in seconds as a function of the problem size N .

Each value is the mean of 50 runs, plotted with the 95 % confidence interval. The total

calculation time ranges from 0.07 s up to 14.1 s. We have also plotted the time difference

separately in Figure 4(b) since the two lines in Figure 4(a) are not distinguishable. The

difference between the measured values ranges between 5.7 ms and 8.6 ms. No discernible

slope can be observed in the graph and the measurements fluctuate independently of the

problem size.

The results of this measurement clearly show a negligible overhead that does not

depend on the problem size. Hence, our high level interface can be used at a very low

cost.

4.3 Baseline Comparison

The previous benchmark examines the overhead for a single calculation by comparing the

runtime distribution between CAF and OpenCL. In this benchmark we want to compare

17



the performance when calculating a sequence of independent tasks. Two 1000 · 1000

matrices are multiplied with an increasing number of iterations, starting at 1000 and

increasing by 1000 in each step up to 10000. The environment is only initialized once

and the calculations are preformed sequentially. For CAF, an actor sends a new message

when it receives the results of the last calculation. In comparison, the native OpenCL

implementation initiates the next calculation as part of the callback. Both programs use

the same kernel for the multiplication. We avoid simultaneous kernel executions as we

want to examine the overhead in our framework.
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Figure 5: The runtime of multiple independent tasks in CAF compared to native OpenCL.

Figure 5 displays the wall-clock time as a function of the iterations performed. We

plotted the average of 10 measurements as well as a 95% confidence interval. Since we use

the OpenCL API within CAF, it is not possible to achieve a better performance than

OpenCL itself. The OpenCL graph is the baseline we aim for with our performance. Both

implementations exhibit linear growth. However, the native OpenCL implementation has

a smaller slope and the runtime difference between the programs increases. This indicates

a consistent overhead required for the message passing compared to the direct API usage.

The relative performance difference is 8.3 % for 1000 iterations and slightly decreases to

7.4 % at 10000 iterations.

It is worth mentioning that this micro benchmark is looking at a minimal baseline

that is not a realistic application scenario. A program using OpenCL will need to include

some synchronization to pass GPU-computed results to the CPU and generate the next
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(a) Mandelbrot on the Tesla.
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(b) Mandelbrot on the Xeon Phi.

Figure 6: Moving a small workload to OpenCL devices.

task for the GPU. Hence, a native application will not meet the baseline simply because

it uses the OpenCL API directly.

4.4 Scaling Behavior in a Heterogeneous Setup

Our last benchmark focuses on the scalability of our heterogeneous computing approach

by incrementally shifting work from the CPU to an OpenCL device. OpenCL distinguishes

between CPU, GPU and accelerator devices. Our system includes the two mentioned

device, an NVIDIA Tesla GPU and an Intel Xeon Phi accelerator. The difference between

a GPU and an accelerator is that GPUs are traditionally used for 3D APIs such as

OpenGL or DirectX, while accelerators are dedicated for offloading computations from

the host. The Xeon Phi features an architecture based on x86 processors, although not a

compatible one, and differs greatly from the architecture of the Tesla GPU. It consists of

60 cores with 512 bit vector registers and 4 threads each, totaling to up to 240 threads.

We use the calculation of a Mandelbrot set in the benchmark, as the workload can be

easily divided into many independent tasks. The problem is a cut from the inner part of

a Mandelbrot set that has a balanced processing complexity for the entire image. The

workload is offloaded in 11 steps, starting with 0 % on the coprocessor and increasing by

10 % in each step up to 100 %. Each computed image of the Mandelbrot set represents the

area of [−0.5 − 0.7375i, 0.1 − 0.1375i]. Our measurements include two different workloads,

a resolution of 1920 · 1080 pixels in Figure 6 and a resolution of 16000 · 16000 in Figure 7,

both measured with 100 iterations. In addition, we increased the number of iterations to

1000 for the larger workload to further examine the scaling behavior.

Figure 6 depicts the runtimes in milliseconds as functions of the problem fraction

offloaded. The problem is offloaded to the Tesla in Figure 6(a) and to the Xeon Phi
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(a) Calculation with a 100 iterations.
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(b) Calculation with a 1000 iterations.

