
Implementing and Integrating
BGPsec AS Path Validation into

RTRlib
Colin Sames

Hauptprojekt

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Colin Sames

Implementing and Integrating BGPsec AS Path Validation into
RTRlib

Implementing and Integrating BGPsec AS Path Validation into RTRlib eingereicht im Rahmen
des Hauptprojekts

im Studiengang Master of Science Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Thomas C. Schmidt

Eingereicht am: March 14, 2019

Contents

1 Introduction 1

2 Concept and Requirements 3

3 Crypto Library Considerations 5

4 Implementation 7
4.1 The Header Files . 7
4.2 The Source File . 10
4.3 The Test File . 15
4.4 Review . 17

5 Verification 20

6 Performance 25

7 Conclusion and Outlook 27

iii

1 Introduction

In the early days of the Internet, many exploits and attacks that are targeted at the Internet
tra�c did not yet exist. Because of that, protocols back then were not designed with appropriate
protection mechanisms. One of these protocols is the Border Gateway Protocol (BGP) [1], a
protocol Autonomous Systems (ASes) use to exchange routing information. The contents of
BGP messages can be manipulated to cause wrong routing behavior between ASes. To prevent
such incidents, a protection mechanism has been developed that enables ASes to validate
crucial information of BGP messages. These mechanisms are called route origin validation

(ROV) and AS path validation. They are both utilized via the Resource Public Key Infrastructure
(RPKI) [2].

The RPKI protects two sensible information within an BGP message: the origin AS of the
message and the AS path that the message took. The �rst information is protected by ROV.
Each announced IP address range (pre�x) is linked to a certain AS. This linkage can be checked
by ASes that receive a BGP message. If a message announces an AS-pre�x-tuple for which no
such linkage exists, the message may be rejected.

The second information, the AS path, can be protected by the BGP protocol extension
BGPsec [3]. It adds cryptographic validation to the contents of a BGP message that can be
validated by receiving ASes. If the contents of such a message are changed along the AS path,
a validation check will no longer yield a valid result.

The information that are required to perform both ROV as well as AS path validation is
gathered from the RPKI using the RPKI To Router (RTR) [4] protocol. Implementations for
RTR and ROV exist while BGPsec implementations are sparse, so it is important to develop
software that enables AS path validation for BGP router operators. Without this software, the
deployment of BGPsec is constrained.

In this work it is shown, how the library RTRlib [5]1, which already o�ers ROV, will be
extended with BGPsec AS path validation. A prior prepared implementation concept will serve
as the foundation. The new feature will allow a user to validate and sign the AS path of BGPsec
updates using the library.

1http://rtrlib.realmv6.org/

1

http://rtrlib.realmv6.org/

1 Introduction

Currently, only few BGPsec implementations exist, like the BGP-SRx [6], developed by the
National Institute of Standards and Technology (NIST), or the BIRD routing suite2. The goal
of integrating BGPsec AS path validation into RTRlib is its independence from any software
routers, so that any application may integrate it and make use of its RPKI features.

The remainder of this report is structured as follows. At �rst, in Section 2, a brief overlook
over the implementation concept is given and requirements to the implementation are made.
Next, Section 3 will present the crypto library that is going to be used. The implementation
part is described in Section 4. To proof the functionality, Section 5 compares RTRlib AS path
validation to BGP-SRx validation. Basic performance measurements are presented in Section 6.
Section 7 concludes this work.

2http://bird.network.cz

2

http://bird.network.cz

2 Concept and Requirements

The RFC 8205 [3] speci�es all of the BGPsec functionalities, but only validating and signing
AS paths is relevant to RTRlib. The rest of the mainly operational BGPsec features are left to
the software that includes RTRlib. The underlying concept for the implementation of these
features was developed in a separate work. To give an overview of what this concept looks
like, its central points are presented here:

– The implementation only provides necessary features to provide AS path validation. RTRlib
aims to remain lightweight.

– BGPsec AS path validation merely extends current RPKI features of RTRlib. Current func-
tionalities of the library are not altered in any way.

– The implementation is similar to the current API of ROV. Since it is the same library both
functionalities are embedded in, their usage should be similar to each other.

– The library remains independent. It should be usable by any application and not be
speci�cally designed for one piece of software only.

– The implementation o�ers an API to make use of AS path validation. There are several
functionalities that must be implemented:

• Get the supported BGPsec version
• Check support for the propagated algorithm suite
• Validate a BGPsec AS path
• Sign a BGPsec AS path

– The usage of the new features are documented. The current documentation for the RTRlib
will be extended to describe validation and signing routines. There should also be code
examples that show a minimal working example.

3

2 Concept and Requirements

The goal is to satisfy all of these requirements equally, yet trade-o�s are made if necessary.
If, e.g., the new API design needs to di�er from the current one to make the usage of AS path
validation more convenient, this trade-o� is made.

The reasoning for only providing AS path validation is that RTRlib tries to stay as basic
as possible, providing only RTR/RPKI speci�c features. For instance, adding a features for
assembling the BGPsec_PATH attribute would meddle with data structures that are speci�c
to routing suites or other software. BIRD and FRRouting (FRR)1 both have their own way to
represent internal structures. Making use of these structures would go against the goal of
keeping RTRlib independent. Therefore, any data that is passed to RTRlib must �rst be stored
in a format or structure that RTRlib itself provides.

The next section is a quick look at the crypto library that RTRlib is going to depend on.

