
PROJECT REPORT
Lena Boeckmann

Evaluation of a Secure
Processing Environment in
RIOT OS

Faculty of Engineering and Computer Science
Department Computer Science

Supervision: Prof. Dr. Thomas Schmidt
Submitted: June 18, 2024

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Contents

Contents

1 Introduction 1

2 Background and Related Work 2
2.1 Trusted Execution Environments . 2

2.1.1 TEE Implementation Approaches 3
2.2 Trusted Firmware M . 5
2.3 The RIOT Operating System . 6

3 TF-M Integration 6
3.1 Basic Build and Functionality . 6
3.2 Integration Steps . 8
3.3 Adding TF-M . 9
3.4 Limitations . 9

4 Evaluation 9
4.1 Memory Overhead . 10
4.2 Execution Time . 11
4.3 Limitations . 12

5 Conclusion and Outlook 13

References 14

Declaration of Authorship 17

ii

1 Introduction

Abstract: Trusted Execution Environments (TEE) and secure enclaves are
promising concepts for increasing security in constrained environments. They
provide protected processing areas within a SOC, in which security critical ap-
plications can be executed, while preventing unauthorized access to sensitive
data and program code. Some Arm Cortex-M devices offer hardware support
for TEE. This comes in the shape of a Memory Protection Unit (MPU) and,
for the newest class of devices with Armv8-M architecture, TrustZone-M (TZ-
M) technology. Arm also provides an open source reference implementation
of a Secure Processing Environment (SPE). The so-called Trusted Firmware
(TF-M) can be used to leverage the MPU and TZ-M capabilities and use
memory isolation to implement a TEE. This report describes how we inte-
grated TF-M with the IoT operating system RIOT OS, evaluates the overhead
compared to running RIOT without TF-M and gives an outlook on future
work regarding TEE in RIOT.

Keywords: TFM, Arm, TrustZone, Trusted Execution Environments, IoT
Security

1 Introduction

Billions of devices connected to the Internet of Things (IoT) store, process and transmit
sensitive data, while often being insecure and easily physically accessible to potential
attackers. Vulnerable devices can serve as entry points to larger networks and allow bad
actors to laterally move within networks to compromise critical system components and
infrastructure. Especially when devices are deployed in easily accessible areas or are
connected to the internet, we need ways to make those devices trustworthy.

This can be achieved by establishing a so-called Root of Trust (RoT), which is a tamper-
proof and inherently trustworthy system component. A RoT can be provided by so-
called Trusted Execution Environments (TEE). Those are isolated environments in which
trusted applications (TA) can perform security critical operations, like secure storage of

1

2 Background and Related Work

data and cryptographic key material, cryptographic operations, device authentication
and attestation and secure over-the-air (OTA) updates.

Using TEEs instead of an operating system (OS) to perform those functions has some
advantages. They can provide a reduced set of operations only required to establish trust
between communication partners. Therefore, they expose a smaller attack surface than
a rich OS. Secondly an OS could be compromised by malware or through a physical
attack. Separating the RoT from the OS provides an extra layer of security and allows
for independent attestation and verification.

TEEs can be implemented in software, hardware or a combination of both. In the con-
strained IoT, hardware-based TEEs can help to protect devices while producing less
overhead than software-based implementations (e.g. virtual machines, containers). Pop-
ular examples for TEE hardware support are the RISC-V physical memory protection
(PMP), Arm Memory Protection Unit (MPU) and Arm TrustZone-M. All need special-
ized firmware to fully support TEEs and manage secure memory access for applications.

To facilitate adoption of those security mechanisms, Arm provides the open source project
Trusted Firmware-M, which is a reference implementation for a secure processing envi-
ronment (SPE). To leverage TEE technology in the IoT OS RIOT, we partly integrated
TF-M into the OS as a third party package and evaluated the overhead it introduces to
a simple cryptographic application.

