
Approaches to Analysing Malware Received from a Reactive
Network Telescope

Henning Krause
HAW Hamburg

henning.krause@haw-hamburg.de

ABSTRACT
Malware is a critical threat for the security in the Internet. Malicious
actors and security specialists are constantly trying develop new
ways to outperform one another. The goal of the criminals is to
infiltrate a target system without being noticed. In order to protect
a system it is an important step to identify malware before it is
executed and start to invoke undesired behaviour.

With a reactive network telescope it is possible to obtainmalware
that is distributed by two-phase scanners. This offers the opportu-
nity to collect malware at an early stage of distribution in which
it may not be known by the security community yet. Therefore, a
strategy will be developed to analyse and classify the findings. This
work aims to review methods and practices for analysing malware
in order to lay a foundation for the implementation of an analy-
ses system to perform this task. Recent approaches, which try to
identify malware as binaries or at execution time, will be presented.

KEYWORDS
Malware, Static Analysis, Dynamic Analysis

1 INTRODUCTION
Defining the term malware (malicious software) seems straight
forward. Various definitions have been proposed which are very
similar to each other and could be summarised as: A software that
has a harmful impact on other software without the user’s content. A
harmful impact means that the malware changes the behaviour of
the software in a way that it deviates from the intended behaviour.
It causes incorrectness and damage as a consequence.

There are different kinds of malware. Well known are viruses,
remote access Trojans (RAT, or Trojan Horse), spyware, worms,
adware, scareware, bots, ransomware, cryptominers [15]. This list
of types changes over time, as new use cases for malware appear.
For example, with the rise of cryptocurrency since 2013, cryptomin-
ers became relevant. This is a classification based on the type. As
Or-Meir et al. [15] pointed out that a classification based on the
behaviour of the malware may be more precise, especially when an
analysis is performed. They proposed the following classes: (I) steal-
ing information, (II) creating a vulnerability, (III) denying service
and (IV) executing commands from C&C. Classes are not exclusive
since malware may serve several purposes.

These different purposes also lead to the question, what the
motivations of the authors are to create and use it. A prominent
example of malware is the Mirai botnet [1] which infiltrated IoT
devices and abused them to perform massive DDoS attacks. But
this is just one example which gained publicity. Kaspersky blocked
33.412.568 uniquemalicious objects in the year 2020 [10]. Onemight
only speculate about all the different motivations. A chance to get
an insight on the hacking community is offered by CrimeBot. It was

created to crawl underground forums in order to allow research
on a collection of posts. It collected 48m posts (ongoing) from 4
communities. Most of the data was obtained from the hackforums,
which is a hacking community that became popular with the release
of the Mirai botnet code, which was published by one of its users
[16]. On these kind of forums illegal services such as malware
as a service are offered . This indicates that the person who is
realising the malware implementation and distribution may not be
the stakeholder in the impact of the malware. All the posts that
were collected over the time are stored in the CrimeBB which is
available for researchers.

Bada and Pete [2] analysed the CrimeBB[16] dataset in order to
explore the ecosystem around Shodan; a scan project for Internet
facing devices and services which offers the user the possibility to
search the results. Their work provides an insight on how and why
users utilise the search engine. As reconnaissance is the first step of
malware distribution their results offer an insight of the motivation
and method of hackers. Bada and Pete [2] were able to identify
several main use cases of Shodan. Building a botnet, which is is done
by downloading and executing malware on vulnerable IoT devices,
is of particular interest in the context of this project. Botnets may be
used for several purposes such as DDoS attacks or cryptocurrenncy
mining. In consideration of the fact that malware is easily accessible
and underground forums provide various tutorials on how to find
and get access to vulnerable devices, malware may be distributed
by a wide range of people or organisations.

2 BACKGROUND
The malware which has to be analysed was captured by a reac-
tive network telescope. Network telescopes are used to passively
monitor traffic in the Internet. It usually observes a network prefix
with provider-allocated IP addresses. The UCSD Network Telescope,
operated by the Center for Applied Internet Data Analysis, is an
example for a network telescope. A /8 network is monitored by
this system [3]. Due to the fact that there are no active services in
that prefix, the network telescope does barely receive legitimate
traffic but rather Internet Background Radiation (IBR).IBR can be
the result of a wide range of events such as address spoofing during
a DDoS attack, misconfigurations (e.g., address mistypings), scan-
ning activities or malware distribution [21]. A reactive network
telescope elevates the functionality of a classic network telescope.
It offers the possibility to engage into further interactions with the
hosts of the network packets that arrive at the telescope.

