
Automotive Group Key Agreement and Client
Authentication with DANCE

Mehmet Mueller
Dept. Computer Science, Hamburg University of Applied Sciences, Germany

mehmet.mueller@haw-hamburg.de

Abstract—Cars will be able to interact with their environment
via V2X to improve driver experience and safety. Future cars
are expected to operate a Service-Oriented Architecture (SOA)
to become more adaptable and manageable. SOME/IP by AU-
TOSAR is an automotive middleware for SOA architectures and
Automotive Ethernet that lacks security mechanisms. DNSSEC
with DANE is a mature Internet standard that ensures the
integrity and authenticity for service parameters and certificates
bound to names. Traffic encryption in automotive networks
require group key agreement protocols to prevent eavesdropping
of personal data. In this paper, we augment the SOME/IP SD with
client authenticity and a group key agreement protocol based on
DNSSEC and DANE. Further, we evaluate a distributed and
contributory group key agreement protocol, and implement a
distributed approach into the SOME/IP SD. Next, we evaluate
our prototype implementation together with service and client
authentication, and a group key agreement protocol in the
emulation framework Mininet with common group sizes in an
automotive network of a production vehicle. We find practical
performance results, especially when encryption key updates are
considered while the car is not operating (e.g., parking, idling,
reconfiguration).

Index Terms—Automotive security, authentication, attestation,
service orientation, SOME/IP, AUTOSAR, standards, encryption

I. INTRODUCTION

Future in-vehicle networks will turn cars into feature-rich
mobile transportation systems that communicate with their
surroundings (Vehicle-to-X (V2X)) to benefit from internet
connectivity, safe driving, efficient traffic management and
driver comfort. This also provides adversaries a larger attack
surface via communication interfaces [1]–[5] and in-car soft-
ware [6], [7]. However, automotive protocols still lack security
mechanisms [8], as they are designed for closed environments.
With an active approach, industry standards like ISO/SAE
21434 [9] and legal mandates such as the European Cyber
Resilience Act demand automotive security across the entire
supply chain, encompassing both hardware and software.

In our previous work [10], we discussed the emergence of
the Service-Oriented Architecture (SOA) paradigm and Scal-
able service-Oriented MiddlewarE over IP (SOME/IP) [11]
as a widely deployed automotive middleware via IP and
Automotive Ethernet [12] with real-time capabilities [13].
Here too, SOME/IP lacks security mechanisms [14], [15].

Electronic Control Units (ECUs) in automotive networks
communicate collaboratively in groups on separate channels,
which is done in Ethernet networks via multicast. Among

security goals for group communication, there are confiden-
tiality and authenticity [16], which we focus on in this work.
Confidentiality means to protect traffic against eavesdropping,
while authenticity ensures that a communication party is not
an imitator who could pose a threat to vehicle safety.

Traffic encryption covers the confidentiality in networks,
e.g., to prevent unauthorized tracking of vehicle location data.
Challenges in group communication are the distribution of en-
cryption keys and key updates to ensure that as little traffic as
possible is exposed if an attacker breaks the encryption. Group
encryption keys are distributed by Group Key Agreement
(GKA) protocols, for which the three different approaches
called centralized, distributed and contributory exist [17]. The
difference between them is the instance that is selected as the
sponsor for the group key. While the centralized approach
uses a dedicated host as the sponsor, the other two involve
group members and prevent a Single Point of Failure (SPOF).
Prevalent approaches in automotive networks are centralized
protocols [18]–[20] and distributed protocols [15], [21].

Perfect Forward Secrecy (PFS) uses encryption keys that
are generated and exchanged independently of long-term keys
to ensure data protection, even if long-term keys are compro-
mised. It is even mandatory in the prominent Internet standard
Transport Layer Security (TLS) 1.3 and is therefore preferred.

In our previous work [10], we covered service authenticity
in SOME/IP with Domain Name System Security Extensions
(DNSSEC) [22] and DNS-Based Authentication of Named
Entities (DANE) [23]. Active Internet-Drafts describe client
authenticity with DNSSEC and DANE called DANE Authen-
tication for Network Clients Everywhere (DANCE) [24]–[26].

