
uTimer: A Uniform Low-level Timer-API for RIOT-OS

Niels Gandraß
HAW Hamburg

Germany
Niels.Gandrass@haw-hamburg.de

Abstract—Microcontrollers offer a large range of hardware
timers. As peripherals grow in diversity, supporting them gets
increasingly challenging for embedded operating systems. Well-
established software interfaces struggle with supporting the
full feature set novel timers provide. A need for flexible timer
hardware abstraction therefore arises.

With this work, we first contribute an analysis of timer
peripherals that covers 43 device families from 8 manufactur-
ers, followed by a survey of existing driver modules. Based on
both, we propose uTimer, a uniform low-level timer-API for the
RIOT operating system. Its interface is timer type independent
and allows for transparent use of all available peripherals.
This fosters application portability across MCUs. We develop
an automated benchmark suite that quantifies the abstraction
overhead and compare API performance to current solutions.
Results show that uTimer introduces only six additional CPU
cycles and timer performance is maintained.

Index Terms—embedded systems, hardware abstraction, hard-
ware timers, operating systems

1. Introduction

Microcontroller units (MCUs) offer a constantly growing
variety of hardware timers. Especially resource constrained
embedded devices can benefit from supporting those novel
peripherals. With the emerging Internet of Things (IoT),
devices, applications, and deployment contexts of embedded
controllers increase in numbers and heterogeneity, and so
does the need for robust hardware abstractions that fosters
portability. Choosing an appropriate level of abstraction is
complex, but mandatory to balance todays requirements
on performance and time to market. Embedded operating
systems (OSs) are the prevalent solution for developing
sustainable applications in the IoT. One increasingly popular
embedded OS is RIOT [1]. This open-source OS targets low-
power and resource constrained embedded devices.

RIOT offers five distinct low-level timer modules, all
differing in use and feature availability. With this work, we
propose a low-level timer interface that unifies current APIs
and hereby streamlines timer usage throughout the RIOT
ecosystem. We start by defining the problem of hardware
abstraction, followed by a survey of existing timer interfaces

and related work in Section 2. We conduct a large-scale
analysis of timer peripherals on which we ground our low-
level timer-API design within Section 3. After that, we
develop benchmarks to quantify its performance and isolate
the entailed abstraction overhead in Section 4. We conclude
with an outlook on future work in Section 5.

2. The Problem of Hardware Abstraction

Timers are a fundamental part of every embedded system
and required by most applications. As a result, their efficient
yet convenient use is essential. Forcing user applications and
OS modules to directly interact with timer hardware regis-
ters may yield near-optimal performance but is highly error-
prone, laborious, and prevents portability. Abstracting timer
peripherals results in portable and user-friendly solutions
but decreases performance. Hence choosing an appropriate
level of abstraction can be challenging and is referred to
as the abstraction trade-off. Mitigation of performance loss
is partly possible by sacrificing system memory to reduce
computational complexity. Design decisions regarding this
time-memory trade-off are discussed by us in Section 3.2.3.
The problem of abstracting timer hardware therefore lies
in balancing both trade-offs to foster convenient timer use
while confining performance degradation.

2.1. Low-level Timer Interfaces

RIOT offers three generic and two special purpose
low-level timer drivers. The generic modules (periph_-
timer/rtt/rtc) interface common timer types, such as
general-purpose and low-power timers or real-time clocks
(RTCs). The special purpose drivers (periph_pwm/wdg)
do not expose timers directly, but instead use the underlying
hardware to provide higher-level features, such as signal
generation. Separating software modules allows to optimize
their interfaces for specific timer types, but prevents their
transparent and interchangeable use. With this approach,
either not all timers can be used due to missing interface
definitions or developers are forced to expose dissimilar
timer types via the same, potentially unfavorable, API.

Functions provided by the drivers are limited to the small
set of features that is common to all MCU-platforms, leaving
additional timer features unsupported. Though functionality

of most modules overlap, we found their APIs to differ
in use and feature availability. This includes, for example,
counter value representation, interrupt (INT) handling, and
peripheral instance management. Underlying timer types
moreover vary between MCU families, which is particularly
common with the real-time timer driver (periph_rtt). In
some cases, the same peripheral is simultaneously exposed
through multiple APIs, leading to resource allocation con-
flicts and undefined behavior. Special timer types, such as
high-speed counters or ultra low-power timers, frequently
remain unsupported. Three modules statically map to a sin-
gle hardware timer and channel, hereby leaving a significant
number of available peripherals and compare channels un-
usable. Registration of user defined callback functions, to be
executed upon timer overflow interrupts, is only supported
by one module. Timer selection and configuration requires
manual changes to system header files. The structure and
location of those files is highly heterogeneous and differs
largely across MCUs. Considering the above, the application
developer often is required to manually (re-)write low-level
driver code whenever additional timer features or specific
timer peripherals are needed.