The underlying work found a significant amount of irregular
TCP SYN packets in the IBR. An irregularity indicates that they
were handcrafted which gives one reason to suspect that those
packets where send by stateless scanning tools. In this scenario the
interaction functionality of the reactive network telescope becomes



FSW, WiSe20, HAW Hamburg Henning Krause

particularly useful. A further investigation can be performed by
replying to the irregular packets. Afterwards, the telescope received
regular TCP SYN packets from the same host. Those could be used
to establish a connection and receive payloads.

This behaviour may be referred to as two-phase-scanning. The
first phase tests if a destination is online with light and fast scanning
methods. If the first phase is positive, a second phase is initialised
which includes further activities, such as port scanning, based on
the goals of the scanner. This behaviour was also utilised by the
Mirai Botnet [1]. It started with a rapid scanning phase and followed
up with a brute force attack, if the the target was identified as a
potential victim based on the gathered information.

2.1 The Problem of Malware Analysis
Malware authors are well aware of the fact that once the malware
is being recognised, it will most likely be removed from the infected
system. Furthermore, it is not in their interest that an analysis can
be performed. Therefore, they spend a lot of effort on trying to
avoid it. Loads of methods are utilised for that purpose.

Decompiling and analysing binaries is restrained by the efforts of
the malware authors to make it as difficult as possible to reverse en-
gineer the code. Transformations are applied that replace fragments
of the code with semantically equivalent, but harder to analyse code.
Even additional code may be added that does not change the be-
haviour of the program. This process is called code obfuscation [13].
Moser et al. [13] presented further obfuscating transformations
that can be utilised. In order to analyse a program a control flow
graph can be created which represents a possible flow of control by
a sequence of instructions. Control flow obfuscation is the process
of altering the flow in a way that makes it difficult to determine the
next instruction in a graph. However, this process does not alter
the control flow. This can be achieved by replacing unconditional
jump and call instructions with another sequence. Data Location
Obfuscation refers to the concept of hiding the actual data element
that is accessed. The paper by Moser et al. [13] was published in
2007. It introduces general methods for obfuscation. As of today
more complex and advanced methods exist, e.g., emulation-based
obfuscation.

An overview about the challenges of dynamic analyses was given
by Or-Meir et al. [15]. To evade an analysis the malware could be-
have differently when it detects that is is under analysis. Analysis
tools and specially prepared systems leave indicators, which can
be recognised by the malware. Indicators might be installed dri-
vers, registry keys, user traces on the system and more. One more
problem is that it is also possible that the malware will be running
outside the scope of the analysis tool, e.g., on another privilege
level.

To avoid the detection code obfuscation and network evasion
are two of the main concerns. Code obfuscation is used to change
the signature of the malware so that it will not be matching the
known signature anymore and thus is not recognised. This makes
code obfuscation a useful tool for malware authors that complicates
static and dynamic analysis. Network evasion describes techniques
that are used to hide the traffic to the command and control server.

In conclusion one can say that it can be very difficult to analyse
malware, no matter which approach is chosen. However, due to

the extensive expertise that is required to create such malware the
chances for results are still realistic.

2.2 Related Surveys
The field of malware analysis is steadily changing and as a conse-
quence lots of papers on this topic are published. The sheer amount
makes it difficult to achieve a good coverage. Gandotra et al. [6]
and Uppal et al. [18] published surveys in 2014 that focus on the
difference between static and dynamic analysis. Or-Meir et al. [15]
performed a survey on dynamic malware analysis methods in 2019.
They claim that this is the first comprehensive survey on this topic
since 2012. Recent focus has also be onmachine learning techniques
in order to improve existing methods. Ye et al. [24] published a
survey that focuses on the data mining techniques. They review
methods for feature extraction, classification and clustering.

3 STATIC ANALYSIS
This section introduces the static analyses of malware. First a gen-
eral overview is given. Afterwards tools and frameworks are pre-
sented that approach different obstacles and steps during the static
analysis. This provides a first idea of possible techniques and how
they work together.