This work focuses on the steps we took to run TF-M with RIOT. In Section 2 we will
provide more information about TEEs, Arm TrustZone, TF-M, RIOT and related work.
In Section 3 we will describe what is needed to integrate TF-M with an operating system
and the steps we took to do so. Further we will disuss the limitations of the current
integration. We will measure the overhead TF-M introduces to RIOT and show the
results in Section 4. In Section 5 I will sum up this work and give an outlook to what
the next steps to provide TEEs in RIOT could be.

2 Background and Related Work

2.1 Trusted Execution Environments

A Trusted Execution Environment (TEE) provides an isolated environment to perform
security critical operations and store and access sensitive data [1]. It ensures that data

2

2 Background and Related Work

and code within said environment can not be read or altered by applications located out-
side, including by an operating system [13]. This is useful for storing cryptographic key
material and performing cryptographic operations to ensure confidentiality and integrity
and provide authentication and attestation [16]. The IEEE Standard for Secure Com-
puting Based on Trusted Execution Environments [1] describes a layered architecture of
a TEE-based secure computing system. Here, the TEE is located within a secure com-
puting node alongside the untrusted Rich Execution Environment (REE) (e.g. an OS).
Both environments interact with each other through a secure interface. The standard
defines three TEE layers: the fundamental layer, the platform layer and, optionally, an
application layer.

The fundamental layer comprises three components. The first part is the Root of Trust
(RoT) of the TEE, defined as a combination of “reliable hardware, firmware and software
components that perform specific, critical security functions”. It is required that the
RoT is protected at all times and can not be tampered with. The second part are the
hardware and software components that work together to comprise the TEE and its
basic functionalities (e.g. environment isolation and measurement, memory encryption
and protection, secure key generation). The third component is the interface to the
platform layer, which allows for TEE creation and management.

The platform layer contains the actual trusted environment in which trusted applications
(TA) can be run. Parts of it are a trusted runtime, storage, resource management and
system service. It also contains a trusted connection as a communication channel between
TAs and applications outside the TEE. It can also be used for remote attestation of TAs
and the whole system.

The standard also defines requirements for TEEs. They need to provide isolation of
hardware resources, TEE and REE, as well as TAs, and trusted communication between
those isolated components. They also need to be interoperable, meaning they should be
able to authenticate, verify themselves to others and provide a specified set of attributes.
Further it is required that TEEs have low overhead, guarantee availability of correct data
and its protection, as well as provide a specified set of cryptographic operations.

2.1.1 TEE Implementation Approaches

There are different approaches to implement TEEs. On the one hand there are hardware-
based solutions, which utilize hardware mechanisms like memory protection and inter-

3

2 Background and Related Work

rupts. Software-based solutions rely on virtualization and containers to isolate processing
environments [17, 18]. Software TEEs can be a good option in specific use cases and on
devices that don’t support memory separation in hardware, though they introduce large
memory and runtime overhead compared to hardware-based solutions.

Some newer IoT devices implement hardware components that can be used to support
TEEs. For RISC-V architectures there are multiple available options: Keystone [10]
provides an open-source framework for building customized TEE. MultiZone [8] separates
the system into multiple equally secure zones. Both utilize the RISC-V Physical Memory
Protection (PMP) to make sure that certain memory areas can only be accessed with
corresponding privilege levels [11].

Many Arm Cortex-M/R architectures support a similar mechanism called Memory Pro-
tection Unit (MPU), which also protects predefined memory areas from unprivileged
read, write and execute operations. Arm MPU is not very widely supported by operating
systems for various reasons, including high performance overhead and financial cost [19].

Secure0x20000000

Non-Secure

CO
D
E

SR
A
M

Pe
rip
he
ra
ls

Secure

0x40000000 Non-Secure

Configurable

0x60000000

Secure

Non-Secure

0x00

RA
M
/D
ev
ic
e

Figure 1: Example TrustZone-M memory map
(based on Nordic nRF9160 and TF-M region de-
fines).