2.2. Related Work

Operation principles and common features of hardware
timers are outlined by Kamal [4] as well as Susnea and
Mitescu [6]. The latter conducted a comparison of timer
peripherals from three MCU families. They found that even
though specific timer features differ, assessed peripherals
still share many common operation principles. Further anal-
yses of MCU hardware exist, but they do not cover timer
peripherals at the required level of detail to derive interface
design decisions from them.

The current timer subsystem and hardware abstraction
layers (HALs) in RIOT are described by Baccelli et al. [1].
The OS provides a single peripheral layer that exposes hard-
ware to system modules and user applications. This design
keeps abstraction overhead low but limits feature support.
Handziski et al. [2] present a multi-layered HAL design.
Each of its three layers allows for a different granularity of
peripheral access. Hardware-independent APIs are provided,
while access to platform-specific features is available at the
cost of loosing application portability. Moreover, a platform-
independent timer-API is proposed by Lindgren et al. [5].
They discuss similarities between timers of the STM32F4
and LPC1700 MCU families and outline their impact on
the proposed API. Identified generic characteristics include
counter width, interrupt capability, prescalers, auto-reload,
and compare channel count. We likewise cover these char-
acteristics in our larger-scale hardware analysis. The authors
furthermore emphasize, that having many compare channels
available benefits timer maintenance.

Comparative benchmarks of the current RIOT high-
level timer software modules are performed by Ismail [3].
The author uses PHiLIP [7] to record GPIO event traces,
independent of the target hardware. Measurements assess
eight different microcontroller boards and are conducted in

an automated fashion. We base our evaluation setup on this
work, as described in Section 4.

3. A Unified Timer-API for RIOT

3.1. Timer Hardware Analysis

Prior to designing the timer-API, we conducted a large-
scale analysis of timer peripherals. It includes 43 device
families of eight manufacturers, hereby covering all MCUs
currently supported by RIOT-OS. Assessed aspects derive
from our survey of existing timer interfaces and related
work. Their initial set was extended further, whenever our
explorative data acquisition revealed additional points of
interest. We examine basic characteristics such as counter
width, prescalers, and compare channels as well as advanced
aspects such as interrupt generation, timer chaining, and
low-power features. Gathered information is transformed
into uniform result tables, referred to as Timer Comparison
Matrices (TCMs). These allow detailed comparison of timer
peripherals across all assessed device families. The TCMs
are the base to derive inter-MCU-platform findings from.

Our analysis identified counter register widths to be at
least 16 bit among all platforms, while 90 % also provide
32-bit and 21 % even 64-bit timers. On 71 % of all platforms,
smaller timers in particular support range extension through
timer chaining. Frequency prescalers are always available,
and many timers provide at least two (64 %) or even four
(24 %) channels. Only 31 % feature fully independent in-
terrupt vectors for every compare channel. On 84 % of all
platforms, multiple timer clock sources are selectable and
71 % of all timers can be driven by a designated low-power
clock. All platforms offer at least one timer that is capable of
operating in the lowest power mode and waking the CPU on
designated events. Susnea and Mitescu [6] found common
characteristics and operation principles among all their three
devices. Our analysis confirmed this to also apply on a larger
scale. Basic feature sets of general-purpose timers were
found uniform across all MCUs, allowing to expose them
in a platform-independent way. Other timer types differed
largely in function and modes of operation, hereby requir-
ing a more complex interface. Simply extending a generic
interface to support device-specific features contradicts its
platform-independence. We therefore argue, that a uniform
timer-API should provide both a basic platform-independent
and a platform-specific interface to be capable of effectively
abstracting and presenting timer hardware.

3.2. A Uniform Low-level Timer-API

We address the outlined challenges with uTimer, a low-
level timer-API for RIOT. It streamlines existing APIs and
exposes hardware timers via a uniform interface, fostering
a transparent and interchangeable use of all available timer
peripherals. Besides common timer functions, out-of-the-
box support for device-specific features is provided, while
platform-independence is preserved whenever possible.