In this paper, we use DANCE for client authenticity and
a distributed GKA protocol for confidentiality. We model a
namespace for client certificates to retrieve them during the
SOME/IP Service Discovery (SD) and verify remote clients.
Our GKA protocol is performed during the SOME/IP SD and
uses the Diffie-Hellman (DH) [27] key agreement for PFS. We
compare the performance of GKA approaches separately and
evaluate different security schemes in vsomeip [50].

The remainder of this paper is structured as follows. Section
II recaps related work on SOME/IP authenticity and GKA
protocols. Section III presents our DANCE-based client au-
thenticity scheme, which expands our previous solution, and
distributed GKA protocol in the SOME/IP SD. We evaluate
our concept in Section IV and discuss performance results.
Section V concludes with an outlook.



II. BACKGROUND

Current vehicles include a broad spectrum of heterogeneous
services [10], [28]. Miller and Valasek demonstrated success-
ful network attacks on current vehicles via various interfaces
including V2X communication [2], [3].

Automotive networks in Electrical/Electronic (E/E) archi-
tectures are becoming increasingly complex with the growth
of services for which SOAs offer a more convenient han-
dling [29]. SOME/IP by AUTOSAR is a widely deployed
SOA automotive middleware, which lacks security mecha-
nisms [14], [15].

We have evaluated our previous prototype implementation
in the SOA solution SOME/IP with promising performance
results, which achieves authenticity of services by using
DNSSEC and DANE [10]. However, SOME/IP does not offer
payload encryption between applications. Publishers transmit
their application data via multicast, which requires a GKA
protocol to achieve confidentiality.

In this work, we focus on expanding our implementation to
client authenticity with DNSSEC and DANE and integrating
a GKA protocol into the SOME/IP SD.

A. Authentication in SOME/IP and DANCE

Present authentication solutions for SOME/IP base on the
public Certification Authority (CA) model with pre-deployed
certificates [15], [21], on symmetric long-term keys [30] and
on identity-key pairs involving symmetric long-term keys [19].
In our previous work [10], we used DNSSEC with DANE
for secure service discovery. We designed a Domain Name
System (DNS) namespace and bound service information and
certificates to DNS names, which comply with the SOME/IP
SD query possibilities, but we have omitted client authenticity
for future work.

DANCE is an active Internet-Draft by the IETF and de-
scribes client authenticity for DNSSEC with DANE infras-
tructures. It prescribes that the client transmits its identity
included in its certificate or in its Hello message during a TLS
handshake, to allow servers to query the client’s certificate
from the DNS. Moreover, the identity should not have any
relation to its network layer address for more flexibility, since
clients may move around the network, which is likely in SOAs.

In this work, we expand our previous solution by client
authenticity with DANCE. We design an additional namespace
for clients to bind their certificates to their identity in the DNS.
Thus, we get a solution based on a well-established and widely
tested standard for robust and reliable security.

B. Group Key Agreement Schemes

Group key management schemes fall generally into three
categories: (1) centralized, (2) distributed and (3) contrib-
utory [17]. (1) Centralized group key management uses a
dedicated host to generate a group key and distribute it via a
pair-wise secure channel to each group member (cf. Figure 1).
This leads to less load on group members, but also means a
SPOF possibly disabling encrypted communication entirely.
(2) Distributed group key management chooses one group

member to generate a group key and distribute it via a pair-
wise secure channel to other group members (cf. Figure 1).
This leads to more load on the specific group member but is
more robust against host failures. (3) Contributory group key
management requires every group member to contribute an
equal share to achieve the same group key (cf. Figure 2). This
allows for some key agreement protocols to be done without a
secure channel but requires additional communication rounds
to ensure every group member achieved the same group
key [31], [32].

A preferable property for encryption keys is PFS which
is mandatory in the TLS 1.3 [33] and Datagram Transport
Layer Security (DTLS) 1.3 [34] Internet standards. DTLS is
technically able to perform group communication via multicast
as it is based on UDP, but its handshake is not designed for
handling group keys according to any standard. Moreover,
it is recommended to update session keys, also called re-
keying, after a certain time period or after a certain amount
of data is transmitted [35], [36]. In group communication, this
requires to update the group session key using certain data
structures every time a participant joins, leaves or the group
changes by other events [17], [37]–[43]. However, updating
the keys can be computationally intensive and depends on
how long the data actually needs to be protected. Re-keying
in vehicular networks is more difficult since their ECUs have
tight hardware constraints. It is advisable to perform key
updates when the car is parking, idling or being reconfigured
(e.g., firmware/Over-the-Air (OTA) update) [19], [44], [45].