As an improvement, Arm has designed
an alternative approach: TrustZone [15]
operates system-wide, not only protect-
ing specific memory areas, but separat-
ing the whole system into a secure (S)
and a non-secure (NS) world. TrustZone-
A for Cortex-A devices has been around
for some time now and has recently been
adapted to the smaller, more constrained
Cortex-M architecture (supported by the
newer Armv8-M and Armv8.1-M devices).
TrustZone-M provides a memory-map
based division between S and NS memory
regions, peripherals and some specific reg-
isters, as shown in Figure 2. The processor
can operate in two states, also secure and
non-secure. Software executed in NS state
is blocked from accessing resources marked as secure, protecting them from unauthorized
access. Some memory areas, like secure and non-secure SRAM are completely separated.

4

2 Background and Related Work

In other cases, like some GPIOs, one component can be accessed through two different
addresses (e.g. a UART has a secure and a non-secure address and can thus be used in
both states). If one component has two addresses, it can depend on the state, whether
it is writable or read-only, and what type of data and functionality can be accessed.

Non-Secure
Apps

Non-Secure
OS

Secure
Apps

Secure
OS

Thread
Mode

Handler
Mode

NS State S State

Figure 2: Transitions between S and NS
states as well as thread and handler mode in
TrustZone-M.

While TrustZone-A needs a software com-
ponent called secure monitor to handle the
transitions between states, in TrustZone-
M the transition is handled by the hard-
ware and can be triggered by secure func-
tion entry points in so-called non-secure
callable memory regions, as well as in-
terrupts. This reduces the overhead and
makes it more suitable for constrained,
low-power devices. TrustZone-M option-
ally supports MPU usage to further divide
between privileged and unprivileged access
within the S and NS states.

The MultiZone approach has also been im-
plemented for Cortex-M devices with a
MPU [14]. Similarly, Oliveira, Gomes and Pinto [12] published uTango, an open-source
TEE for IoT devices based on Arm TrustZone-M. Like the MultiZone developers they
criticize existing TrustZone-based TEEs for separating the system into only two worlds,
implementing too many services in the secure worlds and thus increasing the attack sur-
face. They claim that by creating multiple equally secure execution environments, their
own approach will provide better security. They measure the performance overhead of
their TEE and perform a security analysis.

2.2 Trusted Firmware M

In order to introduce new standards to IoT security and to streamline the design pro-
cess of secure IoT systems, Arm has developed a Platform Security Architecture (PSA)
framework. PSA provides standardized resources to help build the system in all ar-
eas, including hardware, firmware and software design, security analysis and assessment.
Products that fulfill all PSA specifications can be certified by the PSA Certified program.

5

3 TF-M Integration

Part of the firmware and software specification are the PSA Firmware Framework and
PSA Secure Services (cryptography, secure storage, attestation and secure updates). To
make it easier for product developers to fulfill those specifications, Trusted Firmware M
(TF-M) provides a reference implementation of a Secure Processing Environment (SPE)
for Armv8-M and Armv8.1-M architectures as well as dual-core platforms. It integrates
with TrustZone-M, and complies with PSA Certified guidelines. Using TF-M allows ven-
dors to easily get their products certified without needing to implement the standards
themselves.

TF-M is open source and freely available. It comes with its own secure bootloader to
authenticate and update secure and non-secure firmware images separately. The TF-
M core controls the isolation and communication between the images. Isolation can
be applied on multiple levels, depending on a plaform’s capabilities and needs. The
PSA Secure Services can optionally be added to the build, including their own memory
partitions to operate in. This allows for different configurations and binary sizes, to suit
different types of IoT devices and their constraints. Additionally, TF-M comes with tests
and additional tools and extras (e.g. usage examples and third-party modules).

2.3 The RIOT Operating System

RIOT OS [5] is an open source operating system for IoT devices. It aims to have a small
memory footprint, support a wide range of architectures and devices, and be user-friendly
and easily accessible. Recently support for secure elements and crypto hardware acceler-
ators have been added and evaluated [9]. In other previous work, we have integrated and
evaluated the Arm PSA Crypto API [7]. Recently Blischke [6] has used and evaluated
the RISC-V PMP in RIOT.