General-
purpose

User Application /
High-level OS Modules

Low-power

RTC

U
se

r-f
ac

in
g

AP
I

H
W

-fa
ci

ng
 A

PI

Driver A

Driver B

periph_utimer

Timer
0

Timer
1

Timer
2

Figure 1. Architecture of the proposed low-level timer-API design

Base
Driver

fn

fn

fn

fnVirtual
Driver

Timer
0

Timer
1

Timer
0+1

Figure 2. Virtual timer driver

Our design is split into a hardware-facing API (hAPI)
and a user-facing API (uAPI), decoupling timer logic from
hardware-dependent driver code. It incorporates key as-
pects of the hardware abstraction architecture as proposed
by Handziski et al. [2]. The hAPI consists of timer type
specific drivers that interact directly with the peripherals.
The uAPI then uses the hAPI to provide a convenient
hardware-agnostic interface to both applications and higher-
level OS modules, such as the network stack or sensor
drivers. It hereby encourages uniform timer code throughout
the whole RIOT ecosystem. An overview of this architecture
is illustrated in Figure 1.

With uTimer, each hardware timer is represented by a
designated timer instance struct. It identifies the peripheral
device, provides static timer properties, and specifies the
hAPI driver to use. Selection and configuration of timers
that are made available to the application is done via Kconfig
at compile-time. Exposed peripherals can interactively be
configured and required drivers are automatically included.

3.2.1. Hardware-facing API. The hAPI provides low-level
drivers that directly interact with timer hardware registers
and possess a lightweight yet flexible interface. One such
driver exists for every timer type (e.g., general-purpose, low-
power, or RTC) and is used by at least one exposed timer
instance. Drivers are implemented as structs that consist
of minimal function sets, each represented as a group of
function pointers. Common basic features are directly acces-
sible through designated functions, whereas device-specific
features are exposed via a compact and flexible property
interface, supporting optional feature availability. Closely
related operations are bundled into single functions when-
ever appropriate, e.g., combining start() and stop()
into a single enable(bool) call. Our hardware analysis
revealed, that some timer types are available in multiple
versions, hence share many common features. Their im-
plementations can therefore be mapped to multiple drivers,
allowing selective re-use of single functions as well as entire
drivers. Representing chained timers as a single instance is
furthermore made possible by combining peripherals using
virtual drivers, as illustrated in Figure 2.

3.2.2. User-facing API. The uAPI provides one single set
of functions that is independent of the underlying timer
type. Previously bundled hAPI functions are unbundled
for convenient use and function calls are either directly
delegated to the respective driver, for example, read and
write operations, or performed as compound operations of
multiple subsequent hAPI driver calls such as relative timer
arming. Static attributes such as counter width or channel
count, and run-time dynamic properties such as counting
mode or pending interrupts, are made available. Additional
convenience functions, such as determining available timer
frequencies, are furthermore provided. Support of device-
specific features can dynamically be determined during run-
time and is indicated via function return values. Separate
user-defined callbacks can be attached to both compare
match and overflow interrupts, whenever supported by the
respective timer. Interrupts can be (un-)masked at any time,
and all mandatory maintenance tasks are automatically per-
formed by the corresponding hAPI driver. Clock sources can
be run-time selected as either a generic clock class, such as
high-frequency, low-power and default, or explicitly as a
platform-specific clock.

3.2.3. Design Trade-offs. Compare match (CMP) and over-
flow (OVF) callbacks are separated due to their disjoint
use cases. CMP is not split further, since only 31 % of all
timer types provide distinct interrupts for every compare
channel. Even though applicable platforms may benefit from
a slightly lower timeout latency, the majority only suffer the
additional pointer memory overhead. Individual functions
can nonetheless still be dispatched within the user-defined
callback, whenever required.

Mapping timer functions within hAPI driver structs
and assigning these to timer instances introduces pointer
dereferencing overhead. Functions could instead be mapped
directly within each timer instance struct, hereby removing
one layer of indirection. This, however, raises the memory
footprint and induces code duplication. Closely related is
our design decision to bundle certain hAPI functions and
later unbundle them within the uAPI to reduce driver struct
size. We assess both trade-offs in detail by isolating and
quantifying the exact abstraction overhead in Section 4.2.

4. Evaluation

We implemented uTimer on four MCUs that feature a
representative and diverse range of timer peripherals: (I)
STM32L476RG (Nucleo-L476RG), a powerful Cortex-M4
device featuring six timer types and a total of 15 timer
peripherals; (II) STM32F070RB (Nucleo-F070RB), a main-
stream Cortex-M0 MCU that has only basic 16-bit timers;
(III) EFM32PG12B500 (SLSTK3402A), a low-power ARM
chip with four chainable 16/32-bit timers and two types
of ultra low-power timer peripherals; (IV) ESP32 (ESP32-
WROOM), a Xtensa MCU that possesses four 64-bit timers
and is a popular choice for generic IoT applications.