Present GKA solutions for SOME/IP base on central-
ized [15], [19], [30] or distributed [15], [21] approaches. Their
solutions introduce additional communication with group key
distribution servers or custom protocols performed in addi-
tion to the SOME/IP SD. Our goal is to integrate a GKA
protocol into the SOME/IP SD without additional messages.
We do not consider a centralized approach, because having a
dedicated group key distribution server means having a SPOF
and additional communication with it anyway. A contributory
approach also is not a suitable candidate, since it requires
additional communication rounds with every group member,
but we could not find related work in the automotive context,
which is why we evaluate a contributory competitive approach.

In this work, we implement a contributory competitive
approach inspired by [46], [47], in which the authors used the
Spread Toolkit [48] for group communication based on TCP.
Our approach is based on UDP via multicast, since UDP is
preferred in automotive networks and is better suited for low
latency. Our competitive approach just includes join operations
without data structures for handling key updates by leave,
merge or other group changing events, since key updates are
computationally too expensive when the car is in use. Thus,
we compare our competitive approach with our distributed
scheme separately without the SOME/IP SD, to analyze the
cost in latency for different group sizes. Finally, we integrate
our distributed scheme including PFS into the SOME/IP SD
without additional messages and compare it with our other
security mechanisms in vsomeip.
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Fig. 1: Minimalistic example for centralized group key dis-
tribution concept with three group members. In a distributed
approach, the key sponsor is also a group member.
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Fig. 2: Minimalistic example for contributory group key
distribution concept with three group members.

III. CONCEPT

In our previous work, we supplemented SOME/IP by the
established Internet standards DNSSEC and DANE to achieve
secure service discovery and service authenticity [10]. For our
prototype implementation, we adapted the vsomeip reference
implementation. In this work, we want to ensure that services
and clients authenticate each other and establish symmetric
session keys for group communication. We use DANCE to
achieve additional client authenticity. For this, we bind DANE
certificates to client IDs to integrate an authenticity scheme
during the SOME/IP SD. For secure group communication,
we integrate a distributed GKA protocol and perform a group
key distribution mechanism during the SOME/IP SD, to en-
crypt multicast session communication based on the DH key
exchange. Therefor, we additionally compare the suitability
of our distributed approach with our contributory competitive
approach for automotive networks.

A. Secure Communication Between Authenticated Services

A major difficulty is to prove the robustness and reliability
of security solutions. We argue that mature and widely dis-
tributed and tested Internet standards provide a significant con-

fidence in robustness and reliability, which is why we use and
base on them for our automotive security concepts in terms of
authentication and message encryption. The prominent Internet
standards TLS 1.3 and DTLS 1.3 drive Internet security with
authentication, based on the public CA model, and network
traffic encryption.

Other than the public CA model, where certificates can
be attested by multiple CAs and potentially cause attestation
collisions, DNSSEC with DANE does not allow this by de-
sign [23]. We exploit DNSSEC with DANE for certificate and
endpoint information management, whereby the authenticity
and integrity of the certificates and endpoints are implicitly
ensured.

In our previous work, we stored the publisher certificates
in TLSA records and endpoint information as well as service
parameters in SVCB records for service authentication in the
DNS. We bound the records to query names based on the
SOME/IP find parameters. Since endpoint information alone
does not provide authenticity because of imitator attacks such
as IP spoofing, a challenge-response scheme is required to
verify remote endpoints. During the SOME/IP SD we queried
endpoint information to validate it against the endpoint op-
tions in offer messages and integrated a challenge-response
scheme to verify remote endpoints.

In this work, we use DANCE for client authentication. We
store client certificates in TLSA records and bind them to their
respective ID. Publishers then query client certificates from
the DNS to verify a remote client during the SOME/IP SD.
Unlike with publishers, we do not store network addresses
in the DNS since it is common that clients often have
dynamic or unpredictable addresses and may move around the
network [25].

In addition to authentication, the encryption of network
traffic ensures confidentiality to protect sensitive data from
malicious attackers. Two security requirements in TLS 1.3 and
DTLS 1.3 are the use of PFS and Authenticated Encryption
with Associated Data (AEAD). PFS ensures data protection
even if long-term keys are compromised, while AEAD guar-
antees the confidentiality and integrity of the data and ensures
non-replayability.