3 TF-M Integration

3.1 Basic Build and Functionality

TF-M provides an SPE, which acts as an intermediary between a non-secure processing
environment (NSPE) and the secure hardware. It provides secure services, which are
necessary to verify system integrity and increase security. Those services include secure
updates, cryptography, secure storage (e.g. for keys and certificates) and attestation.

6

3 TF-M Integration

HAL

Secure Hardware

Core (IPC, SPM, Interrupts) Secure Boot

Firmware
Update

Crypto Attestation
Internal
Trusted
Storage

Non-secure Hardware

Non-Secure Apps

PS
A

 A
PI

s

Trusted Firmware-M

Figure 3: TF-M in combination with a non-secure operating system like RIOT.

The NSPE can be either a bare-metal application or an operating system, and runs in
non-secure memory areas. Communication between SPE and NSPE happens through
several service APIs, which are provided by the SPE.

The TF-M build system generates three binaries: a bootloader image, a secure firmware
image and a non-secure firmware image. All images are signed with a key to be verified by
the bootloader and concatenated to a single binary. When flashing, at first the bootloader
is written at memory address 0, followed by the merged binary.

When booting the system, the bootloader first verifies the image signatures. If they are
valid, it boots the SPE, which sets up the platform. The setup includes the configuration
of memory regions and the creation of partitions for the secure services. All of this is done
in a secure CPU state. The SPE then loads and boots the NSPE and switches the CPU
to non-secure mode. The NSPE can now run application code in non-secure memory
regions. If it, for example, uses PSA secure services, it can call the service APIs, which
then trigger the transition back to the secure state to perform the requested operations.
Afterwards the system switches back to non-secure mode and returns the results of the
operation to the NSPE.

The goal of this work is to replace the TF-M NSPE with RIOT and reduce the operations
systems access to non-secure area. Regarding the issue of integrating new operating
systems with TF-M, the documentation is quite thin. The requirements it states are:

• The OS must be able to run in non-secure mode

7

3 TF-M Integration

• The OS must initialize PSPLIM register and handle it during thread context switch
operations

• The OS needs to ensure that link register value can differentiate between S and NS
builds

This is a very generic description and required us to find out what exactly this means
for RIOT. The necessary steps are described in Section 3.2.

3.2 Integration Steps

Preparing RIOT RIOT currently supports two platforms with TrustZone-M technol-
ogy, the Nordic nRF5340 and nRF9160. For this work we focused on the latter. When
RIOT runs on the nRF9160, it runs in secure mode. This means per default it has access
to the whole system and uses secure RAM, peripherals and registers. The first step was
to find all the instances where secure addresses are accessed and change them to non-
secure addresses. To make this optional, we added the modification as a compile-time
option, as shown in Listing 1.

Listing 1: Example of optional access to secure and non-secure LED ports in RIOT

1 #if IS_ACTIVE(MODULE_TRUSTED_FIRMWARE_M)

2 #define LED_PORT (NRF_P0_NS) /**< Default LED PORT */

3 #else

4 #define LED_PORT (NRF_P0_S) /**< Default LED PORT */

5 #endif

To switch between secure and non-secure images, supervisor calls (SVC) are needed. Per
default, RIOT does not use SVC, so they have to be enabled explicitly for TF-M.

After this I had to modify RIOT RAM length and start address. TF-M requires a
secure RAM range of 0x16000 bytes, which means that RIOT RAM can only start at
address 0x20016000. Usually RIOT RAM starts at 0x20000000, so we needed to modify
RIOT RAM length and start address. This can be configured individually for RIOT
platforms.

Since TF-M uses MCUboot we could use RIOTs existing partial support for MCUboot
to facilitate the integration. MCUboot usage requires the definition of the image header
size and the new start address of the binary. Like the modified RAM start address, this
can be configured in the CPU specific makefiles in RIOT.