Automating software tests and benchmarks is especially
important when dealing with a diverse and ever-changing
hardware landscape. RIOT therefore actively supports auto-
mated cross-platform testing by combining Hardware in the
Loop (HiL) testbeds with Continuous Integration (CI) [7].
Our evaluation setup integrates with this solution. It provides
developers with ready-to-use unit tests and benchmarks,
fostering development of performant API implementations.

4.1. Cross-platform Validation

To validate our implementations, all existing RIOT low-
level timer test suites were ported to periph_utimer.
These assess fundamental timer functions, one-shot timeouts
on all channels, periodic timeouts, and include a robustness
test for very short timeouts. We developed additional test
suites for newly supported features such as counter register
writes and overflow interrupt handling. To validate advanced
features, further device-specific tests were developed. Vir-
tual timer drivers for example were tested by exposing a pair
of chained hardware timers as a single timer instance. Both
types of tests revealed small implementation errors, which
then could be fixed prior to our benchmarks. Test suites
are platform-independent and a CI integration for automated
execution is provided.

4.2. Performance Benchmarks

We quantified the performance of uTimer (periph_-
utimer) and compared it to the existing periph_timer
API on all four MCUs. Our test setup uses the Primitive
Hardware in the Loop Integration Product (PHiLIP) [7]
to conduct all measurements in a hardware-independent
fashion. The test system architecture and our benchmarking
procedure is illustrated in Figure 3.

Our benchmarks consist of a RIOT-based test firmware
and a Robot Framework (RF) test suite, similar to the
high-level benchmarks conducted by Ismail [3]. Prior to
execution, the test firmware is flashed onto the device under
test (DUT) once. It implements all benchmark routines and
is controlled through a simple shell interface that is exposed
via UART. The corresponding RF test suite then is started. It
sends control commands to the DUT shell and uses PHiLIP
to record GPIO event traces. Measurements are evaluated
by processing the captured traces within the RF test suite.

Figure 3. Architecture of our benchmarking setup

This setup seamlessly integrates with the existing HiL and
CI infrastructure and can easily be extended to additional
MCUs, as API implementations become available.

Prior to any measurement, the DUT firmware version
and board timing parameters such as oscillator frequencies
are verified. In case of mismatch, test suite execution is
aborted. Each test case starts by resetting the DUT, flushing
the trace buffer, and configuring DUT interrupt requests
(IRQs) followed by a short pause to surpass PHiLIPs mini-
mum hold-off time. During test teardown, GPIOs are cleared
and IRQ state is restored. Every benchmark is repeated 500
times to ensure accurate results. Certain microbenchmarks
additionally repeat executed function calls 10 times per
benchmark pass to safely exceed the required hold-off time.

4.2.1. Accuracy and Hardware Limits. Measurement start
and stop is indicated by consecutive rising and falling edges
on an output pin. Its accuracy therefore depends on the
GPIO overhead of the DUT and the input capture perfor-
mance of PHiLIP. The first is accounted for during trace
evaluation, as described and quantified in Section 4.2.2.
The latter depends on the selected trigger mode. We use
PHiLIPs interrupt-based dual-edge trigger mode for all our
benchmarks. It is rated to require at least 1 µs hold-off time
between two consecutive edges and faces 200 ns timestamp
jitter [7, p. 14]. However, we found its accuracy to improve
when using a Nucleo-F103RB instead of the smaller Blue
Pill board. We hereby were able to obtain accurate results
with only 600 ns hold-off time and 45 ns jitter. Undercutting
this limit leads to loss of samples and erroneous measure-
ments. A hold-off time of at least 1 µs is therefore enforced
throughout all our benchmarks to provide a reasonable
safety margin and preserve board compatibility.

The resolution of captured traces is limited by PHiLIPs
fixed CPU operation frequency of 72 MHz, resulting in 14 ns
quantization steps that can be observed in measurements.
PHiLIPs circular trace buffer can hold a maximum of 128
events at once. All our test suites therefore fetch captured
traces after every 50 consecutive benchmark passes.

4.2.2. GPIO Overhead. The time that is required to set and
clear a GPIO pin varies between MCUs, due to differences
in CPU architecture, operation frequencies, and low-level
peripheral code. As we signal measurement start and stop
by these events, knowing the board specific GPIO overhead

nucleo-f070rb nucleo-l476rg esp32-wroom-32 slstk3402a
Board

0

100

200

300

400

500

600

700

800

Ex
ec

ut
io

n
Ti

m
e

[n
s]

periph_utimer
periph_timer

Figure 4. Average GPIO overheads including their standard deviations.

