

Fakultät Technik und Informatik Faculty of Engineering and Computer Science

Department Informatik Department of Computer Science

Masterarbeit
Alexander Knauf

DisCo: A Protocol Scheme for Distributed
Conference Control in P2PSIP based on

RELOAD

Alexander Knauf

DisCo: A Protocol Scheme for Distributed
Conference Control in P2PSIP based on RELOAD

Masterarbeit eingereicht im Rahmen der Masterprüfung
im Studiengang Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr. Thomas C. Schmidt
Zweitgutachter : Prof. Dr. Franz Korf

Abgegeben am 16. Januar 2012

Alexander Knauf

Thema der Ausarbeitung
DisCo: A Protocol Scheme for Distributed Conference Control in P2PSIP based on RELOAD

Stichworte
Peer-to-Peer, SIP, P2PSIP, RELOAD, Konferenzmanagement, Verteilte Systeme

Kurzzusammenfassung
Eine verbreitete Architektur für Multimedia Gruppenkonferenzen mit dem Session Initiation
Protokoll ist das klassische Client/Server Modell, in dem ein zentraler und dedizierter Server
die Signalisierung und Medienverteilung für die Teilnehmer übernimmt. Diese Arbeit stellt
einen alternativen Ansatz für verteilt kontrollierte Konferenzen vor. Mehrere, von einander
unabhängige, Endgeräte übernehmen gemeinsam und adaptiv zur Größe der Konferenz die
Kontrolle, um eine bessere Lastverteilung zu erreichen und die Ausfallsicherheit zu erhöhen.
Die Registrierung und der initiale Verbindungsaufbau zu einer verteilen Konferenz wird dabei
über ein RELOAD P2PSIP Overlay vollzogen. Die Registrierungen sind mit relativen Posi-
tionsdaten der Konferenzmanager angereichert, um die Gesamttopologie der Konferenz zu
optimieren und somit kürzere Latenzen und weniger Jitter zwischen den Teilnehmer zu erzie-
len.

Alexander Knauf

Title of the paper
DisCo: A Protocol Scheme for Distributed Conference Control in P2PSIP based on RELOAD

Keywords
Peer-to-Peer, SIP, P2PSIP, RELOAD, Tightly coupled conferences, Distributed Systems

Abstract
A widely deployed architecture for group conferences with multimedia transmissions is the
traditional Client/Server model. A central and often dedicated Sever maintains signaling and
media distribution among the conference parties. This work presents an alternative approach
for distributed conference control. Several independent entities are controlling a single con-
ference in a self-adaptive and cooperative fashion. This enables load distribution among the
controlling entities and enhances the robustness by the lack of a single point of failure. The
registration of the conference identifier and the connection establishment to a conference are
achieved by a RELOAD P2PSIP overlay. The registrations are augmented with topological
descriptors thus optimizing the entire conference topology with respect on minimizing delay
and jitter.

Contents i

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Objectives . 2
1.3. Contribution . 3
1.4. Organization . 3

2. Evolution of P2PSIP 5
2.1. Traditional SIP Signaling . 5

2.1.1. Call establishment . 5
2.1.2. SIP Notification Mechanism . 7
2.1.3. Call Transfer . 8

2.2. Conferencing with SIP . 9
2.2.1. Three-way Conference . 9
2.2.2. Conferencing Frameworks . 10
2.2.3. Conference Event Package . 12

2.3. Emergence of P2PSIP Approaches . 15
2.3.1. Unstructured P2P Systems . 15
2.3.2. Distributed Hash Tables . 15
2.3.3. Motivation for P2PSIP . 17
2.3.4. SIP over P2P . 17

2.4. RELOAD – A P2PSIP Application Layer Protocol 19
2.4.1. A Common Solution . 19
2.4.2. Overview on RELOAD . 20
2.4.3. Protocol Architecture . 21
2.4.4. Usages . 22
2.4.5. Resources and Kinds . 23
2.4.6. Messaging Model . 24
2.4.7. Enrollment & Security Model . 28
2.4.8. Access Control . 29

3. Challenges of Distributed Conferencing 31
3.1. Design Challenges . 31

3.1.1. Conference Transparency . 31
3.1.2. Coherency of State in a Distributed Conference 31
3.1.3. Peer Failures . 32
3.1.4. Load balancing . 32
3.1.5. DisCo in P2PSIP . 32
3.1.6. Backward Compatibility . 33