As TLS 1.3 and DTLS 1.3 are not suitable for encrypting
group communication, we discuss and evaluate GKA ap-
proaches. We identify a distributed GKA approach as suitable
for a seamless integration into the SOME/IP SD and imple-
ment as well as evaluate a GKA protocol. In the GKA protocol
we use the DH key agreement for PFS. The actual encrypted
SOME/IP session is outside the scope of this work, in which
AEAD encryption protocols would play a role.

B. Management of Group Keying

Familiar solutions for in-vehicle networks are central-
ized [18]–[20] and distributed approaches [15], [21]. Even
having less load with the centralized approach, we think
having a SPOF outweighs it, as long as the session estab-
lishment is within an acceptable time frame with distributed
approaches. Therefore, we focus on examining the distributed
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Fig. 3: Distributed Diffie-Hellman group key agreement.

and contributory approach. More precisely, we implement
a distributed standalone approach inspired by [15], and a
contributory standalone approach by [46]. In contrast to the
authors of the contributory approach, we implement it like the
distributed approach for the unreliable UDP protocol, which
requires additional communication to ensure that group mem-
bers achieve the same group key. We decide to follow these
works, since both comply with the well-established and widely
tested Internet standards TLS 1.3 and DTLS 1.3 in terms of
key agreement and PFS, which makes these works convincing.
We integrate a distributed approach into the SOME/IP SD
in vsomeip, since contributory approaches are not seamlessly
integrable due to additional group synchronization messages.

Figure 3 shows our standalone distributed GKA protocol.
The group key sponsor offers a service whereupon other group
members join with sending a request message that specifies
the desired service and their respective public key share. Due
to the unreliability of UDP, the sponsor must send the offer
cyclically, but for our evaluation we set the receive buffer size
large enough so that no cyclical messages are required. In
addition, each participant knows the group size in order to
determine that each participant can take part in the encrypted
communication or that the group key agreement has been
concluded to determine the end of the evaluation. Then, the
group key sponsor performs a DH key agreement involving its
own DH secret together with the public key share of the group
member, whereupon the resulting symmetric key is used to
encrypt the group key. After that, the group key sponsor sends
a response message that specifies the service, its own public
key share, the encrypted group secret and the initialization
vector involved in the encryption. Subsequently, the group
member performs a DH key agreement involving its own DH
secret together with the public key share of the sponsor to
decrypt the group secret with the resulting symmetric key.
Finally, the group key agreement for that particular service
is confirmed by the group member with an ack message. In
vsomeip we choose the publisher as the group key sponsor
which transmits an encrypted group key during the SOME/IP
SD.
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Fig. 4: Minimalistic example for contributory DH group key
distribution concept with three group members.

Figure 4 shows a minimalistic contributory DH GKA ex-
ample on which the standalone implementation we evaluate
is based. More precisely, we use Elliptic Curve Cryptography
(ECC) for our DH GKA, to which the presented approach
is applied analogously. We omitted the modulo operation in
Figure 4 for the sake of clarity. The contributory approach
chooses an initial group key sponsor, which is initially A,
whereby the last host to join becomes the group key sponsor.
For the group size of two with A and B, the contributory
approach does not differ from a regular two party DH key
exchange, as the resulting shared secret r becomes the shared
group secret. Group member B is now the group key sponsor.
If another group member C joins a group with a size of two
or more, the group key sponsor computes the public group
share gr, using the shared group secret r from the previous
agreement and sends it to the joining party C. C sends its
public share gc to all group members, whereupon all group
members A and B and the joining party C are able to compute
the new shared group secret r′. Finally, group member C is
appointed as the group key sponsor.

For our standalone contributory implementation, certain
messages must be sent cyclically to maintain the protocol in
the event of message loss, due to the unreliability of UDP.
However, for our evaluation we set the receive buffer size
large enough so that no cyclical messages are required. In
addition, each participant knows the group size in order to
determine that each participant can take part in the encrypted
communication or that the group key agreement has been
concluded to determine the end of the evaluation. For that, we
implement a sponsor election and successor synching phase.
In addition, all messages are sent via multicast to keep all
other group members up to date about new members.