6

8

10

12

14

C
PU

 C
yc

le
s [

#]

Read (uAPI) Read (hAPI) Write (uAPI) Write (hAPI) Read
Timer Operation

62.5

75.0

87.5

100.0

112.5

125.0

137.5

150.0

162.5

175.0

Ex
ec

ut
io

n
Ti

m
e

[n
s]

periph_utimer
periph_timer

Figure 5. Read and write NOPs execution time on Nucleo-L476RG board
running at 80MHz core clock speed

OGPIO is essential for achieving accurate results. We mea-
sure it according to pseudocode Listing 1.

1 Se tup
2 Repea t 500 t i m e s :
3 g p i o _ s e t (GPIO_IC) ;
4 s p i n (SPIN_DURATION) ;
5 g p i o _ c l e a r (GPIO_IC) ;
6 s p i n (PHILIP_HOLDOFF_TIME) ;
7 Teardown

Listing 1. GPIO overhead benchmark pseudocode

∆t = tgpio_clear() − tgpio_set() (1a)

OGPIO = 1
N

∑N
i=1 [∆ti − tspin] (1b)

Active waiting (i.e., spinning) is used to represent a set
of benchmarked operations. The spin() function is inlined
to avoid function call overhead. Subtracting its calibrated
execution time from the recorded trace yields the overhead
of our measurement setup (1). We found it stable for spin
durations between 1 µs and 1 ms, while longer spins were
increasingly affected by clock drift and CPU pipelining
artifacts. Observed stable values range from 123 ns ± 42 ns
on the Nucleo-L476RG up to 737 ns ± 32 ns on the Nucleo-
F070RB, as depicted in Figure 4. Our measurements also
confirmed OGPIO to be independent of the used timer-API.

4.2.3. Timer Base Operations Benchmark. We measure
basic timer operations such as read or write according to
pseudocode Listing 2. As these operations can complete
quickly, each function is invoked 10 times per benchmark
run to ensure that the PHiLIP hold-off time is reliably
exceeded on all devices. Function calls are textually repeated
via preprocessor macros to avoid any form of loop overhead.
Repetitions are factored out during evaluation, according

to (2). Execution durations top are converted to equivalent
CPU cycles. This allows comparison across MCUs despite
their different clock frequencies. uAPI and hAPI driver calls
are assessed separately. The latter is executed solely as the
desired driver operation, e.g., driver->read() instead
of the equivalent uAPI function utimer_read().

1 Se tup
2 Repea t 500 t i m e s :
3 START Measurement
4 t i m e r _ o p e r a t i o n () ;
5 t i m e r _ o p e r a t i o n () ;
6 / / . . . r e p e a t e d 10 t i m e s
7 t i m e r _ o p e r a t i o n () ;
8 STOP Measurement
9 s p i n (PHILIP_HOLDOFF_TIME) ;

10 Teardown
Listing 2. Base operation benchmark pseudocode

∆t = tSTOP − tSTART (2a)

top = 1
N

∑N
i=1

[
1
10 (∆ti −OGPIO)

]
(2b)

Execution times are composed of both MCU specific
code and the abstraction overhead that is inherent to our API
design. To isolate the latter, we replaced all timer read and
write operations with no operations (NOPs) and measured
the remaining execution time. As the current periph_-
timer API does not support write operations, only its read
function was assessed.

Results show that the applied abstraction causes an
overhead of six clock cycles, as depicted in Figure 5. On
ARM-based devices, however, one additional clock cycle is
introduced within the hAPI. periph_timer uses a plain
integer to address peripherals on STM32 microcontrollers.
Compiling with gcc and size optimization (-Os) results in a

nucleo-f070rb nucleo-l476rg esp32-wroom-32 slstk3402a
Board

0

10

20

30

40

50

C
PU

 C
yc

le
s [

#]

periph_utimer (uAPI)
periph_utimer (hAPI)
periph_timer

Figure 6. CPU cycles consumed by read operations

nucleo-f070rb nucleo-l476rg esp32-wroom-32 slstk3402a
Board

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

eo
ut

 L
at

en
cy

 [µ
s]

periph_utimer
periph_timer

Figure 7. Latency and jitter of 1ms timeouts at 1MHz timer frequency

MOVS instruction prior to the branch (BL). With periph_-
utimer, a pointer to the respective timer instance struct is
passed instead. This results in an ADD instruction followed
by a branch and an additional instruction set change (BLX).
Though these instructions require the same amount of CPU
cycles, both sets are subjected to pipeline refills. One such
pipeline refill takes between one and three CPU cycles,
hereby causing the observed hAPI overhead. The ESP32
with its Xtensa CPU architecture suffered no such increase.