1https://frrouting.org

4

https://frrouting.org

3 Crypto Library Considerations

To validate and sign a BGPsec path, cryptographic operations are required. These operations
are validating and generating signatures with the Elliptic Curve Digital Signature Algorithm

(ECDSA) [7]. The input for this algorithm is a byte sequence which is digested by the SHA-256
algorithm [8]. These two algorithms form the algorithm suite 1 [9]. An algorithm suite de�nes
a set of cryptographic algorithms. In the context of BGPsec, the protocol must support all
cryptographic algorithms speci�ed by the algorithm suite. In case an algorithm suite 2 is added
to the protocol speci�cation, the new set of algorithms must also be supported.

RTRlib will depend on an existing, throughout tested library to provide cryptographic
functionalities. There are a few requirements to these libraries.

• Provide a C compatible API
• Provide all necessary and potential future algorithms
• Long term support
• Open source and free to use
• Well-known and widely supported
• Secure and no known major bugs

Since RTRlib is implemented in C, the crypto-library that is included must be compatible
with C. The library must also support all algorithms speci�ed by algorithm suite 1. Additionally,
the library should support a broad variety of other modern algorithms so RTRlib does not need
to switch libraries every time a new algorithm suite is released.

Long term support is just as important. A discontinued library is dangerous because undis-
covered bugs are unlikely to be �xed short-term, if they are to be �xed at all. A continuously
developed crypto-library is hence indispensable.

RTRlib is open source and free, so all components of the software should be as well, including
the crypto-library. In addition, using a piece of software that is well-known to the Internet is
more convenient than relying on lesser known software. Potential users of the RTRlib might
trust the crypto-library more, if it is known to them. Including crypto software into RTRlib
that is unheard of to most of the users could potentially raise skepticism about the reliability

5

3 Crypto Library Considerations

of RTRlib. Another reason is that wildly known software is more likely to be supported by the
underlaying operating system. Last, the crypto-library of choice should be secure and should
not contain security critical bugs that are known of.

One library that meets all these criteria is OpenSSL1, an open-source and free to use C library.
OpenSSL splits into two libraries, libssl and libcrypto, yet only the latter is required for our use
case. Since libcrypto is part of OpenSSL, we will refer to OpenSSL when speaking about its
crypto functionalities.

OpenSSL provides all necessary algorithms, namely elliptic curve cryptography and SHA-256
hashing [10] and also o�ers a range of other algorithms that are potentially required in the
future. The library o�ers support for version 1.0 until end of 2019 and long-term support
for version 1.1. OpenSSL is often considered the standard library when it comes to crypto
operations, since it is well-established and well-known. Even the reference implementation
of BGPsec, BGP-SRx, uses OpenSSL (version 1.0). RTRlib aims to provide support for both
versions, 1.0 and 1.1, in case the system where RTRlib is installed prefers one version over the
other.

In conclusion in can be said that using OpenSSL seems to be the most convenient way of
handling the crypto operations that are required for BGPsec AS path validation.

1https://www.openssl.org

6

https://www.openssl.org

4 Implementation

This section will be a view on the C implementation of BGPsec AS path validation for RTRlib.
Not every line of code will be discussed, though. Instead, the most important and most
interesting parts will be highlighted. The code is mostly reduced to pseudo code and slightly
adjusted to make it comprehensible, even without much context.

The implementation consists of multiple additions to the current code base of RTRlib. The
�rst addition are two new headers, bgpsec.h and bgpsec_private.h. The former contains public
structs and enums, while the latter contains function declarations.

The second �le is the source �le, bgpsec.c, which implements the API functions. Last,
tests which are de�ned in test_bgpsec.c cover the new functionalities o�ered by the AS path
validation to validate the implementation.

The whole implementation is hosted on GitHub as a fork of RTRlib1. The header and source
�les can be found in /rtrlib/bgpsec, the test �le is located in the /tests directory.

4.1 The Header Files

The header �les contain all data structures and function de�nitions that are necessary for the
public API. In the following, both the new structs as well as the new functions and their tasks
are introduced.

As the names suggest, the private header �le does not expose its functions to the user.
To make them available, RTRlib exposes these functions via the rtr_mgr. In there, wrapper
functions are de�ned that invoke the appropriate BGPsec function. This way, the BGPsec API
is centralized with the rest of the RTRlib API.

The validation and signing functions require the input data to be stored in certain structures,
so that it can be processed properly by the functions. So prior to invoking the functions, the
user needs to �ll these data structures with all the necessary information. Below in Listing 4.1,
all three required RTRlib C structs are presented.

1https://github.com/colinbs/rtrlib/tree/bgpsec

7

https://github.com/colinbs/rtrlib/tree/bgpsec

4 Implementation

Listing 4.1: The structs with their members roughly represent the BGPsec_PATH elements.

1 struct rtr_secure_path_seg {

2 uint8_t pcount;

3 uint8_t conf_seg;

4 uint32_t asn;

5 };

6
7 struct rtr_signature_seg {

8 uint8_t *ski;

9 uint16_t sig_len;

10 uint8_t *signature;

11 };

12
13 struct rtr_bgpsec_data {

14 uint8_t alg_suite;

15 uint8_t safi;

16 uint16_t afi;

17 uint32_t asn;

18 uint8_t *nlri;

19 uint8_t nlri_len;

20 };

The rtr_secure_path_seg with its three members represents a Secure Path Segment as
speci�ed by the BGPsec RFC.

The second struct is the representation of a Signature Segment. It also has three members,
two of which are pointers. The ski is at a constant length of 20 bytes, while the length of the
signature is variable. This is what the sig_len �eld is for.