Contents ii

3.2. Organization of Focus Peers . 34
3.2.1. Communication Delay . 34
3.2.2. Media Capacities . 34
3.2.3. Focus behind NATs . 35

3.3. Requirements on Distributed Conferencing 35

4. Shared Resources in RELOAD 37
4.1. Introduction . 37
4.2. Design Pattern for Shared Resources . 37

4.2.1. Self-signed Certificate Chain . 37
4.2.2. Access Control List . 38
4.2.3. Resource Name Pattern . 39
4.2.4. Comparison and Selection of an adequate Approach 40

4.3. Scenarios for Co-Managed Overlay Resources 41
4.3.1. Third-Party Registration . 41
4.3.2. Message Board . 42

4.4. Management of Concurrent Write Attempts 43
4.5. Access Control List in RELOAD . 44

4.5.1. The ACL Kind . 44
4.6. Variable Resource Names . 46

4.6.1. Resource Names Pattern . 46
4.6.2. Resource Name Extension . 47

4.7. Protocol Operations . 50
4.7.1. Granting Write Access . 50
4.7.2. Revoking Write Access . 52
4.7.3. Validation of an Access Control List 52
4.7.4. USER-CHAIN-ACL Access Control Policy 55

5. Distributed Conference Control based on RELOAD 56
5.1. Overview . 56

5.1.1. Scope of DisCo . 57
5.1.2. Concurrent Work in the IETF . 58

5.2. Protocol Design . 59
5.2.1. Architecture . 59
5.2.2. The DisCo Registration . 61
5.2.3. Routing to a Focus . 62
5.2.4. Adding Focus Peers . 63
5.2.5. Proximity-awareness . 65

5.3. Protocol Operations . 66
5.3.1. Conference Creation . 66
5.3.2. Joining the Conference . 69

Contents iii

5.3.3. Leaving a Conference . 70
5.4. DisCo-Unaware Participants . 71

5.4.1. RELOAD-aware Applications . 71
5.4.2. Plain SIP User Agents . 72

5.5. Conference Management . 74
5.5.1. Conference Access . 74
5.5.2. Call delegation . 75
5.5.3. Leave Management . 77

5.6. Media Management . 79
5.6.1. Model for Media Distribution . 79
5.6.2. Offer/Answer Model . 79

6. Management of a Coherent Conference State 81
6.1. Introduction . 81
6.2. Distribution of Change Events . 82
6.3. Event Package for Conference State . 84

6.3.1. Overview . 84
6.4. Description of XML Elements . 85

6.4.1. <distributed-conference> . 85
6.4.2. <version-vector>/<version> . 86
6.4.3. <conference-description> . 87
6.4.4. <focus> . 88

6.5. Translation to Conference-Info Event Package 90
6.5.1. ci.<conference-info> . 90
6.5.2. ci.<conference-description> . 90
6.5.3. ci.<host-info> . 91
6.5.4. ci.<conference-state> . 91
6.5.5. ci.<users>/ci.<user> . 91
6.5.6. ci.<sidebars-by-ref>/ci.<sidebars-by-value> 91

7. Implementation 92
7.1. Libraries to Implement DisCo . 92

7.1.1. MP2PSIP Project aka RELOAD.NET 92
7.1.2. PJSIP Stack/ Sipek Wrapper . 95
7.1.3. XML Schema Converter . 98
7.1.4. DisCo Class Design . 98

7.2. Implementation of Usages . 99
7.2.1. Shared Resources . 99
7.2.2. Usage for DisCo . 104

7.3. Demo Application . 107

Contents iv

8. Measurements & Evaluations 109
8.1. Objectives of Measurements . 109
8.2. Mono Port . 109
8.3. Measurement Setup . 110

8.3.1. Measurement Architecture . 110
8.3.2. Measurement Configuration . 111

8.4. Measurements . 113
8.4.1. Measurement Scopes . 113
8.4.2. Joining a RELOAD Overlay . 114
8.4.3. Storing a DisCo-Registration . 116
8.4.4. Fetching a DisCo-Registration . 117
8.4.5. AppAttach to Focus Peer . 117
8.4.6. Connection Establishment to Focus Peer 119