Figure 5 shows the sponsor election of our standalone
implementation. The sponsor selection phase ensures that
each participant becomes a sponsor once and agrees on the
symmetric group key, which contains its own secret and all
public key shares of the previous sponsors. We assume the
service provider as the initial group key sponsor. This phase
is divided into the three further phases predecessors request,
offer and response.



In the predecessors request phase, the current sponsor sends
a request message that specifies the service in question
and the member IDs below its own ID. This identifies out of
order request messages in the offer phase to prevent group
members from being appointed as the group key sponsor more
than once. The first sponsor is an exception, as it has the lowest
possible member ID and therefore no predecessors. Group
members respond with a response message that specifies
the desired service, the public key share and the respective
member ID. Both, the sponsor and unassigned members update
invalid member entries, which still specify falsely unassigned
members. Other group members include the public key share
of members with a higher ID in their group key agreement,
if they missed response messages in the response phase,
which is finally ensured in the successor synching phase.
Unassigned members add entries of assigned members, to
exclude them as a next sponsor.

The current sponsor then enters the offer phase if it has
no member entry which specifies an unassigned member,
otherwise it skips the offer phase entirely. The current sponsor
sends an offer message that specifies the relevant service, to
which unassigned members respond with a request message
that specifies the desired service and the respective public
key share. Both, the current sponsor and unassigned members
update their entries about unassigned members by receiving
request messages.

Finally, the current sponsor enters the response phase to
determine the future sponsor. It agrees on the future symmetric
group key by including the current secret group key and the
public key share of the unassigned member it is about to
appoint as the future sponsor. Then it sends a response
message that specifies the relevant service, the current public
group share and the ID, the IP and the public key share of the
future sponsor. Like the current sponsor the group members
agree on the future symmetric group key by including the
current secret group key and the public key share of the
future sponsor. The future sponsor then agrees on the future
symmetric group key by including its own secret and the
current public group share. All the three phases are repeated
until no unassigned member is left. However, the sponsor
election phase does not guarantee that all group members
achieve the same symmetric group key for which the successor
synching is used.

Figure 6 shows the token-based successor synching phase
of our standalone implementation. This phase ensures that
every group member includes the public key shares of the
following sponsors, after the sponsor election phase concludes.
This phase is divided into the three further phases successors
request, synch token and finish. The initial token owner is the
member with the highest member ID and as it has no successor
it sends it directly to the member with the lowest member ID
or service provider.

The current token owner then enters the successors request
phase and sends a request message that specifies the rele-
vant service and the member IDs whose public key shares it is
missing. Concerned group members then send a response
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Fig. 5: Contributory Diffie-Hellman group key agreement in
sponsor election phase.

message that specifies the relevant service, the respective
member ID and the respective public key share. After the token
owner receives the subsequent public key shares it includes
them to the group key agreement to achieve the complete
symmetric group key. As the response message is sent via
multicast, other group members may receive missing public
key shares. Subsequently, the token owner enters the synch
token phase and sends a synch token message to appoint
the next member as the token owner. This scheme keeps
alternating between the successors request and synch token
phase, until the member with the third to last ID receives the
token, since the last two joined group members already agreed
on the complete group key. The member with the third to last
ID then enters the finish phase to signalize to all the other
members that the group key agreement is finished. Finally, the
member with the lowest member ID acknowledges the finish
message.

Our goal is to integrate a group key distribution protocol
complying with the SOME/IP SD, which is not possible
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without additional communication rounds with the contribu-
tory approach. Therefore, we integrate a distributed approach
during the SOME/IP SD as it can be done seamlessly. Never-
theless, we consider the contributory standalone approach as a
competitive approach and analyze its total latency for different
group sizes and compare it with the distributed standalone
approach with regard to suitability for vehicle networks.

C. Integration of DANCE and GKA in SOME/IP

DNSSEC verifies DANE TLSA records or certificate au-
thenticity. However, this does not verify an endpoint and still
allows impersonation attacks like IP spoofing. We counter this
issue by using a challenge-response scheme to verify endpoint
authenticity. Figure 7 shows the conceptual architecture of
vsomeip including our added DNSSEC components. Both the
client and server share a unified stack consisting of appli-
cation, routing manager, and service discovery components.
The routing manager deals with application specific transport
endpoints used for payload transfer and receipt.