The third and last struct is the rtr_bgpsec_data struct. It holds the rest of the data that is
relevant for AS path validation. The asn �eld in line 17 holds the ASN of the AS that currently
processes the BGPsec update and performs AS path validation. The nlri �eld holds the IP
address in binary form. The nlri_len �eld holds the length of the IP address in bits. As speci�ed
by the RFC, only one IP pre�x per BGPsec update is allowed.

Aside from the structures, there are a total of �ve new public functions available with the
RTRlib API. The following functions that are presented are the wrapper functions which are
de�ned in the rtr_mgr. With the exception of the validation function, which dereferences one
of its input parameters before passing it down, all functions simply invoke the private BGPsec
function with the received parameters.

8

4 Implementation

rtr_mgr_bgpsec_validate_as_path validates a given BGPsec path. It takes the above
mentioned structures as input parameters.

rtr_mgr_bgpsec_create_signature generates a signature for a given BGPsec path. This
function additionally requires the private key of the signing application or device, such as a
router.

rtr_mgr_bgpsec_get_version returns the latest supported BGPsec version of RTRlib. This
function is required to make sure that the application only passes compatible BGPsec paths to
RTRlib.

rtr_mgr_bgpsec_check_algorithm_suite checks, if a given algorithm suite is supported
by RTRlib. Another useful function that lets the application check, if the propagated algorithm
suite within a BGPsec update is compatible with RTRlib. This check is optional though, as
both the validation and signing functions perform this check as a safety measure.

rtr_mgr_bgpsec_get_algorithm_suites_arr returns a pointer to a static list containing
all algorithm suites supported by RTRlib. In case the user prefers to check against a static
list instead of invoking rtr_mgr_bgpsec_check_algorithm_suite each time a BGPsec
update arrives.

The return values of these functions depend on the outcome. Usually, these values are
RTR_BGPSEC_SUCCESS or RTR_BGPSEC_ERROR. The latter return value may be more
speci�c to let the user know, why an error occurred:

• RTR_BGPSEC_LOAD_PUB_KEY_ERROR if the public key could not be loaded
• RTR_BGPSEC_LOAD_PRIV_KEY_ERROR if the private key could not be loaded
• RTR_BGPSEC_ROUTER_KEY_NOT_FOUND if a router key was not found within the

SPKI table
• RTR_BGPSEC_SIGNING_ERROR if an error occurred during the signing process
• RTR_BGPSEC_UNSUPPORTED_ALGORITHM_SUITE if the propagated algorithm suite

is not supported

If a user is interested in why an action did not terminate successfully, it is up to them to
check for these error codes. Regardless of why an error occurred, the action was not successful
and should be repeated.

There are two exceptions in regards to successful return values. The �rst exception is the
validation function, as it has its own two values on a successful return.

9

4 Implementation

• RTR_BGPSEC_VALID if the BGPsec update is valid or
• RTR_BGPSEC_NOT_VALID if the BGPsec update is not valid

Note that RTR_BGPSEC_NOT_VALID is not the same as RTR_BGPSEC_ERROR. The valida-
tion function may return with RTR_BGPSEC_ERROR, yet this does not determine the status of
the validation. This only indicates that the path validation could not complete successfully,
thus the validity of the AS path remains unknown.

The other exception is the signing function which will, instead of RTR_BGPSEC_SUCCESS,
return the length of the created signature.

4.2 The Source File

The implementation of the API functions will be explained in the following. There are also a
few helper functions that are worth mentioning.

These helper functions are private and handle di�erent parts of the validation/signing
process. Some of them are only required for debugging purposes such as pretty-printing. The
underscore pre�x (_) signals that these functions are private and should be used carefully.

_align_val_byte_sequence aligns the sequence of bytes used for digestion from the BGPsec
path segments, as the RFC speci�es. A more detailed explanation on why the bytes need to be
aligned like this can be found here [11].

_align_gen_byte_sequence does the same as align_val_byte_sequence, but for sign-
ing. Both procedures slightly di�er from each other, which is why there need to be two
functions.

_hash_byte_sequence takes a byte sequence and hashes it.

_validate_signature takes all necessary and prepared parameters and performs the cryp-
tographic validation of a signature.

_get_sig_segs_size calculates the size in bytes of all signature segments. Because signature
segments are of dynamic size, this function is necessary in order to allocate memory.

_load_public_key loads a public key from the SPKI table into an OpenSSL struct.

_load_private_key loads a private key into an OpenSSL struct.

10

4 Implementation

_byte_sequence_to_str returns a human-readable string of a given byte sequence.

_bgpsec_segment_to_str returns a human-readable string of the contents of a given BG-
Psec path segment.

_ski_to_char converts the byte representation of a given SKI into human readable form.

None of these helper functions are publicly exposed to the RTRlib API. They alone provide
little bene�ts for the user and can cause unexpected behavior and errors when used out of
context.

These helper functions are required during the validation and signing processes. The
following listings show how the validation process is implemented. The code is reduced to
pseudo code and some portions have been removed to ease readability (e.g., error handling,
memory allocation, most comments).

At the beginning of the validation function in line 1 of Listing 4.2, a check is made whether or
not RTRlib supports the propagated algorithm suite. If not, the function returns an appropriate
error code. This needs to be done in case the user did not check the supported algorithm suites
beforehand.

Listing 4.2: Check, if the algorithm suite is supported.