Besides required branching instructions, resolving the
corresponding hAPI driver function was found to be another
source of overhead. We further analyzed the disassembly
to identify potential optimizations for the latter. Despite
the timer instance and its driver being constant and the
executed operation never changed, dereferencing of the
driver function pointer was repeated prior to every branch
instruction. Building with different gcc optimization levels
(-Os, -O[0-3]) yielded identical results at all times, while
the const pointer dereferencing was never optimized. We
therefore consider the six clock cycle overhead inevitable
with the used compiler toolchains. However, once quanti-
fied, this overhead can be compensated by the application.

After assessing the sole API overhead, we run the
benchmark suite for read, write, set, and clear operations
with their full implementations. Figure 6 compares the timer
read performance for all boards. On the Nucleo and ESP32
boards, periph_utimer shows the quantified abstraction
overhead. Board specific implementation differences are
furthermore reflected by our results. On the SLSTK3402A,
however, uTimer performs better than the existing imple-
mentation by five CPU cycles. Directly using the hAPI
instead of the uAPI even results in a total speed-up of 11
CPU cycles. As periph_timer exposes three different
timer types on EFM32 CPUs, it is required to determine the
corresponding driver during every API function. This con-
stitutes the observed overhead. The uTimer API mitigates
this by natively supporting multiple timer types.

CPU frequencies are usually at least ten times higher

than timer base frequencies. All observed performance dif-
ferences, both positive and negative, therefore become neg-
ligibly small for many use cases. With 1 MHz timers on the
Nucleo-L476RG, for example, the CPU performs 80 cycles
per timer tick, hereby virtually eliminating the effects of the
additionally required CPU cycles regarding timer behavior.

4.2.4. Timeout Latency Benchmark. The latency of a
timeout Ltout is the difference between the expected and
the actually observed end of a timeout period. Negative
values for Ltout may occur due to oscillator inaccuracies
or faulty driver code. Its standard deviation is referred to
as timeout jitter Jtout. Timeout error Etout puts Ltout in
relation to the expected timeout duration tout. Keeping it
within application appropriate limits is crucial. We mea-
sure it according to pseudocode Listing 3. First, a timer
is initialized and stopped. It then is armed to a counter
value corresponding to the desired timeout duration at the
selected frequency. Relative arming is required due to the
missing support for writing the counter register via the
existing periph_timer API. Elapsed time ∆t between
the subsequent timer start and the awaited callback execution
then is measured (3a). Results of a complete benchmark pass
are calculated according to (3b-d).

1 Se tup
2 Repea t 500 t i m e s :
3 t i m e r _ i n i t (f r e q u e n c y , c a l l b a c k) ;
4 t i m e r _ s t o p () ;
5 c n t = t i m e r _ r e a d () + t i m e o u t ;
6 t i m e r _ s e t (c n t) ;
7 t i m e r _ s t a r t () ;
8 START Measurement
9 WAIT f o r c a l l b a c k e x e c u t i o n

10 STOP Measurement
11 s p i n (PHILIP_HOLDOFF_TIME) ;
12 Teardown

Listing 3. Timeout benchmark pseudocode

∆t = tSTOP − tSTART (3a)

Ltout = 1
N

∑N
i=1 [∆ti − tout−OGPIO] (3b)

Jtout = σ(Ltout) =
√
σ(∆t)2 + σ(LGPIO)2 (3c)

Etout = abs
(
Ltout

tout

)
(3d)

To cover a comprehensive range of use cases, assessed
timer frequencies vary between 10 kHz and 10 MHz while
timeout durations vary between 10 µs and 1 s. Compared
to periph_timer, periph_utimer suffered a slight
increase in timeout latency while jitter remained stable,
as depicted in Figure 7. Our benchmarks found Ltout to
increase by between 0.77 µs on the SLSTK3402A (best) and
2.32 µs on the ESP32 board (worst). This behavior shows
the inevitable drawbacks of abstraction and was observed
throughout all tested duration and frequency combinations
alike. It is caused by a combination of resolving the timer
type dependent low-level interrupt service routine (ISR)
upon IRQ occurrence and the now supported timer overflow
handling1. Whether this increase is tolerable depends on
both the timeout duration and the application requirements.
Table 1 compares the performance of both APIs for common
1 ms timeouts. Here, timeout error increased by between
0.08 % on the SLSTK3402A (best) and 0.23 % on the
ESP32 board (worst). We consider this minor increase to
be insignificant for most applications. It, however, becomes
an issue with very short timeouts (≤ 10 µs), as even just
a slight increase in latency contributes significantly to the
overall timeout error. In such cases, unnecessary indirection
should always be avoided. Directly using the hAPI or active
waiting (i.e., spinning) therefore is recommended. Most ap-
plications, however, do not require this very short timeouts.
A slightly increased latency therefore is negligible when put
into perspective to the timeout durations that are common
with typical IoT use case scenarios. Moreover, with long-
running timeouts (≥ 1 s), other factors, such as oscillator
accuracy, become dominant.