Our modifications, also in Figure 7, are the addition of a
DNSSEC resolver from which clients and servers can resolve
authenticated certificates and endpoint information to verify
clients and servers during the SOME/IP SD. More specif-
ically, we add the client authenticity according to DANCE
in this work, the service authenticity is done in our previous
work [10]. We also add our distributed GKA protocol, where
the server and client use their respective public key share
PKS to establish a symmetric key SK according to the DH
key agreement during the subscription. The server uses the
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Fig. 7: SOME/IP SD modification for using DNSSEC and
GKA.

SK to transmit the encrypted group key GK, whereupon it is
used as a symmetric key for session data. Furthermore, we
disabled offer and find messages in our previous work,
since their authenticity is not verified by default. However,
this also removes the service awareness capability which the
SOME/IP SD can only fulfill through the aforementioned
messages. Therefore, we now use the intended SOME/IP SD
to retain its service awareness capability, but still validate it
against the DNSSEC and DANE information.

We design a namespace for clients according to the similar
scheme as for our service authentication (cf. [10]) following
the service specific client identity in DANCE [25]. We use
client as the parent domain and exploit the 16 bit application
ID in vsomeip as the client ID, which we prepend to the parent
domain. Again, we make use of the attribute leaf name pattern
and prepend someip to the client ID. A client certificate for
the client ID 0x0001 has this concrete query name:

someip.id0x0001.client.

Figure 8 shows our service and client authenticity scheme
with our distributed GKA protocol split into a consumer-
triggered discovery and publish-subscribe phase. The pub-
lisher includes a nonce challenge as a SOME/IP configuration
option in the offer message in addition to the usual service
properties. The subscriber initially queries the SVCB (cf. [10])
record of the publisher and uses it to validate the informa-
tion in the offer message after their receipt. Subsequently,
the subscriber signs the publisher’s nonce challenge from
the offer message and sends the signature along with its
client id, nonce challenge and DH public share. The pub-
lisher constructs the DNS name using the client ID from
the subscribe message and queries the subscriber’s TLSA
record. Then, it verifies the subscriber’s signature and signs
its nonce challenge. Further, it computes the shared secret
using the subscriber’s DH public share and encrypts the shared
group secret with it. So, it packs the signature, the initialization
vector used during the encryption, its own DH public share and
the encrypted group secret as configuration options into the
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Fig. 8: Augmented SOME/IP SD with DNSSEC and DANE
for secure publisher and subscriber service discovery and
authentication.

subscribeAck message. After the subscriber receives the
subscribeAck message, it queries the publisher’s TLSA
record containing the certificate of the publisher from the
DNS to verify the received signature. Actually, the subscriber
queries the TLSA record earlier, immediately after receiving
the SVCB record, but we left it in the figure like that for the
sake of clarity. It computes then the shared secret using the
publisher’s DH public share. After that, the subscriber decrypts
the shared group secret with the computed shared secret and
initialization vector.

IV. EVALUATION

We evaluate a distributed approach inspired by Zelle et
al. [15] and a contributory approach by Kim et al. [46]. We
consider only the join operation for group members, since

leave or other group changing operations are not practicable
for in-car networks [19], [44], [45]. First, we compare our
both protocols in a separate implementation. The contributory
protocol can not be integrated into the SOME/IP SD hand-
shake without additional communication rounds and overhead
which is why we do not evaluate it in vsomeip. In contrast,
the distributed protocol is suitable for integration into the
SOME/IP SD which we implement into vsomeip and eval-
uate. We compare our prototype implementation in terms of
discovery and total latency with different security mechanisms.

A. Evaluation Setup

We run our evaluations on the same host system (CPU:
i7-1260P, RAM: 32GB LPDDR5-6400) with cryptography
libraries (Crypto++ [49]: 8.9, Crypto++ PEM Pack: 8.2).
The first evaluation compares the distributed and contributory
protocol and runs all group members in separate processes on
the loopback interface with larger buffers to prevent packet
loss. Here we measure the latency for the key agreement
that results when all group members receive the group key.
The second evaluation compares our prototype implementation
which customizes vsomeip with a DNS resolver library, and
emulates all group members and the authoritative DNS name
server with their own network interface with 1Gbit bandwidth
and no transmission delay on a Linux Kernel-based Virtual
Machine (KVM) (Mininet: 2.3.0, Ubuntu: 22.04.3 LTS, NSD:
4.8.0, vsomeip [50]: 3.4.10, C-ARES [51]: 1.81.1). Here, we
measure the service discovery and total latency. The total
latency includes the service discovery and subscription and
thus the costs for all cryptographic operations. We evaluate
four solutions from our previous work (cf. [10]) together with
four additional solutions implemented in vsomeip [50]:

1) PUB AUTH, SUB AUTH: Performs publisher and
subscriber authentication with the original SOME/IP
SD without any DNS operations. It uses pre-deployed
certificates and our challenge-response mechanism.