The static analysis ofmalware refers to the technique of analysing
a malware sample without executing it [17]. The sample can be in
form of a binary or source code. If the sample is a binary, the file has
to be decompiled first. Disassemble tools like IDA Pro can be used
for that purpose [24]. After the malware is decompiled, features can
be extracted from the code. Using this features, detection patterns
can be applied. For example the following patterns are of interest
[24]:
System Calls Windows API calls are used by many programs
and give a hint about the behaviour of the program. If they are
considered altogether, higher semantics can be derived.
N-grams All substrings of the length N. Detection can be based
on these strings.
Strings Sometimes the binaries contain interpretable strings that
show the behaviour of the malware. If there is for example a string
that includes a script in HTML format the desired output can be
directly read.
Opcodes The machine language instructions can reflect the mal-
ware functionality.
Control FlowGraphs (CFGs) Agraph that represents the control
flow in a program.
Decompilation is a necessary step in the process of binary analysis.
Human readable code is created from compiled programs. The
problem is that even state-of-the-art decompilers cannot reproduce
the original code and produce rather complex code which is difficult
to understand. This process is further complicated by the affords of
malware authors to prevent the decompilation. As explained in 2.1,
code obfuscation, which drastically increases the difficulty of the
decompilation process, is one of the main concerns in this matter.

Yadegari et al. [22] reported on a generic approach to automate
deobfuscation of executable code. In particular they focus on re-
verse engineering emulation-based obfuscation and return-oriented
programming. Emulation-based obfuscation obfuscates the code in a
way that by examination only the emulation logic is revealed but



Malware Analysis FSW, WiSe20, HAW Hamburg

not the logic from the program itself. Return-oriented programming
is a programming technique that results in complex control flows.
The advantage of the generic approach is that it may be used for
unseen obfuscation techniques, which is not possible with a specific
technique. To keep the approach as generic as possible Yadegari
et al. [22] aim to minimise the assumptions they make about the
code; especially considering the type of obfuscation that was used.
Their approach consists of the following steps:

Identifying Input andOutput Values Input values are classified
as values that are obtained from the command line, defined by a
library routine, or read by an instruction of the program. Any value
written by an instruction is defined as output.
Forward taint propagation After the inputs are identified all
influenced instructions by the input should be found.
Code Simplification Semantics-preserving code simplifications
are applied.
Control Flow Graph Construction A control flow graph is con-
structed which is used to apply semantics-preserving transforma-
tions to the control flow.

Yadegari et al. [22] evaluated their approach using a prototype im-
plementation on obfuscated code. The result can be measured by
using an algorithm to determine the distance between two control
flow graphs. If two control flow graphs are similar the deobfusca-
tion has been successful. To generate obfuscated files they used
commercial emulation-obfuscation tools on several malware pro-
grams of different type. After obfuscation most of the programs
showed a similarity of less than 10% compared to their originals.
Using their approach they were able to generate a similarity of
85% after deobfuscation. This shows a significant improvement to
former approaches. It should be noted that the results still vary a
lot depending on the type of the program that is obfuscated. A total
similarity could never be achieved.

As soon as the binary is deobfuscated further analysis can be
applied. Yakdan et al. [23] developed the tool DREAM++ which is
a usability-optimised decompiler that focuses on increasing the
readability of decompiler-created code. DREAM is a tool that uses
the IDA Pro disassembler and builds the control-flow graph of func-
tions in the binary. With DREAM++ they try to improve the results
of DREAM. During the evaluation they also considered Hex-Rays
which is another decompiler similar to DREAM. They identified sev-
eral problems that occurred with DREAM. Due to those problems
the decompilation results in a code, that is difficult to understand
even though the original code might not have been considerably
complicated. An overview of the list of problems is shown in Figure
1. Complex expressions add further, unnecessary logic to the code
which is hardly found in any code written by humans and thus
are difficult to follow. Nested if statements and duplicate variables
which represent the same value are an example for those. An ex-
ample for convoluted control flow is the fact that binary code often
contains duplicate code blocks as a result of macro expansion or
other reasons. Thus, the decompiled code might contain the same
block several times. An issue of the lack of high-lever semantic
is for example the incapability of decompilers to recover variable
names.