Our benchmarks revealed a significant increase in time-
out latency for certain timeout and frequency combinations
when using periph_timer. On the Nucleo-F070RB, for
example, generating a 1 s timeout using a timer running at
10 kHz base frequency resulted in a 11.5 µs timeout latency.
This corresponds to a timeout error of less than 0.01 %.
Requesting the same 1 s timeout from a peripheral that
is configured to 1 MHz instead, increased timeout latency
to 983.0 ms. This constitutes an increase in timeout error
to 98.30 %. Since behavior for invalid parameters is not
explicitly specified by the API, implementations usually
neither verify the requested frequency nor timeout durations.
An established convention is to select the closest achievable
timer frequency or compare channel value. This leads to
unpredictable timeout lengths if parameters are not chosen
carefully by the developer, as individually required for each
MCU and its current clock configuration. Both erroneous
cases result in the observed timeout latency increase. The

1. This effect is not present on platforms with independent interrupts for
both compare match and overflow events.

TABLE 1. TIMEOUT LATENCY BENCHMARK RESULTS FOR 1ms
TIMEOUTS AT 1MHz TIMER FREQUENCY

periph_timer periph_utimer
Board Ltout ± Jtout Ltout ± Jtout

nucleo-f070rb 0.48 µs ± 43.28ns 1.62 µs ± 43.27ns
nucleo-l476rg 0.67 µs ± 60.55ns 1.72 µs ± 58.91ns

esp32-wroom-32 −0.48 µs ± 43.94ns 2.80 µs ± 44.52ns
slstk3402a 1.65 µs ± 42.70ns 2.42 µs ± 43.87ns

periph_utimer API addresses this problem by requiring
implementations to signal an error if the requested frequency
is not exactly achievable or the desired timeout is out of
range. A uAPI method to determine the closest achievable
frequency is furthermore provided, and counter limits can
be determined by the static properties within every timer
instance struct.

4.3. Additional Aspects

4.3.1. Memory Consumption. The additional abstraction
layers and time-memory optimizations both contribute to the
overall memory footprint. With uTimer, every exposed timer
instance entails one utim_periph_t struct. It consists
of two pointers and one 16-bit field, requiring a total of
12 bytes2 on 32-bit devices. Each utim_driver_t hAPI
driver struct consists of seven pointers, hence requires 28
bytes on 32-bit devices. However, drivers are only included
in the final binary, if used by at least one activated timer,
as dynamically configured via KConfig. Besides the generic
API footprint, differences in the platform-dependent driver
code may further affect memory consumption. Using only
a single unified API, in turn, can free up memory that
previously was consumed by the multiple specialized APIs.
The final data read-only memory (ROM) size therefore
strongly depends on both the individual application and
target platform. Random-access memory (RAM) use did not
change throughout all our experiments.

4.3.2. Peripheral Availability. Making all timers of a board
available to the application is one of our aspired goals.
Table 2 compares the total number of exposed peripherals
and channels between a combined use of existing APIs
(periph_timer/rtt/rtc) and exclusively using uTimer.
It shows that our novel API makes all available timers and
channels usable. Besides their sole quantity, the types of
available timers are equally important. On STM32 boards,
existing APIs only expose one Low-power Timer, leaving
additional peripherals unusable. Advanced-control Timers
require additional configuration and Basic Timers remain
fully unusable. On the ESP32, all available timers are ex-
posed, except one general-purpose timer that is reserved
for the OS. Lastly, none of the existing APIs allow the
use of EFM32 ultra low-power Cryotimer peripherals or
Pulse Counters. This common lack of support for advanced

2. Two additional bytes are added due to struct padding. This effect is
not present on 16-bit architectures.

TABLE 2. EXPOSURE OF TIMER PERIPHERALS AND CHANNELS:
COMBINED USE OF EXISTING APIS COMPARED TO UTIMER

Timers (Channels)
Board Available Existing APIs uTimer

nucleo-f070rb 10 (14) 2 (5) 10 (14)
nucleo-l476rg 15 (32) 3 (6) 15 (32)

esp32-wroom-32 5 (5) 4 (4) 4 (4)
slstk3402a 8 (18) 4 (9) 8 (18)

timer types especially limits low-power optimizations. Using
uTimer instead, developers are able to select the best suited
timers for their specific application among the full range of
available peripherals.