8

4 Evaluation

Per default RIOT can only flash one binary. We added a TF-M specific makefile to
RIOT, that contains a new flash target with support for multiple binaries. This makefile
is executed after building the secure and non-secure images. It links both images, signs
them separately with an RSA key and merges them into one binary. It then flashes the
bootloader binary at address 0x00 and the merged binary with the required offset.

3.3 Adding TF-M

Trusted Firmware-M has been added to RIOT as a third-party package. We implemented
an interface, through which non-secure calls from the non-secure to the secure side can
be executed. A makefile downloads the source code and builds TF-M in two steps. First,
the secure image is configured and built. This produces the bootloader binary and secure
binary, as well as a folder called api_ns. This contains code and configurations that are
needed for communication between the secure image and the non-secure image. In the
next step, we compile this api_ns and create a library that shall be linked with the RIOT
binary.

3.4 Limitations

Usually RIOT runs applications in a main thread, which is created during kernel initial-
ization and has its own stack with the stack size configured at runtime. After thread
creation RIOT initiates a context switch to execute the program until it is done. The
current integration with TF-M does not permit RIOT to create its own threads for ap-
plications. This means, core threading needs to be disabled and OS and applications are
run in the same thread. Since the required stack size for an application is defined when
creating the main thread, there is currently no way to dynamically increase the stack
size without threading. As a workaround, the stack size is hard-coded in the linker file
for the nRF9160.

4 Evaluation

To evaluate the impact of TF-M on RIOT OS, we compare memory consumption and
execution time of cryptographic operations with and without a secure processing en-
vironment. TF-M uses the PSA Crypto reference implementation from the MbedTLS

9

4 Evaluation

library [3]. For comparison, we include MbedTLS as a third-party package in RIOT. We
use the same version TF-M uses and build it with the same configuration for the library
and the PSA Crypto module. The only difference is that TF-M builds MbedTLS with
the SPM (secure partition manager) option, to separate code into secure and non-secure
parts. Since RIOT does not support this split we can’t use this option in our case.

Compiler optimizations RIOT optimizes compilation for size rather than speed. TF-
M builds MbedTLS with level 2 optimizations, which result in a bigger binary size,
but faster execution times. For these measurements we also build RIOT with level 2
optimization.

Memory allocation Some MbedTLS operations, like ECC operations, use dynamic
memory allocation at runtime. RIOT usually avoids dynamic allocation completely and
allocates all sizes statically at compile time. Since RIOT does not provide a good mal-

loc implementation, we link MbedTLS with the standard libc implementation. TF-M
provides an alternative malloc implementation, which allocates memory with a static
buffer, which is faster than the libc version.

4.1 Memory Overhead

For measuring memory overhead we build two versions of an application performing an
ECDSA operation. One only runs on RIOT with the MbedTLS package, the other runs
on RIOT with TF-M and MbedTLS. TF-M can be built with different size profiles,
to adapt the firmware to different device constraints. For this evaluation we build the
medium profile, since it is the smallest version that also provides asymmetric crypto
operations. We then compare the amount of memory used by the text, data and bss
sections of the code. As shown in Figure 4, the binary containing only the application
with RIOT and MbedTLS uses ≈ 41 KB of ROM and ≈ 7 KB of RAM. The TF-M build
consists of three different binaries: the bootloader, the secure image and the non-secure
image. They add up to over 200 KB in ROM and ≈ 70 KB in RAM. It is noticable
that the RIOT image shrinks by almost 35 KB when we run it as the NSPE. This can
be attributed to MbedTLS now being built as part of the secure image instead of the
RIOT image.

10

4 Evaluation

RIOT RIOT/TF-M
0

50

100

150

200
R

O
M

U
sa

ge
(K

B
)

BL SPE RIOT/(NSPE)

RIOT RIOT/TF-M
0

50

100

150

200

R
A

M
U

sa
ge

(K
B

)

Figure 4: RAM and ROM usage of RIOT and RIOT/TF-M builds.