2) PUB AUTH, SUB AUTH, GKA: Performs our dis-
tributed GKA in addition to the previously mentioned
solution.

3) PUB AUTH, SUB AUTH, DNSSEC, DANE: Performs
the same operations as the first solution, but instead of
pre-deployed certificates, certificates are queried using
DNSSEC and DANE.

4) PUB AUTH, SUB AUTH, DNSSEC, DANE, GKA:
Performs our distributed GKA in addition to the previ-
ously mentioned solution and thus contains all security
mechanisms.

First, we compare all solutions with one publisher and
one subscriber. We then compare solution number four and
three, with a publisher and a selected number of subscribers.
Moreover, SOME/IP uses a random initial delay to scatter
find and offer messages to prevent hosts from flooding
the network all at once. We turn off the random initial delay
for the first comparison in order to have comparability with
solutions not using the SOME/IP SD.
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Fig. 9: Latency of distributed key agreement protocol.

100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

Member Count

K
ey

A
gr

ee
m

en
t

L
at

en
cy

[s
]

Fig. 10: Latency of contributory key agreement protocol.
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Fig. 11: Distributed vs. contributory cryptographic operations
count.

B. Distributed vs. Contributory Key Agreement

Figure 9 and 10 show the key agreement latency for our
distributed and contributory key agreement implementations
for group sizes from 100 to 1000 in hundreds of steps.
For each group member count we collect 133 samples with
timestamps indicating the start of the agreement and the end.
It is noticeable that the distributed protocol remains below
600ms with 1000 group members while the contributory
protocol performs on a scale of seconds. We measure that the
contributory protocol already hits a latency above 2 s with 200
group members. This is due to involving every group member
during a join operation while the distributed protocol only
involves the group key sponsor and the joining group member,
resulting in a different number of cryptographic operations.

This becomes clearer in Figure 11, which shows the number

of cryptographic operations for group sizes from 100 to 1000
in hundreds of steps. We evaluate the number of cryptographic
operations including the generation of the DH key pair,
agreement on the new shared group secret and the public
group share computation for the contributory protocol. For
the distributed protocol, we include the generation of the
DH key pair and group secret, agreement on the individual
shared secret, hash calculation over the shared secret, and
the encryption and decryption of the group secret. The con-
tributory protocol scales not as good as the distributed one
but seems still applicable for smaller group sizes like 26 for
which we measure latencies between 90ms and 109ms. In
comparison, we measure latencies between 10ms and 35ms
for the distributed protocol.

Considering only the start-up of a car after which as
many services as possible should be available, the distributed
protocol is more suitable. The contributory approach becomes
more computationally intensive as the group size increases,
which requires consideration of factors such as group size and
the number of group changes.

C. Comparison of All Solutions

Figure 12 and 13 show the discovery and total latency of
all our solutions without the random initial delay and request-
response delay in vsomeip. Here, we evaluate our solutions
with one publisher and one subscriber. For each solution we
collect fifty samples with timestamps to calculate latencies
based on the difference between them.

The solutions in Figure 12 have not significant differences
in their latency. The solutions without the SOME/IP SD seem
to be faster, which could be due to the maturity of the DNS and
its optimization in response time. Moreover, this is reinforced
by the fact that the SOME/IP SD packets are smaller than the
SVCB packets and the transmission delay in Mininet is turned
off anyway, which rules out the transmission delay.
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Fig. 12: Discovery latency of all solutions without random initial delay.
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Fig. 13: Total latency of all solutions without random initial delay.
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Fig. 14: Discovery latency without vs. with distributed group key agreement.
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Fig. 15: Total latency without vs. with distributed group key agreement.