1 if _bgpsec_check_algorithm_suite(alg_suite) == RTR_BGPSEC_ERROR:

2 return RTR_BGPSEC_UNSUPPORTED_ALGORITHM_SUITE

If the function supports the algorithm suite, RTRlib makes sure that all required router keys
are present in the SPKI table, as seen in Listing 4.3. Doing this before proceeding any further
potentially saves time because it prevents abortion of the process due to a missing router key
halfway through the validation. If the router key is missing during this check, the validation
function returns with an error code. The function in line 2 that searches for a speci�c SKI is
part of the SPKI API of RTRlib.

Listing 4.3: To validate the AS path, all router keys must be present.

3 for i = 0, i < as_hops, i++:

4 router_key = spki_table_search_by_ski(skis[i])

5 if router_key == NULL:

6 return RTR_BGPSEC_ROUTER_KEY_NOT_FOUND

11

4 Implementation

7 end for

Now that everything is set up and present, the data needs to be aligned as a speci�c byte
sequence [11]. This is done via the _align_val_byte_sequence function. The bytes

pointer is passed to the function, as seen in Listing 4.4. On a successful return, the pointer
points to the whole byte sequence.

Listing 4.4: Assemble the data and store the byte sequence in bytes.

8 bytes = _align_val_byte_sequence(data,

9 sig_segs,

10 sec_paths)

With the byte sequence assembled, the hashing and validation itself can begin. Listing 4.5
shows, how a byte sequence and how its digest could look like.

Listing 4.5: At the top is the assembled byte sequence from the BGPsec_PATH data. Below

is the resulting hash.

Byte Sequence:

00 01 00 01 AB 4D 91 0F 55 CA E7 1A 21 5E F3 CA

FE 3A CC 45 B5 EE C1 54 00 48 30 46 02 21 00 EF

D4 8B 2A AC B6 A8 FD 11 40 DD 9C D4 5E 81 D6 9D

2C 87 7B 56 AA F9 91 C3 4D 0E A8 4E AF 37 16 02

21 00 8E 21 F6 0E 44 C6 06 6C 8B 8A 95 A3 C0 9D

3A D4 37 95 85 A2 D7 28 EE AD 07 A1 7E D7 AA 05

5E CA 01 00 00 01 00 00 01 00 00 00 FB F0 01 00

01 01 18 C0 00 02

Digest:

01 4F 24 DA E2 A5 21 90 B0 80 5C 60 5D B0 63 54

22 3E 93 BA 41 1D 3D 82 A3 EC 26 36 52 0C 5F 84

Hashing is done inside a for-loop since there can be multiple AS path elements which need
to be processed one by one, each element being hashed individually. The for-loop over all
segments runs as long as the validation result of each iteration is valid. If the result is not valid,
the whole BGPsec path is considered not valid and the validation process stops. Continuing
would be an unnecessary waste of processing power. Line 13 of Listing 4.6 shows the for-loop.

12

4 Implementation

Listing 4.6: Main loop for validation.

12 offset = 0

13 val_result

14 for i = 0, i < as_hops, i++:

15 hash_result = _hash_byte_sequence(bytes, offset)

16 router_keys = spki_table_search_by_ski(skis[i])

17
18 for j = 0, j < router_keys_length, j++:

19 val_result = _validate_signature(hash_result,

20 signature[i],

21 router_keys[j])

22 if val_result == BGPSEC_VALID:

23 break

24 end for

25
26 if val_result == BGPSEC_NOT_VALID:

27 break

28
29 offset = sig_length + ski_length + sec_path_size

30 end for

31
32 return val_result

The offset variable is used to determine, from which position on the byte sequence needs
to be hashed. Figure 4.1 illustrates how the o�set is shifted throughout the iterations. At the
beginning there is no need for an o�set on the byte sequence, thus offset is set to 0 in line
12. The variable val_result in line 13 holds the current status of the validation. It does not
need to be initialized. It is continuously updated by the outer for-loop that starts in line 14.
Next, in line 15, the byte sequence is hashed from the starting position on via SHA-256. The
result is stored in hash_result. Then, all router keys for the current SKI are collected in
line 16. In case there is more than one key bound to a SKI, another for-loop in line 18 iterates
through all keys and tries to validate the current signature with each of them (line 19). Only
one of the keys needs to be able to produce a valid result when validating the signature. If this
is the case, the inner loop breaks in line 23.

Before continuing with the next iteration of the outer for-loop, the byte sequence o�set is
set to the point where the next BGPsec path segment starts and the process repeats (line 29).

13

4 Implementation

offset += new_offset

offset

bytes

bytes

bytes

Bytes used for
hashing

offset += new_offset

Figure 4.1: Consecutively processing of bytes. At the beginning the o�set is 0, so
all bytes are hashed. In the next iteration the o�set moves forward by
new_o�set bytes. This continues until all bytes are processed.

If all signatures within the BGPsec path were successfully validated, the for-loop �nishes
and returns the result to the application that called the function. If one of the signatures was
determined not valid, the process stops prematurely and the BGPsec path and eventually the
whole BGPsec update is considered not valid.

When a user executes the validation function and is returned a positive result, they continue
with appending the own AS information to the BGPsec path of the update. Prior to that, these in-
formation must be signed. To do so, the user calls the rtr_mgr_bgpsec_generate_signature
function of RTRlib. The functions internals work very similar to those of the validation function,
so the signing procedure is only discussed brie�y. Notable di�erences to validation are pointed
out.

Since during signing there is no need for public router keys, all SPKI checks are not necessary.
This signi�cantly shortens the function. Checks for algorithm suites are still required, though.
The whole simpli�ed singing procedure can be viewed in Listing 4.7.