Random Hash (SHA-256)
0

100

200

300

400

500

E
xe

c
T

im
e

(u
s)

210

165

428
464

RIOT/MbedTLS TFM/MbedTLS

Figure 5: Random and hash execution times by operation.

4.2 Execution Time

To evaluate execution time overhead, we measure the duration of a random number gen-
eration (RNG) and a hash calculation. To compare asymmetric operations we measure
an ECC key pair generation, hash signature generation, hash verification and a Diffie-
Hellman key agreement, all with a NIST-P256 elliptic curve. We perform 1000 iterations
of each operation and toggle a GPIO output pin before and after each execution. We
sample the data with a logic analyzer at a rate of 6 MS/s.

11

4 Evaluation

Gen Key Pair Gen Signature Verify Hash Key Agreement
0

200

400

600

800

1000

E
xe

c
T

im
e

(m
s)

291 304

889

288269 282

823

268

RIOT/MbedTLS

TFM/MbedTLS

Figure 6: ECC execution times by operation.

Figure 5 shows that RNG takes ≈ 428 µs when using TF-M, which is twice as long as
the application version using only RIOT. Hash computation time almost triples, from
165 µs up to ≈ 464 µs. This much overhead is expected.

Figure 6 shows that asymmetric operations look a little different. Here the operations
executed by only RIOT and MbedTLS take longer than the ones executed by TF-M and
MbedTLS. A likely cause are the different malloc implementations mentioned in para-
graph 4. It is also possible that TF-M does some other optimizations. Also, asymmtric
operations take a lot longer than simple operations like hash computation and RNG.
While the overhead for switching between secure and non-secure state can take several
hundred µs (as shown in Figure 5), asymmetric operations have execution times of sev-
eral hundred ms. This shows that when perfoming longer and more complex operations,
the relative overhead added by TF-M is still quite small.

4.3 Limitations

This evaluation only measures a small subset of TF-M operations and configurations.
For example, TF-M provides different size profiles with different capabilities, different
levels of memory isolation and internal secure storage for persistent key storage. It also
offers two types of communication between secure and non-secure worlds, depending on
the level of isolation. All of those could possibly introduce more or less overhead and
produce quite different results. Also, we only measured software implementations for
the crypto operations. TF-M supports hardware acceleration for crypto operations on

12

5 Conclusion and Outlook

some platforms. Since RIOT does not offer the same capabilities, yet, those could not
be compared.

For an extensive analysis, more measurements of different configurations are needed.

5 Conclusion and Outlook

In this work we describe a way to integrate the open source project Trusted Firmware-M
with the IoT operating system RIOT and measured the overhead it introduces to memory
usage and execution times of cryptographic operations. Our measurements of execution
times show that the impact of TF-M is high when performing simple executions (like
RNG and hash computation) and negligible when performing complex operations such
as asymmetric cryptography. There is no definite conclusion whether the use of TF-M
pays off comparing only the execution times.

Regarding memory usage, we can see that TF-M adds significant overhead compared to
a RIOT-only binary. While it is possible to build smaller configurations of TF-M, this
comes with a trade-off in functionality and security, and even small TF-M builds will
still add significant overhead on the ROM and RAM side. This makes it only feasible for
devices that have a large amount of flash and RAM available.

TF-M is integrated with the operating system Zephyr and, for Nordic platforms, with
the Nordic Software Development Kit (SDK). Both are well documented and TF-M
developers as well as the Nordic developer support strongly encourage people to work
with those integrations.

On the other hand, it is difficult to get support when developing individual solutions
and integrating TF-M with other operating systems. The documentation is quite generic
and parts of it were incomplete or outdated by the time we tried to work with them
(some parts have been updated recently). During our work with TF-M, changes to the
code and build process were introduced, sometimes breaking the code for our platform.
Additionally, even their minimal bare-metal example didn’t run out of the box on our
board and required modification and debugging. This leads to the assumption that not
all code changes in the main repository are regularly tested on all platforms. This makes
it harder to support and maintain a TF-M integration in RIOT.