Figure 7: Moving a large workload to OpenCL devices.

in Figure 6(b). Each graph depicts the runtime for the CPU and OpenCL device

calculations separately, i.e., the time between starting all actors and their termination.

Since calculations are performed in parallel, the total runtime is not a sum of the separate

runtimes, but measured independently.

The problem plotted in Figure 6(a) exhibits excellent scalability. The runtime declines

until the workload is completely offloaded to the GPU. While the CPU runtime is lower

than the total runtime on average, it takes longer to calculate 10 % of the problem on the

CPU than is needed to calculate 100 % on the GPU. As a result, the lower bound is the

time required to process the complete workload on the GPU.

In contrast, Figure 6(b) reveals a measurable overhead. While the CPU runtime

declines steadily, the runtime measured for OpenCL fluctuates heavily and the total

execution time doubles when offloading 10 % of work to the Phi. Even when running 100 %

of the problem size on the Phi, the computation is still slower than the initially measured

60 milliseconds for the CPU-only setup. The initial cost of offloading computations to the

Phi are not amortized by faster, parallel computations on the accelerator device. It is

worth mentioning that we did not optimize the OpenCL kernel for the Phi, which might

result in suboptimal performance on this device.

In summary, these experiments reveal excellent scalability of programming GPUs with

CAF actors. However, offloading work to the Xeon Phi is not worth it with regard to this

problem size. Since the performance of OpenCL applications largely depends on the driver

implementation and configuration, it is left to future work to examine the Phi results in

more detail.

Figure 7 shows the runtime in milliseconds as a function of the offloaded problem in %

for a larger Mandelbrot image. We have increased the number of pixels from 1920 · 1080 to
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16000 · 16000. The larger image drastically increases the computation time on the device

to offset the initial cost of offloading computations. We have run the benchmark using

100 iterations and 1000 iterations per pixel.

Figure 7(a) depicts the smaller measurements with 100 iterations for both the Tesla

and the Xeon Phi. In difference to the previous benchmark in Figure 6(a), the best

performance is achieved at around 80 % on the GPU and around 60 % on the accelerator.

Since the initial cost of offloading the computation is smaller in comparison to the overall

runtime, the Xeon Phi achieves drastically better performance as shown in Figure 6(b),

but does not reach the performance of the Tesla.

Finally, the measurements with 1000 iterations are depicted in Figure 7(b). Here, the

Phi and Tesla perform equally well. Since this setup has the same data rate as before

but an increased runtime on the device, it becomes evident that the data transport to

the Phi did hinder better results in the previous benchmarks. Hence, this accelerator

(with current drivers) is best suited for problems of small data size but large computation

demands.

In a naive approach, we simply transferred a problem from the Tesla to the Phi. This

proved to be inefficient for small problems, but improved with an increase in problem size.

As should be noted again, optimizing kernels and configurations for the Phi may improve

its performance for smaller problems.

5 Conclusions and Outlook

Integrating GPGPU computing into an application can increase its performance by orders

of magnitudes. This is true on all scales from mobiles to server systems. The challenge of

integrating GPGPU devices into applications, though, is left to a programmer, who is

faced with an ever-growing complexity of hardware architectures and APIs.

The actor model is an important concept for taming the complexity of parallel and

concurrent systems and the task-oriented work flow of actors fits the work flow of GPGPU

computing very well. The present work on OpenCL actors shows that an intelligent actor

runtime can manage GPGPU devices autonomously while inducing minimal performance

overhead. Supporting OpenCL as first-class implementation option in CAF further

broadens the scope of our native actor system by introducing data-parallel intra-actor

concurrency.

Our presented implementation of OpenCL actors is based on OpenCL 1.1. This

version is available across Intel, NVIDIA, and AMD drivers. Our directions for future

development fall into three categories: (1) improve performance of device-local actor-to-

actor communication by keeping data on the GPU in pipelining scenarios, (2) explore
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how OpenCL actors can hold state without enabling race conditions on the state, e.g., by

developing a per-actor scheduling ensuring sequential kernel execution, and (3) improve

scheduling by load balance across multiple OpenCL devices both locally and in a network.
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