Listing 4.7: Main loop for validation.

1 priv_key = _load_private_key(raw_key)

2
3 byte_sequence = _align_gen_byte_sequence(data,

4 sig_segs,

5 sec_paths,

14

4 Implementation

6 own_sec_path,

7 target_as)

8
9 hash_result = _hash_byte_sequence(bytes, offset)

10
11 sig_len = ECDSA_sign(signature, hash_result, priv_key);

12
13 if sig_len < 1:

14 return RTR_BGPSEC_SIGNING_ERROR

15
16 return sig_len

At �rst, the private key, which is passed as raw bytes, must be loaded into an OpenSSL key
structure in line 1. If successful, the byte sequence over all information is then constructed in
line 3 and afterwards hashed in line 9. Then in line 11 The resulting hash is, together with
the private key, used to create the signature. The variable signature in line 11 is a pointer
passed to the function by the user. If sig_len is less than 1, signing was not successful and an
error code is returned (line 13-14). Otherwise, signing was successful. The signature is stored
in signature and its length is returned to the user.

4.3 The Test File

To provide a small set of test coverage of the new API functions, tests exist that execute these
functions. These tests cover the following functionalities:

• Check for version and algorithm suites

– Check return values on (not) supported algorithm suites
– Check the length of the algorithm suites array

• Validate a BGPsec path with...

– ...everything set up correctly
– ...a wrong signature
– ...a wrong public key within the SPKI table
– ...a public key not present within the SPKI table
– ...multiple di�erent public keys with the same SKI within the SPKI table
– ...an unsupported algorithm suite

• Generate a BGPsec signature from/without existing BGPsec path

15

4 Implementation

For signing there are less test scenarios because this functionality does not rely on the SPKI
table. Hence, error sources like missing or malformed public keys are not an issue.

The test cases are executed with static input data, meaning that all SKI, router keys and
signatures are already present as byte sequences. These information are valid examples which
are used in the RFC 8208 [9].

The byte sequences are used when assembling the BGPsec path elements, i.e., the secure
path segments and the signature segments, for testing purposes. The rest of the BGPsec data,
as shown in Listing 4.1 in Section 4.1, needs to be assembled as well. Listing 4.8 shows the
process of assigning the data.

Listing 4.8: The BGPsec data necessary for AS path validation is assembled here.

1 struct signature_seg ss[2]

2 struct secure_path_seg sps[2]

3 struct bgpsec_data data

4
5 int as_hops = 2

6
7 nlri = { 0xC0,0x00,0x02 } // 192.0.2.0

8
9 ss[0]->ski = ski1

10 ss[0]->sig_len = 72

11 ss[0]->signature = signature1

12
13 sps[0]->pcount = 1

14 sps[0]->conf_seg = 0

15 sps[0]->asn = 65536

16
17 ss[1]->ski = ski2

18 ss[1]->sig_len = 72

19 ss[1]->signature = signature2

20
21 sps[1]->pcount = 1

22 sps[1]->conf_seg = 0

23 sps[1]->asn = 64496

24
25 bg->alg_suite = 1

26 bg->afi = 1

16

4 Implementation

27 bg->safi = 1

28 bg->asn = 65537

29 bg->nlri_len = 24

30 bg->nlri = nlri

Using the _bgpsec_segment_to_str function, a BGPsec path segment can be printed
out. Passing a segment that is �lled with the data from Listing 4.8 will produce the following
output.

Listing 4.9: A printed BGPsec path segment.

+++

Signature Segment:

SKI:

47 F2 3B F1 AB 2F 8A 9D 26 86 4E BB D8 DF 27 11

C7 44 06 EC

Length: 72

Signature:

30 46 02 21 00 EF D4 8B 2A AC B6 A8 FD 11 40 DD

9C D4 5E 81 D6 9D 2C 87 7B 56 AA F9 91 C3 4D 0E

A8 4E AF 37 16 02 21 00 90 F2 C1 29 AB B2 F3 9B

6A 07 96 3B D5 55 A8 7A B2 B7 33 3B 7B 91 F1 66

8F D8 61 8C 83 FA C3 F1

Secure_Path Segment:

pCount: 1

Flags: 0

AS number: 65536

+++

4.4 Review

After a �rst review of the implementation, a few improvements have been made. While some
of the changes a�ected the BGPsec API, others were performance or code improvements. The
current state of this document already re�ects the following changes.

17

4 Implementation

An API change that has been made is the renaming of the structs and enums. All structs
and enums that are publicly exposed to the API have been pre�xed with rtr_ to reduce the
risk of collision with other software applications and libraries. Variables that are used during
the build process of the RTRlib have also been pre�xed for the same reason.

To make a clearer distinction between public API and private functionalities, RTRlib only
exposes these symbols that are relevant for using the library. There is now a header �le
that only contains symbols like structs and enums, while the other, private header �le con-
tains the function de�nitions. To keep the functions accessible, the BGPsec implementation
uses wrapper functions which are de�ned and exposed via the rtr_mgr.c �le. These wrapper
functions simply invoke the appropriate BGPsec function with the given parameters, e.g.,
rtr_mgr_bgpsec_validate_as_path invokes rtr_bgpsec_validate_as_path. The
pre�x changed from rtr_ to rtr_mgr_.

The wrapper for the validation function received a change in parameters. Instead of the SPKI
table it takes the RTR manager con�guration. When invoking the actual validation function,
the table is dereferenced and passed to the function, as shown in listing 4.10.