13

References

For RIOT it is also an issue that TF-M only supports a subset of Arm Cortex-M de-
vices. To use TF-M, a device needs to support TrustZone-M or a Cortex-M dual-core
architecture. RIOT, on the other hand, aims to support many different platforms and ar-
chitectures. As mentioned before, another relevant platform with a hardware protection
mechanism is RISC-V, which would require a separate solution.

This leads to the conclusion that for RIOT it might be more feasible to provide its own
implementation of a TEE, that is more reduced in size and can support other platforms.
Therefore, in future work, we will explore alternative approaches. This work will be
used as a benchmark, to compare our implementation to a vendor solution and improve
efficiency as much as possible.

References

[1] IEEE Standard for Secure Computing Based on Trusted Execution Environment.
In: IEEE Std 2952-2023 (2023), S. 1–29

[2] ARM Ltd.: Arm PSA Firmware Framework 1.0. https://developer.arm.

com/documentation/den0063/a/?lang=en, last accessed 04-10-2024. 2019

[3] ARM Ltd.: Mbed TLS. https://tls.mbed.org, last accessed 07-17-2020. 2020

[4] ARM Ltd.: Arm Firmware Framework for M 1.1 Extension. https://

developer.arm.com/documentation/aes0039/latest/, last accessed 04-
10-2024. 2023

[5] Baccelli, Emmanuel ; Gündogan, Cenk ; Hahm, Oliver ; Kietzmann, Pe-
ter ; Lenders, Martine ; Petersen, Hauke ; Schleiser, Kaspar ; Schmidt,
Thomas C. ; Wählisch, Matthias: RIOT: an Open Source Operating System
for Low-end Embedded Devices in the IoT. In: IEEE Internet of Things Journal
5 (2018), December, Nr. 6, S. 4428–4440. – URL http://doi.org/10.1109/

JIOT.2018.2815038

[6] Blischke, Bennet: Evaluation of RISC-V Physical Memory Protection in Con-
strained IoT Devices. 2023. – URL http://inet.haw-hamburg.de/thesis/

completed/ba_bennet_blischke.pdf

14

https://developer.arm.com/documentation/den0063/a/?lang=en
https://developer.arm.com/documentation/den0063/a/?lang=en
https://tls.mbed.org
https://developer.arm.com/documentation/aes0039/latest/
https://developer.arm.com/documentation/aes0039/latest/
http://doi.org/10.1109/JIOT.2018.2815038
http://doi.org/10.1109/JIOT.2018.2815038
http://inet.haw-hamburg.de/thesis/completed/ba_bennet_blischke.pdf
http://inet.haw-hamburg.de/thesis/completed/ba_bennet_blischke.pdf

References

[7] Boeckmann, Lena ; Kietzmann, Peter ; Lanzieri, Leandro ; Schmidt,
Thomas C. ; Wählisch, Matthias: Usable Security for an IoT OS: Integrating the
Zoo of Embedded Crypto Components Below a Common API. In: Proc. of Embedded
Wireless Systems and Networks (EWSN’22). New York, USA : ACM, October 2022,
S. 84–95. – URL https://dl.acm.org/doi/10.5555/3578948.3578956

[8] Garlati, Cesare ; Pinto, Sandro: Secure IoT Firmware For RISC-V Processors,
03 2021

[9] Kietzmann, Peter ; Boeckmann, Lena ; Lanzieri, Leandro ; Schmidt,
Thomas C. ; Wählisch, Matthias: A Performance Study of Crypto-Hardware in the
Low-end IoT. In: Proc. of Embedded Wireless Systems and Networks (EWSN’21).
New York, USA : ACM, February 2021. – URL https://dl.acm.org/doi/10.