Problem

Complex expressions

Complex logic expressions

Number of variables

Pointer expressions

Convoluted control flow

Duplicate/inlined code

Complex loop structure

Lack of high-level semantics

Figure 1: Yakdan et al. [23] identified problems for the
DREAM decompiler. They organised their results in the
shown three categories.

To improve the presented problems, Yakdan et al. [23] invented
a set of optimisations that build upon the output of the DREAM de-
compiler. They developed three categories of semantics-preserving
code transformations: (I) expression simplification, (II) control-flow
simplification and (III) semantics-aware naming. Some of the im-
provements are: Duplicate variables are removed using congruence
analysis, code is simplified by finding the simplest high-level form
of logic expressions in the decompiled code, pointers are simplified,
loops are transformed, functions are outlined and variables are
renamed.

In a user study they showed that the improvements were a consid-
erable help for the analysts. A code example shows that DREAM++

produces smaller and simpler code. The result of Hex-Rays was
41 lines of code long, DREAM resulted in 27 lines and DREAM++

managed to pin it down to 13 lines (see Yakdan et al. [23] for more
detailed examples).

4 DYNAMIC ANALYSIS
This section starts with an overview based on Or-Meir et al. [15].
Afterwards a description of the frameworks by Duan et al. [5] and
Mohaisen et al. [12] will be given in order to create an understand-
ing of possible implementations.

A dynamic analysis refers to the technique of observing the
behaviour of a software during execution. The goal is to identify the
malicious actions which are execute. At the same time the analysis
platform must be protected from being compromised. The main
idea of a dynamic analysis is to prepare a framework composed of
three components: (I) malware sample, (II) hardware and operating
system and (III) the analysis tool. It is important that the system
is clean before starting an analysis in order to avoid side effects
from previous actions or configurations. The malware could be
run directly on a pc, in a virtual machine, on a type 1 hypervisor
or on a full system emulation. There is a also side-channel data
acquisition which refers to a technique to analyse an electronic
device by monitoring the physical power consumption. Different
analysis techniques are the following [15]:



FSW, WiSe20, HAW Hamburg Henning Krause

Function Call Analysis Examining which functions a malware
is calling in order to derive its behaviour by the bulk of calls.
Execution Control Checking the state of the malware and the
OS by utilising techniques such as debugging.
Flow Tracking Following the information through the code that
is executed by the malware.
Tracing Executing code leaves information behind. This informa-
tion can be gathered and analysed.
Side-channel Analysis Analyse the behaviour of physical com-
ponents by their power consumption, electromagnetic emissions
or internal CPU events.
The first framework we look at is Detective - a tool to identify and
analyse malware processes in Windows. It was published by Duan
et al. [5]. They address the issue that during the analysis of processes
there may be a considerable amount of processes that are unknown
to the investigator. Detective solves that problem by automatically
classifying benign and malware processes. Furthermore it is capable
of describing malware behaviour on a high semantic level and also
“shedding light on evidence collection”[5].

Their idea is based on the observation that processes can be
classified by the set of Dynamic-Link Libraries (DLLs) they load.
The Windows API is implemented as a set of DLLs which can be
used to derive potential capabilities of a process. AlthoughDetective
is currently designed for the Windows operating system, the core
concept which is utilised can also be applied to other operating
systems. Similar processes most likely load a similar set of DLLs.
By clustering the analysed processes by the DLL set it is possible to
predict the behaviour of an unknown process. This way it is possible
to identify an unknown malware process if it shows comparable
functionality, as it is indicated by the DLLs, to previously known
processes. They evaluated several clustering algorithms and finally
chose DBSCAN. One of the main reasons was that it does not
require a specification of the number of clusters. In order to achieve
the classification they created a set of key DLLs which is a subset
of all possible DLLs. This way they reduced the dimension of the
model. To train the model a training data set was created with both
benign and malware processes included. The malware processes
for this purpose were obtained from VirusTotal1. An advantage
of using a training data set by VirusTotal is that the data usually
contains tags that where given by antivirus vendors. These tags
are later used to describe the behaviour of the process. On top of
that each DLL has a specific purpose and if they are observed in a
group they indicate the behaviour of the malware.