Listing 4.10: The truncated wrapper of the validation function.

1 int rtr_mgr_bgpsec_validate_as_path(...,

2 struct rtr_mgr_config *config,

3 ...)

4 {

5 int retval = rtr_bgpsec_validate_as_path(...,

6 config->spki_table,

7 ...);

8
9 return retval;

10 }

This allows the user to use the higher level config structure. Functionality tests on the
other hand only require the SPKI table, so it is not necessary to have a whole con�guration set
up. By having the higher level function for the user and the lower level function for internal
testing, both needs are satis�ed.

Also for privacy reasons, constant BGPsec variables have been moved from the header
to the source �le. This prevents that they are unnecessarily exposed. If required, they
can be obtained via the appropriate getter functions. Additionally, the moved constants

18

4 Implementation

have been replaced with preprocessor macros or have been replaced entirely. For example,
SECURE_PATH_SEGMENT_SIZE has been replaced with sizeof instructions on the secure
path struct.

Stability has been improved by adding more NULL pointer checks on input parameters. If a
user of the API accidentally passes a required parameter with value NULL to the validation
or signing function, the function now returns a RTR_BGPSEC_ERROR. Previously, such cases
would have led to a SEGFAULT during runtime.

Should BGPsec receive a new algorithm suite, the implementation has to be adjusted to meet
the new requirements. The code has been slightly modi�ed to make adding a new algorithm
suite smoother and more convenient.

The following changes mainly focus on readability of the code and consistency with the rest
of RTRlib. The public functions to check and get the algorithm suites have been renamed to
for the sake of readability.

The previously used C++ single line comment style has been replaced with C block comment
style. In addition, the documentation was expanded in a few places to support any potential
users.

19

5 Verification

To make sure that the results produced by RTRlib are valid, they have to be veri�ed by another
BGPsec implementation. Therefore, the BGPsec reference implementation BGP-SRx is used.
The BGP-SRx implementation will validate a signature that was generated by RTRlib and vice
versa. In detail, the procedure will look like this:

1. Generate a signature A with RTRlib
2. Generate a signature B with BGP-SRx
3. Create a RTRlib test case with signature B
4. Create a BGP-SRx test case with signature A
5. Run both tests

If both implementations are correct, both test results should be valid. This section will cover
the test cases in detail.

At �rst, we will need a signature generated by both implementations. To make sure that these
signatures are created over the same information, the BGPsec path for RTRlib and BGP-SRx
must be identical. It consists of

• Origin AS 65536
• Pre�x 192.0.2.0/24
• Algorithm Suite 1
• AFI 1
• SAFI 1
• pCount 1
• Flags 0
• Target AS 65537

After constructing the BGPsec path, the RTRlib rtr_mgr_bgpsec_generate_signature
function is executed. The result can be seen in Listing 5.1.

20

5 Veri�cation

Listing 5.1: This test prints the byte sequence, the calculated digest and the generated

signature for the constructed BGPsec path.

> ./tests/test_bgpsec

Byte Sequence:

00 01 00 01 01 00 00 01 00 00 01 00 01 01 18 C0

00 02

Digest:

2B 1C EE E2 72 FA D5 A1 C5 D6 7B 21 A8 92 EE 24

72 24 6A AA B0 0F 55 5A E0 1C C7 62 8F 76 E2 BD

Signature:

30 45 02 21 00 8A CC 91 63 A6 13 51 BF 89 E4 AC

97 32 F2 43 A9 E7 DA 35 5C B6 1D D8 87 42 19 5A

D6 26 C9 09 41 02 20 06 9D B4 AB DE 36 5C AB B2

31 5C 6A 54 8F 9B 1B 36 F3 5A ED 75 0B C6 5A E1

1C 3A BC 7B 81 B5 AD

The signature is generated over the digest, using the same private key that is available to
BGP-SRx. Now that we have generated signature A, we will continue to generate signature B
with BGP-SRx. BGP-SRx o�ers functionalities to validate and generate whole BGPsec updates
and BGPsec paths. To produce a signature with the software, a whole BGPsec path is generated
using the same path values as with RTRlib. Instead of writing a whole test, BGP-SRx allows to
generate updates via input parameters, as can be seen in Listing 5.2.

Listing 5.2: BGP-SRx is called with various parameters to create a BGPsec path. The resulting

path is dumped into a binary file.

> ./bgpsecio --mode GEN-C --asn 65536 --peer_asn 65537 --update "

192.0.2.0/24" --out ~/bgpsecpath -f bgpsecio.conf

Starting bgpsecio 0.2.0.8...

Done.

The whole chain of parameters can be read as "Generate a BGPsec path from AS 65536 to
AS 65537 with the pre�x 192.0.2.0/24 and dump the result to ~/bgpsecpath". The -f parameter
points to an additional con�g �le that contains the rest of the required information.

21

5 Veri�cation

Since the resulting �le is binary encoded, it is loaded into a hex editor to make its contents
visible. Figure 5.3 shows the hex representation of the generated BGPsec path.

Listing 5.3: Parts of the binary BGPsec path when dumped as hex. The highlighted bytes

form the signatures. Top: the signature B (line 5-9) generated by BGP-SRx. Bo�om: signature

B was replaced with signature A (line 17-21) from RTRlib.

1 03 02 12 00 6D 00 00 00 01 00 76 00 01 00 00 00

2 ...