4.3.3. Code Quality and Usability. Besides performance
of an API stands its usability and maintainability. Exist-
ing interfaces still offer room for optimization regarding
these aspects. As previously indicated, periph_timer on
EFM32 devices simultaneously exposes three different timer
types, promoting to combine all implementations within
a single function. This not only lowers performance, but
also decreases code quality and hides information about
the peripheral type from the user. Some implementations
furthermore require error-prone workarounds to determine
timer properties, again impairing maintainability. During
initialization of EFM32 timers, for example, the peripherals
internal memory base address is evaluated to determine the
timer type. It is then used to deduce the maximum counter
width and set the auto-reload register accordingly.

With uTimer, multiple timer types are natively supported
and enabled timers can be addressed both explicitly (e.g.
STM32_LPTIM2) and platform-independent (e.g., Timer 0).
Static and run-time dynamic timer properties can safely and
conveniently be accessed. User applications, drivers, and
other OS modules thereby can directly use this information
without error-prone workarounds. Ready to use peripheral
mappings and their flexible selection furthermore relieve
application developers from modifying OS code and deep-
diving into vendor datasheets or SDKs. Existing APIs are
streamlined into a single interface, fostering uniformity of
timer code throughout applications. API behavior upon error
or invalid use is explicitly defined and a common pattern for
peripheral configuration is established. During our evalua-
tion, we found all these measures to significantly benefit
both usability and code maintainability.

5. Conclusion and Outlook

The challenge in designing a hardware-API lies in
balancing the abstraction and time-memory trade-offs. We
assessed this systematically for RIOT with a survey of
existing low-level timer interfaces and an extensive analysis
of timer peripherals. Based on both, we proposed uTimer, a
uniform low-level timer-API that exposes all available hard-
ware timers and fosters application portability. It provides
both common platform-independent and advanced platform-
specific timer features. The abstraction overhead that is in-
herent to our two-layered design was isolated and quantified

to a total of six CPU cycles. We evaluated the proposed
API with HiL-based benchmarks on four distinct MCUs,
covering basic timer operations and timeout specific metrics.
Compared to current solutions, relative error of typical 1 ms
timeouts merely increased by between 0.08 % (best) and
0.23 % (worst). All negative and positive performance dif-
ferences were found to be negligible for most applications,
while usability and code quality benefited significantly.

We will continue our research by extending uTimer
implementations to additional RIOT devices. Developed unit
tests and performance benchmarks will be integrated into the
existing HiL and CI environment. Once finished, we want
to assess higher-level aspects of the RIOT timer subsystem,
such as software counter width extension and class-based
multiplexing of virtual timeouts.

References

[1] E. Baccelli, C. Gündogan, O. Hahm, P. Kietzmann,
M. Lenders, H. Petersen, K. Schleiser, T. C. Schmidt,
and M. Wählisch, “RIOT: An Open Source Operating
System for Low-End Embedded Devices in the IoT,”
IEEE Internet of Things Journal, vol. 5, pages 4428–
4440, Dec. 2018. DOI: 10.1109/JIOT.2018.2815038.

[2] V. Handziski, J. Polastre, J.-H. Hauer, C. Sharp, A.
Wolisz, and D. Culler, “Flexible Hardware Abstraction
for wireless sensor networks,” in Proceeedings of the
Second European Workshop on Wireless Sensor Net-
works, 2005, pages 145–157. DOI: 10 .1109/EWSN.
2005.1462006.

[3] A. Ismail, “Automated Testing of the RIOT-OS Timer
Subsystem,” 2021. [Online]. Available: https : / / inet .
haw-hamburg.de/thesis/completed/ba_aiman_ismail.
pdf.

[4] R. Kamal, Embedded Systems: Architecture, Program-
ming and Design, second edition. Tata McGraw Hill
Education, 2011, ISBN: 978-0-070-66764-8.

[5] P. Lindgren, E. Fresk, M. Lindner, A. Lindner, D.
Pereira, and L. M. Pinho, “Abstract Timers and Their
Implementation onto the ARM Cortex-M Family of
MCUs,” ACM SIGBED Review, vol. 13, pages 48–53,
Mar. 2016. DOI: 10.1145/2907972.2907979.

[6] I. Susnea and M. Mitescu, Microcontrollers in Prac-
tice (Springer Series in Advanced Microelectronics),
first edition. Berlin, Heidelberg: Springer-Verlag, 2005,
ISBN: 978-3-540-28308-9.

[7] K. Weiss, M. Rottleuthner, T. C. Schmidt, and M.
Wählisch, “PHiLIP on the HiL: Automated Multi-
platform OS Testing with External Reference Devices,”
ACM Transactions on Embedded Computing Systems
(TECS), vol. 20, no. 5s, 91:1–91:26, Aug. 2021, Se-
lected for presentation at EMSOFT 2021. [Online].
Available: https://doi.org/10.1145/3477040.