Duan et al. [5] evaluated the performance by using a training,
validation and two test data sets. The test dataset included 20/25
malware DLLs with a total of 24/30 DLLs. Detective achieved a
correctness of 92% on the task of identifying malware with two
false positives for each test dataset.

Another framework was proposed by Mohaisen et al. [12]. They
introducedAMAL - “an operational and large-scale behaviour-based
solution for malware analysis and classification” [12]. AMAL is a
combination of two sub-systems.

The first subsystem is AutoMal which analyses the behaviour
based on memory (e.g., volatile memory), the file system (e.g., cre-
ated/deleted files), registry (e.g., created/deleted/modified registry
1https://www.virustotal.com/

content) and network (e.g., DNS resolution, exchanged data). With
those information a profile for a malware is generated. Furthermore,
behaviours are summarised into artefacts. It is based on VMware,
supports a variety of configurations and is very flexible. For exam-
ple, various types of malware samples are allowed, such as EXE,
DLL, PDF, etc., the OS may be reset and/or configured before each
sample and the privileges on the OS can be configured. Its system
architecture consists of several components which allows AutoMal
to run multiple samples at the same time. The components and
their functionality can be summarised as follows (see [12] for a
more detailed description):

Sample submitter Responsible for providing samples to the Au-
toMal. Multiple sources and priorities are supported.
Controller The controller takes care of the test setup which in-
cludes choosing a sample and configuring the VM. The controller
also performs the artefact collection.
Workers An individual VM where an analysis will be performed.
They are functionally independent of the controller.
Database A MySQL database storing all the results.

MaLabel is the second subsystem. It is a collection of multiple tech-
niques and algorithms for clustering and classification based on the
low-level artefacts provided by AutoMal. The representative fea-
tures of the collected data is extracted and used for behaviour-based
grouping and labelling of malware. MaLabel offers an evaluation
of the performance of the implemented algorithms while leaving
the final decision which to use to the user. Even though AutoMal
provides more features, which could be used for classification and
clustering, MaLabel only uses a subset of the following groups of
features: file system, registry and network features.

Mohaisen et al. [12] evaluated AMAL performance against a
small dataset and against a large dataset containing 115,157 samples.
In the bigger dataset the share of malware samples reduced in order
to imitate a real world use case. Using the smaller sample they
achieved 99% precision and recall. The larger dataset resulted in a
performance of around 90%. For the false positives they named the
following reasons: imperfect labels created by census over antivirus
scans and not analysts, errors resulting from the smaller share
of malware samples in the training data and results attributed to
different malware families with a similar context.

Wang et al. [19] claim that there are some limitations to the
dynamic analysis of malware. The use of a specialised environment
for the execution of the malware in order to monitor its behaviour
may be recognised by the malware. For example the malware could
present inconspicuous behaviour if executed in a virtual environ-
ment. Furthermore, certain kinds of malware, e.g., Trojan, do not
present noticeable behaviour until notified. A further drawback
is the fact that a malware may only target a certain OS or certain
hardware.

5 FURTHER APPROACHES
In this section approaches to malware analysis are presented that
do not fit in either the static or the dynamic category, but are still
interesting and should be mentioned. They have in common that
their aim is to identify features of the malware and use those to
detect new malware.

https://www.virustotal.com/


Malware Analysis FSW, WiSe20, HAW Hamburg

Figure 2: Images of visualised malware. The first row shows
three instances of malware of the Fakerean family and the
second row shows three instances of the Dontovo family.
Published by Nataraj et al. [14] in their paper.

5.1 Malware Visualisation
A novel approach at that time (2011) was published by Nataraj
et al. [14]. They used image processing techniques to visualise
and classify malware. Neither disassembly nor code execution is
necessary to use this method. However, one could argue that there
is a greater similarity to static analysis. This can be argued by the
fact that one of the main characteristics of the dynamic analysis is
the required execution of the sample.