3 F2 3B F1 AB 2F 8A 9D 26 86 4E BB D8 DF 27 11 C7

4 44 06 EC 00 47

5 30 45 02 20 7E CA 01 0A EE 77 FF 14 46 87 92 CF

6 E2 DB 37 99 A5 08 61 F0 3C BC B4 2F 6A 73 7F A3

7 9A 64 E0 26 02 21 00 B4 29 97 67 36 7B 88 C3 66

8 EC 2F C4 98 A7 B1 8D A7 BB FA 22 78 BB D3 BC 4B

9 21 F5 71 34 55 B2 66

10
11 ---

12
13 03 02 12 00 6D 00 00 00 01 00 76 00 01 00 00 00

14 ...

15 F2 3B F1 AB 2F 8A 9D 26 86 4E BB D8 DF 27 11 C7

16 44 06 EC 00 47

17 30 45 02 21 00 8A CC 91 63 A6 13 51 BF 89 E4 AC

18 97 32 F2 43 A9 E7 DA 35 5C B6 1D D8 87 42 19 5A

19 D6 26 C9 09 41 02 20 06 9D B4 AB DE 36 5C AB B2

20 31 5C 6A 54 8F 9B 1B 36 F3 5A ED 75 0B C6 5A E1

21 1C 3A BC 7B 81 B5 AD

The generated Signature B (top of Listing 5.3) is extracted and saved and will be later used
for an RTRlib test. The signature is then replaced with signature A.

Both implementations now validate each others signatures. BGP-SRx has the ability to read
in a BGPsec path in binary form and validate it. No other information except the signature has
been modi�ed. Listing 5.4 shows the validation result of BGP-SRx using signature A, which
was created by RTRlib. Listing 5.5 shows the validation result of RTRlib using Signature B,
which was created by BGP-SRx.

22

5 Veri�cation

Listing 5.4: The validation output of BGP-SRx a�er successfully validating the signature

that was generated by RTRlib.

Hash(validate):

00 01 00 01 01 00 00 01 00 00 01 00 01 01 18 C0

00 02

Digest(validate):

2b 1c ee e2 72 fa d5 a1 c5 d6 7b 21 a8 92 ee 24

72 24 6a aa b0 0f 55 5a e0 1c c7 62 8f 76 e2 bd

Statistics Invalid:

=====================

0 updates (0 segments) in 0 ns processed

- average time per update: 0 ns

- average time per segment: 0 ns

- average number of segments per update: 0.00

Statistics Valid:

=====================

1 updates (1 segments) in 395769 ns processed

- average time per update: 395769 ns

- average time per segment: 395769 ns

- average number of segments per update: 1.00

- segments per second: 2526

Done.

Listing 5.5: RTRlib output a�er successfully validating signature B, generated by BGP-SRx.

Byte Sequence:

00 01 00 01 01 00 00 01 00 00 01 00 01 01 18 C0

00 02

Digest:

2B 1C EE E2 72 FA D5 A1 C5 D6 7B 21 A8 92 EE 24

72 24 6A AA B0 0F 55 5A E0 1C C7 62 8F 76 E2 BD

23

5 Veri�cation

(2018/08/24 11:20:29:484858): BGPSEC: Validation result of

signature: valid

(2018/08/24 11:20:29:484908): BGPSEC: Validation result for the

whole BGPsec_PATH: valid

Test successful

Note, that both byte sequences (top row) and digests (second row from the top) from BGP-
SRx and RTRlib are identical. With both implementations successfully validating each others
signatures it is safe to say that signing and validating works for RTRlib.

24

6 Performance

First measurements show the performance of both the RTRlib as well es BGP-SRx implementa-
tion. For the tests, each implementation will validate and sign AS paths with a length ranging
from 1 up to 5. The time measured is the processing time for a single validation/signing
procedure. An average time over 500 executions is then calculated. It is important to mention
that only the duration of the validation/signing function is measured, no initialization or setup
is included.

Figure 6.1 shows the performance when validating an AS path. The x-axis shows the path
length, the y-axis shows the processing time in microseconds. BGP-SRx performs faster than
the current implementation of RTRlib by a factor ≈ 1.7. Both implementations scale linearly
with the increasing path length of an AS path.

1 2 3 4 5
0

200

400

600

800

1,000

Path length

Ti
m

e
[µ
s]

RTRlib
BGP-SRx

Figure 6.1: The bars show the mean execution time of a single AS path validation for
di�erent path length. A total of 500 iterations were measured. The error
bars show the standard deviation.

25

6 Performance

When looking at the signing procedure in Figure 6.2, BGP-SRx outperforms RTRlib, being
faster by a factor of ≈ 2.4. The path length does not have an impact on the signing operation
due to the BGPsec signing design. Signing is not an iterative process like validation, because
the hashing and signing only occurs once over the whole path, rendering the length of the
path neglectable.

1 2 3 4 5
0

50

100

150

200

250

Path length

Ti
m

e
[µ
s]

RTRlib
BGP-SRx

Figure 6.2: The bars show the mean execution time of a single AS path signing for
di�erent path length. Again, a total of 500 iterations were measured. The
error bars show standard deviation.

The results show that the behavior of both implementations is the same. For validation, the
duration scales linearly with the increasing path length. Signing has a constant processing
duration, independent from the path length.

The implementation of AS path validation for RTRlib can and should be improved. The
reasons for the performance discrepancies between both implementations are subject to a
more in-depth analysis. Saving processing time is crucial for BGPsec implementations as BGP
routers are under heavy load. Performing cryptographic operations increases this load even
more.

Further to performance evaluations, the tests should be expanded to cover more scenarios,
preferably in a dedicated environment.