The solutions in Figure 13 show an expected increase in
latency with increasing security mechanisms. The last two
solutions from right with DNSSEC and DANE start to show
a larger performance penalty. This is due to the fact that the
publisher has to query the certificate of the subscriber after it
receives its subscribe message including the certificate’s
DNS name and wait for its receipt. In addition, the certificate
exceeds an MTU of 1,500B which is why it is sent in multiple
TCP segments. That is not noticeable only having publisher
authenticity since the subscriber queries the publisher’s cer-
tificate in parallel to the SOME/IP SD and has to wait for the
subscribeAck message anyway.

The certificate management with DNSSEC and DANE
shows only a slight performance penalty with additional
client authenticity in contrast to pre-deployed certificates. We
compare both client authentication solutions with and without
GKA to obtain practical group sizes in terms of latency for
the vehicle commissioning.

D. Client Authentication with vs. without Encryption

Figure 14 and 15 show the discovery and total latency of our
solution with all security mechanisms. Both figures show the
impact of our distributed GKA for the solution with service
and client authenticity using DNSSEC with DANE. In other
words, we assess our solution with all security mechanisms
versus without its distributed GKA. Here, we evaluate our
solutions with one publisher and subscribers from 1 to 150,
of which we present selected group sizes from 18 to 150
in steps of eleven. Our group sizes are based on the data
of a production vehicle in which a device is involved in a
maximum of 146 services. For each solution we collect fifty
samples with timestamps to calculate latencies based on the
difference between them. Automotive engineers recommend
not exceeding a delay of 250ms before the car can be entered
in order to ensure a satisfactory user experience. We therefore
consider group sizes that exceed a latency of 250ms to be
rather impractical if a GKA has to be concluded for the entire
group, especially if the car can only be entered afterwards.

In Figure 14, a subscriber count of 106 without GKA is
still below the 250ms mark, whereas a subscriber count of
95 with GKA almost reaches it during the discovery phase.
In Figure 15, 106 subscribers without GKA generally remain
below a latency of 250ms after the subscription is finished
for all of them, but there are still some outliers. A subscriber
count of 95 with GKA exceeds the 250ms mark in contrast
to the discovery phase, whereas it looks more practical with
84 subscribers.

Looking at the total latency and the 250ms latency mark, a
group size of 106 is the maximum without GKA, while with
GKA it is already reached with around 84 group members.
Since our evaluation is done on a single host machine in
an emulation framework, the performance results are likely
better on actual nodes, where the load is actually distributed.
In addition, the use of hardware acceleration for cryptographic
operations would also contribute to an improvement.

V. CONCLUSION AND OUTLOOK

In this paper, we supplemented our previous service au-
thenticity scheme by client authenticity and a Group Key
Agreement (GKA) protocol required for encryption. Our work
is aimed at automotive Ethernet networks considering SOAs,
which enable a higher flexibility and maintainability in future
cars. In addition to authenticity, we also drew attention to the
need for confidentiality and message integrity in automotive
networks, as sensible data such as GPS can enable attackers
to track the vehicle’s location.

Our work is based on established and widely used Internet
standards and thus offers robust and reliable security with
a high level of trust. With DANCE and the mature, and
well-established Internet standards DNSSEC and DANE, we
secured the widespread automotive middleware SOME/IP by
AUTOSAR with additional client authenticity, which comple-
ments our previous work [10]. Further, we integrated seam-
lessly a GKA protocol into the SOME/IP Service Discovery
(SD) without additional communication flow, avoiding addi-
tional network latency. Since there is no Internet standard
supporting GKA, we discussed and evaluated the suitability
of GKA approaches, considering industry requirements for the
start-up time and group sizes used in a production vehicle.
Here, we employed basic security mechanisms which meet
current security requirements such as authenticated session
key agreement and Perfect Forward Secrecy (PFS), which are
mandatory in the well-established and widely tested Internet
standards TLS 1.3 and DTLS 1.3. Our findings showed that
our solution is practical for a group size of around 84 nodes, in
which all ECUs have to complete their session establishment,
before the car can be entered.

Our solution leads to the following future research direc-
tions. A performance evaluation in a full-featured production
grade vehicle with hardware acceleration for cryptography
will likely improve benchmark results, since the load then
is distributed on individual ECUs. Since key updates in
automotive networks are done in certain operating phases,
a risk assessment is required for storing the session keys
for encryption in memory without hardware protection. In
addition, an authorization mechanism that determines which
services, clients may access or servers may offer, would lead
to a more fine-granular access control.
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