The approach take advantage of the fact that a binary can be
presented as a string of zeros and ones. When the malware is read as
a vector of 8 bit unsigned integers, it reorganised into a 2D array and
visualised as a gray scale image. Examples of those visualisations
can be seen in Figure 2. It clearly stands out that malware of the
same family looks similar to each other. The length of the image is
given by the size of the malware file. This not only makes it possible
to see the visual similarities of different malware samples from the
same family, but also allows a further analysis. Feature vector and
classifier can be applied on those images. The texture analysis by
the frequency of a texture block is an example for those methods.
For the implementation in the paper they used GIST in combination
with k-nearest neighbours for classification.

When evaluating their approach against a large dataset of 9458
malware with 25 different families they achieved an accuracy of
98%. It should be noted that they state that their approach can be
limited by counter measurements such as relocating sections or
adding redundant data in the binary.

A similar approach was proposed by Gibert et al. [7]. They use
the same technique to represent a malware file as a gray scale image.
However, they set the file size to a fixed size. This is mandatory
step since they are using a Convolutional Neural Network (CNN)
to group the malware files. Their technique improves the computa-
tional performance and accuracy of previous, similar approaches.

5.2 Entropy Analysis
Entropy approaches to analysing files have been used for several
years. The first automatic identification approach was proposed
by Lyda and Hamrock [11], who created a tool for automatically
identifying encrypted or packed malware executables. Prior to their
work, other approaches were not automated [20] or used entropy
for other approaches, e.g., identifying network-based attacks [8].

The work of Jochheim et al. [9] aimed to identify embedded
malicious code using entropy and signal processing techniques. In
order to apply the identification, several steps have to be performed.
First, an entropy-function is build which indicates different data
types and code sections within file. Afterwards a frequency analy-
sis is applied to that function. Finally, the result is applied on an
Artificial Neural Network (ANN). This allows the identification of
binary-instruction code. They showed their approach has a good
performance in test and real-world conditions.

Cox et al. [4] proposed another concept for malware analysis.
They preprocessed the data into fixed-length representations in
order to allow the usage of a feedforward neural network as the clas-
sifier. Three different methods were used to calculate probabilities:
(I) Shannon entropy within a sliding window, (II) byte distribution
and (III) power spectral density. The entropy approach showed the
worst performance with a 77.11% accuracy which Cox et al. [4]
explained the fact that PNG and GIF files were often confused with
AES-256 encrypted files. By combining all three methods they were
able to achieve a 97.44% accuracy.

6 CONCLUSION AND FUTUREWORK
In this work, we gave an introduction to the analysis of malware.
The difficulties that occur during malware analysis were presented
and it was shown that various ways for malware authors exist
to make it even more challenging. Some of the many existing ap-
proaches to perform an analysis were presented. The goal was to
give the reader a basic understand of the wide variety of techniques
that exist.

In conclusion, it can be said that each approach has its own
strengths and weaknesses. While some rely on a training data set
and perform the classification automatically afterwards, others need
manual investigation but offer a good framework to perform. The
goal of the analysis should be considered. If only a classification
is of interest, a dynamic approach may be the right choice. If the
specific behaviour of a file has to be investigated, a static analysis
would give promising results. Considering the case of the malware
files from our responsive network telescope a good starting point
could be the static analysis which does not have the overhead
of the dynamic analysis with the need to setup a safe execution
environment.

This work created a basic understanding of methods that are used
and therefore lay a foundation for future work. As the tremendous



FSW, WiSe20, HAW Hamburg Henning Krause

amount of publications exceeded the scope of this work, a further
survey on recent publications is of interest. The future research
can be focused on the topic that is the most promising for this use
case. Once decided upon a tool or framework an implementation
and evaluation of it should be realised. As both static and dynamic
analysis techniques have their advantages and disadvantages a
hybrid approach could also be considered in which the best of both
techniques are combined.

Once the malware was analysed the results should be carefully
documented. Furthermore, a classification could help to find pat-
terns in the distribution. Among the possibilities to classify the
malware, a classification by type or by behaviour could be chosen.

REFERENCES
[1] Manos Antonakakis, TimApril, Michael Bailey, MatthewBernhard, Elie Bursztein,

Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding the
Mirai Botnet. In Proceedings of the 26th USENIX Conference on Security Symposium
(Vancouver, BC, Canada) (SEC’17). USENIX Association, USA, 1093–1110.