26

7 Conclusion and Outlook

This work has presented a working implementation of BGPsec AS path validation for RTRlib.
Before an integration into the library happens, further code reviews and more detailed docu-
mentation have to take place. The main requirements that were made in Section 2 are mostly
met. These were:

1. Lightweight, only provide validation & signing of BGPsec paths (met)
2. Independent from other applications (met)
3. Intuitive API, similar to current one (met)
4. No changes to the current implementation (met)
5. Detailed documentation (WIP)

Requirement 1. is met since the implementation provides no more functionalities than
validating and signing BGPsec paths.

Next, 2. is also met since no dependencies other than the OpenSSL crypto library exist.
RTRlib AS path validation is not designed to �t any speci�c software but allows anyone to
integrate it into their application. This is achieved by RTRlib providing all required data
structures and specifying a certain format to handle the data.

Point 3. is more of a subjective matter, but it can be argued that the new API is very similar
to the existing one. The work�ow of the initial setup for RTRlib does also not require additional
steps.

The 4. requirement has also been successfully met, as there are no changes to the current
code base for AS path validation. In fact, there are no interferences or dependencies between
AS path validation and route origin validation.

As for the last requirement 5., the documentation is still work in progress and will be
expanded as more code reviews happen in the near future. The current documentation, which
is generated with Doxygen, gives details about the function names, their parameters and return
values. More in depths information to the usage of the functions and the work�ow is required,
though.

The actual functionality of the implementation was demonstrated in Section 5 and should
su�ce for the moment. It is for the future, however, indispensable to establish a testing

27

7 Conclusion and Outlook

environment to constantly test the implementation throughout. As the tests from the previous
chapter have shown, there are still improvements to be made to the implementation. The next
steps are to check, which operations can be improved, and how. Also, tests are required that
measure more parameters, such as memory or disk space usage.

In conclusion, this implementation is extending RTRlib by more RPKI functionalities, namely
BGPsec AS path validation and signing.

28

Bibliography

[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),” IETF, RFC 4271,
January 2006.

[2] M. Lepinski and S. Kent, “An Infrastructure to Support Secure Internet Routing,” IETF,
RFC 6480, February 2012.

[3] M. Lepinski and K. Sriram, “BGPsec Protocol Speci�cation,” IETF, RFC 8205, September
2017.

[4] R. Bush and R. Austein, “The Resource Public Key Infrastructure (RPKI) to Router Protocol,”
IETF, RFC 6810, January 2013.

[5] M. Wählisch, F. Holler, T. C. Schmidt, and J. H. Schiller, “RTRlib: An
Open-Source Library in C for RPKI-based Pre�x Origin Validation,” in
Proc. of USENIX Security Workshop CSET’13. Berkeley, CA, USA: USENIX
Assoc., 2013. [Online]. Available: https://www.usenix.org/conference/cset13/
rtrlib-open-source-library-c-rpki-based-pre�x-origin-validation

[6] NIST, “BGP Secure Routing Extension (BGP-SRx) Prototype,” 9
2017. [Online]. Available: https://www.nist.gov/services-resources/software/
bgp-secure-routing-extension-bgp-srx-prototype (Accessed 16-05-2018).

[7] NIST, “Digital Signature Standard,” Federal Information Processing Standards 186–4, July
2013.

[8] National Institute of Standards and Technology, “FIPS 180–3, Secure Hash Standard,
Federal Information Processing Standard (FIPS), Publication 180-3,” http://csrc.nist.gov/
publications/�ps/�ps180-3/�ps180-3_�nal.pdf, Department of Commerce, Gaithersburg,
MD, US, Tech. Rep., October 2008.

[9] S. Turner and O. Borchert, “BGPsec Algorithms, Key Formats, and Signature Formats,”
IETF, RFC 8208, September 2017.

29

https://www.usenix.org/conference/cset13/rtrlib-open-source-library-c-rpki-based-prefix-origin-validation
https://www.usenix.org/conference/cset13/rtrlib-open-source-library-c-rpki-based-prefix-origin-validation
https://www.nist.gov/services-resources/software/bgp-secure-routing-extension-bgp-srx-prototype
https://www.nist.gov/services-resources/software/bgp-secure-routing-extension-bgp-srx-prototype
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

Bibliography

[10] OpenSSL, “OpenSSL Documentation.” [Online]. Available: https://www.openssl.org/docs/
man1.0.2/apps/openssl.html (Accessed 03-08-2018).

[11] O. Borchert and M. Baer, “Subject: Modi�cation request: draft-ietf-sidr-bgpsec-
protocol-14,” Feb 2016. [Online]. Available: https://mailarchive.ietf.org/arch/msg/sidr/8B_
e4CNxQCUKeZ_AUzsdnn2f5Mu (Accessed 18-10-2018).

30

https://www.openssl.org/docs/man1.0.2/apps/openssl.html
https://www.openssl.org/docs/man1.0.2/apps/openssl.html
https://mailarchive.ietf.org/arch/msg/sidr/8B_e4CNxQCUKeZ_AUzsdnn2f5Mu
https://mailarchive.ietf.org/arch/msg/sidr/8B_e4CNxQCUKeZ_AUzsdnn2f5Mu

	1 Introduction
	2 Concept and Requirements
	3 Crypto Library Considerations
	4 Implementation
	4.1 The Header Files
	4.2 The Source File
	4.3 The Test File
	4.4 Review

	5 Verification
	6 Performance
	7 Conclusion and Outlook