5555/3451271.3451279

[10] Lee, Dayeol ; Kohlbrenner, David ; Shinde, Shweta ; Asanović, Krste ; Song,
Dawn: Keystone: An Open Framework for Architecting Trusted Execution En-
vironments. In: 15th European Conference on Computer Systems. New York,
NY, USA : Association for Computing Machinery, 2020 (EuroSys ’20). – URL
https://doi.org/10.1145/3342195.3387532

[11] Lu, Tao: A Survey on RISC-V Security: Hardware and Architecture. In: CoRR
abs/2107.04175 (2021). – URL https://arxiv.org/abs/2107.04175

[12] Oliveira, Daniel de ; Gomes, Tiago ; Pinto, Sandro: uTango: an open-source
TEE for the Internet of Things. In: ArXiv abs/2102.03625 (2021). – URL https:

//api.semanticscholar.org/CorpusID:231846582

[13] Pei, M. ; Tschofenig, H. ; Thaler, D. ; Wheeler, D.: Trusted Execution
Environment Provisioning (TEEP) Architecture / IETF. URL https://doi.

org/10.17487/RFC9397, July 2023 (9397). – RFC

[14] Pinto, Sandro ; Garlati, Cesare: Multi Zone Security for Arm Cortex-M Devices,
02 2020

[15] Pinto, Sandro ; Santos, Nuno: Demystifying Arm TrustZone: A Comprehensive
Survey. In: ACM Comput. Surv. 51 (2019), jan, Nr. 6. – URL https://doi.

org/10.1145/3291047

15

https://dl.acm.org/doi/10.5555/3578948.3578956
https://dl.acm.org/doi/10.5555/3451271.3451279
https://dl.acm.org/doi/10.5555/3451271.3451279
https://doi.org/10.1145/3342195.3387532
https://arxiv.org/abs/2107.04175
https://api.semanticscholar.org/CorpusID:231846582
https://api.semanticscholar.org/CorpusID:231846582
https://doi.org/10.17487/RFC9397
https://doi.org/10.17487/RFC9397
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3291047

References

[16] Usman, Ahmad B. ; Cole, Nigel ; Asplund, Mikael ; Boeira, Felipe ; Vestlund,
Christian: Remote Attestation Assurance Arguments for Trusted Execution Envi-
ronments. In: Proceedings of the 2023 ACM Workshop on Secure and Trustworthy
Cyber-Physical Systems. New York, NY, USA : Association for Computing Ma-
chinery, 2023 (SaT-CPS ’23), S. 33––42. – URL https://doi.org/10.1145/

3579988.3585056

[17] Zandberg, Koen ; Baccelli, Emmanuel: Minimal Virtual Machines on IoT
Microcontrollers: The Case of Berkeley Packet Filters with rBPF. In: CoRR
abs/2011.12047 (2020). – URL https://arxiv.org/abs/2011.12047

[18] Zandberg, Koen ; Baccelli, Emmanuel: Femto-Containers: DevOps on Micro-
controllers with Lightweight Virtualization & Isolation for IoT Software Modules. In:
CoRR abs/2106.12553 (2021). – URL https://arxiv.org/abs/2106.12553

[19] Zhou, Wei ; Guan, Le ; Liu, Peng ; Zhang, Yuqing: Good Motive but Bad Design:
Why ARM MPU Has Become an Outcast in Embedded Systems. 2019

16

https://doi.org/10.1145/3579988.3585056
https://doi.org/10.1145/3579988.3585056
https://arxiv.org/abs/2011.12047
https://arxiv.org/abs/2106.12553

Erklärung zur selbstständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

17

	Introduction
	Background and Related Work
	Trusted Execution Environments
	TEE Implementation Approaches

	Trusted Firmware M
	The RIOT Operating System

	TF-M Integration
	Basic Build and Functionality
	Integration Steps
	Adding TF-M
	Limitations

	Evaluation
	Memory Overhead
	Execution Time
	Limitations

	Conclusion and Outlook
	References
	Declaration of Authorship