[2] Maria Bada and Ildiko Pete. 2020. An exploration of the cybercrime ecosystem
around Shodan. In 2020 7th International Conference on Internet of Things: Systems,
Management and Security (IOTSMS) (Paris, France). IEEE International Conference
on Internet of Things: Systems, Management and Security, Paris, France, 8. http:
//emergingtechnet.org/Procs/IOTSMS2020/22/RC_IOTSMS2020_22.pdf

[3] CAIDA. 2021. The UCSD Network Telescope. CAIDA: Center for Applied Internet
Data Analysis. https://www.caida.org/projects/network_telescope/

[4] Jonathan A. Cox, Conrad D. James, and James B. Aimone. 2015. A Signal Process-
ing Approach for Cyber Data Classification with Deep Neural Networks. Procedia
Computer Science 61 (2015), 349–354. https://doi.org/10.1016/j.procs.2015.09.156
Complex Adaptive Systems San Jose, CA November 2-4, 2015.

[5] Y. Duan, X. Fu, B. Luo, Z. Wang, J. Shi, and X. Du. 2015. Detective: Automatically
identify and analyze malware processes in forensic scenarios via DLLs. In 2015
IEEE International Conference on Communications (ICC). IEEE Computer Society,
London, UK, 5691–5696. https://doi.org/10.1109/ICC.2015.7249229

[6] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. 2014. Malware Analysis and
Classification: A Survey. Journal of Information Security 05 (01 2014), 56–64.
https://doi.org/10.4236/jis.2014.52006

[7] Daniel Gibert, Carles Mateu, Jordi Planes, and Ramon Vicens. 2019. Using con-
volutional neural networks for classification of malware represented as images.
Journal of Computer Virology and Hacking Techniques 15, 1 (01 Mar 2019), 15–28.
https://doi.org/10.1007/s11416-018-0323-0

[8] Jean Goubault-Larrecq and Julien Olivain. 2006. Detecting Subverted Crypto-
graphic Protocols by Entropy Checking. Technical Report LSV-06-13. Laboratoire
Spécification et Vérification.

[9] Benjamin Jochheim, Thomas C. Schmidt, and Matthias Wählisch. 2011. A
Signature-free approach to malicious code detection by applying entropy analysis
to network streams. In Proc. of the TERENA Networking Conference (Prague, Czech
Rep.). Terena, Amsterdam, Poster. https://tnc2011.terena.org/core/poster/29

[10] Kaspersky. 2020. Kaspersky Security Bulletin 2020. https://go.kaspersky.com/rs/
802-IJN-240/images/KSB_statistics_2020_en.pdf

[11] Robert Lyda and James Hamrock. 2007. Using Entropy Analysis to Find Encrypted
and Packed Malware. IEEE Security and Privacy 5, 2 (2007), 40–45.

[12] Aziz Mohaisen, Omar Alrawi, and Manar Mohaisen. 2015. AMAL: High-fidelity,
behavior-based automated malware analysis and classification. Computers &
Security 52 (2015), 251–266. https://doi.org/10.1016/j.cose.2015.04.001

[13] A. Moser, C. Kruegel, and E. Kirda. 2007. Limits of Static Analysis for Malware
Detection. In Twenty-Third Annual Computer Security Applications Conference
(ACSAC 2007). IEEE, FL, USA, 421–430. https://doi.org/10.1109/ACSAC.2007.21

[14] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath. 2011. Malware Images:
Visualization and Automatic Classification. In Proceedings of the 8th International
Symposium on Visualization for Cyber Security (Pittsburgh, Pennsylvania, USA)
(VizSec ’11). Association for Computing Machinery, New York, NY, USA, Article
4, 7 pages. https://doi.org/10.1145/2016904.2016908

[15] Ori Or-Meir, Nir Nissim, Yuval Elovici, and Lior Rokach. 2019. Dynamic Malware
Analysis in the Modern Era—A State of the Art Survey. ACM Comput. Surv. 52, 5,
Article 88 (Sept. 2019), 48 pages. https://doi.org/10.1145/3329786

[16] Sergio Pastrana, Daniel R. Thomas, Alice Hutchings, and Richard Clayton. 2018.
CrimeBB: Enabling Cybercrime Research on Underground Forums at Scale. In
Proceedings of the 2018 World Wide Web Conference (Lyon, France) (WWW ’18).
International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, CHE, 1845–1854. https://doi.org/10.1145/3178876.3186178

[17] Rami Sihwail, Khairuddin Omar, and Khairul Akram Zainol Ariffin. 2018. A
Survey on Malware Analysis Techniques: Static, Dynamic, Hybrid and Memory
Analysis. International Journal on Advanced Science Engineering Information
Technology 8 (09 2018), 1662. https://doi.org/10.18517/ijaseit.8.4-2.6827

[18] D. Uppal, VishakhaMehra, and V. Verma. 2014. Basic survey onMalware Analysis,
Tools and Techniques. International Journal of Computer Science & Applications 4
(2014), 103–112.

[19] C. Wang, Z. Qin, J. Zhang, and H. Yin. 2016. A malware variants detection
methodology with an opcode based feature method and a fast density based clus-
tering algorithm. In 2016 12th International Conference on Natural Computation,
Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). IEEE Computer Society,
Changsha, China, 481–487. https://doi.org/10.1109/FSKD.2016.7603221

[20] M. Weber, M. Schmid, M. Schatz, and D. Geyer. 2002. A toolkit for detecting
and analyzing malicious software. In 18th Annual Computer Security Applications
Conference, 2002. Proceedings. IEEE, Las Vegas, NV, USA, 423–431. https://doi.
org/10.1109/CSAC.2002.1176314

[21] Eric Wustrow, Manish Karir, Michael Bailey, Farnam Jahanian, and Geoff Huston.
2010. Internet Background Radiation Revisited. In Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement (Melbourne, Australia) (IMC
’10). Association for Computing Machinery, New York, NY, USA, 62–74. https:
//doi.org/10.1145/1879141.1879149

[22] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. 2015. A Generic
Approach to Automatic Deobfuscation of Executable Code. In 2015 IEEE Sym-
posium on Security and Privacy. IEEE, San Jose, CA, USA, 674–691. https:
//doi.org/10.1109/SP.2015.47

[23] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith. 2016. Helping Johnny
to Analyze Malware: A Usability-Optimized Decompiler and Malware Analysis
User Study. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, San Jose, CA, USA, 158–177. https://doi.org/10.1109/SP.2016.18

[24] Yanfang Ye, Tao Li, Donald Adjeroh, and S. Sitharama Iyengar. 2017. A Survey
on Malware Detection Using Data Mining Techniques. ACM Comput. Surv. 50, 3,
Article 41 (June 2017), 40 pages. https://doi.org/10.1145/3073559

http://emergingtechnet.org/Procs/IOTSMS2020/22/RC_IOTSMS2020_22.pdf
http://emergingtechnet.org/Procs/IOTSMS2020/22/RC_IOTSMS2020_22.pdf
https://www.caida.org/projects/network_telescope/
https://doi.org/10.1016/j.procs.2015.09.156
https://doi.org/10.1109/ICC.2015.7249229
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.1007/s11416-018-0323-0
https://tnc2011.terena.org/core/poster/29
https://go.kaspersky.com/rs/802-IJN-240/images/KSB_statistics_2020_en.pdf
https://go.kaspersky.com/rs/802-IJN-240/images/KSB_statistics_2020_en.pdf
https://doi.org/10.1016/j.cose.2015.04.001
https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1145/3329786
https://doi.org/10.1145/3178876.3186178
https://doi.org/10.18517/ijaseit.8.4-2.6827
https://doi.org/10.1109/FSKD.2016.7603221
https://doi.org/10.1109/CSAC.2002.1176314
https://doi.org/10.1109/CSAC.2002.1176314
https://doi.org/10.1145/1879141.1879149
https://doi.org/10.1145/1879141.1879149
https://doi.org/10.1109/SP.2015.47
https://doi.org/10.1109/SP.2015.47
https://doi.org/10.1109/SP.2016.18
https://doi.org/10.1145/3073559

	Abstract
	1 Introduction
	2 Background
	2.1 The Problem of Malware Analysis
	2.2 Related Surveys

	3 Static Analysis
	4 Dynamic analysis
	5 Further Approaches
	5.1 Malware Visualisation
	5.2 Entropy Analysis

	6 Conclusion and Future Work
	References