8.5. Evaluation . 120

9. Conclusion and Outlook 122

A. Appendix 124

References 128

List of Figures 134

Listings 136

1. Introduction 1

1. Introduction

1.1. Motivation

Voice over IP refers to a technology to transmit voice over computer networks, which is nowa-
days highly relevant for human communication. Even though the Public Switched Telephone
Networks (PSTN) are still a key component for regular telephone calls, Voice over IP (VoIP)
solutions are gaining importance end-user communication. Nowadays, there exist a variety of
different VoIP applications and protocols. On the one hand, Instant Messaging (IM) services
that are developed and provided by a single company and are generally based on proprietary
protocols. IM services are very popular since they have often an intuitive user interface, pro-
vide a present service announcing the currently available contacts and are in particular free of
charge. On the other hand, exists VoIP services based on open and standardized protocols
that are not particularly related to any specific company. They are characterized by a high
interoperability among different service providers and are deployed in a variety of softphone
applications or on special VoIP telephones. The advantages of these communication services
are additional functionalities, e.g., third party call control (3pcc) or multiparty conferences and
save expenses compared to the charges of PSTN telephony.

A widely deployed standard protocol for creating VoIP call is the Session Initiation Protocol
(SIP) [1]. SIP is an application layer protocol used for signaling among the communication
endpoints to create, modify and terminate calls. SIP was initially designed as a peer-to-peer
protocol to create a session among end-user devices. However, the deployment model of SIP
is provider centric and binds a SIP user agent to a host that maintains a dedicated infrastructure
of SIP registrars and proxy servers. Registrars are needed to bind the SIP address of an user
to its current IP address while proxies are used to located the remote endpoint. To serve mul-
tiparty conferences, a provider additionally maintains a dedicated conferencing server. It acts
as central point of control for a conference and often provides module to mix and distribute
the conference media among the parties. Since the maintenance of infrastructure produces
ongoing costs, its use often requires customer charges. In particular, multiparty video confer-
ences are nowadays only established as business application due to their costs. Further, the
dependency on a dedicated infrastructure makes the service architecture vulnerable to system
failures and threatens the continuous availability of multimedia services. Even though the ser-
vice provider maintain redundant hardware to enhance the reliability, complete failures occur
occasionally and interrupt service. Hence, the dependency on the service provider can be
identified as a single point of failure.

To decouple the need of dedicated hardware for VoIP session establishment, several ap-
proaches where proposed [2, 3] for a distributed VoIP and IM architecture called Peer-to-Peer
SIP (P2PSIP). The basic idea is to combine the high scalability of structured P2P overlay us-
ing Distributed Hash Tables (DHT) with IP telephony using SIP. The concept for decentralised

1. Introduction 2

P2P signaling became such a relevance in the SIP community that the Internet Engineering
Task Force (IETF) finally founded a new working group charted to develop a P2P protocol for
the use of SIP. An emerging standard is the REsource LOcation And Discovery (RELOAD)
[4] base protocol. RELOAD is an application layer protocol for P2P signaling providing mech-
anisms for data storage and lookup, as well as connection establishment among peers. In
contrast to other P2P approaches, the RELOAD base protocol provides a security mechanism
for central user authentication and data is sent over secure transport protocols. Furthermore,
RELOAD explicitly limits the amount of data peers are allowed to store in the overlay to reduce
the burden of becoming a peer in the overlay. Generally, overlay members have permissions
to store at overlay locations that are related to their public key certificate. The privilege to store
data at a specific overlay location, can not be delegated to further users. As a consequence,
coordination and rendezvous processes among distributed peers are hardly to implement on
RELOAD.

Using SIP session management capabilities and RELOAD as P2P signaling protocol provides
a reliable and distributed base for a future VoIP applications. However, both protocols should be
augmented with mechanisms for coordination, load balancing and state coherency to enable a
distributed management for processes that are traditionally managed by a central component.
In particular, multiparty conferencing could be realized in a decentralized fashion to reduce the
need on a dedicated conferencing infrastructure.

1.2. Objectives

This work initially discusses the problem space for developing a protocol scheme for distributed
conference control. The concepts for distributed conferencing and shared resource in RELOAD
are designed as Internet drafts in the IETF and thus need to be compliant and consistent with
the protocols it uses. Based on those discussions, requirements can be derived to develop a
new protocol standard.

Afterwards, this work develops solutions to enable distributed conference control based on the
RELOAD and SIP protocol. Therefore, it discusses the solution space to find out which ap-
proaches are best suited to the requirements established previously. This enables the defini-
tion of several protocol operations and data structures each for the RELOAD and SIP protocol.
These are presented and explained in detail thus to show that chosen mechanism are com-
pliant to the base protocols and to enable the reader to reimplement all protocol operations.
Following, the RELOAD operations are implemented as C#/.NET project using a prototype
RELOAD stack. Using this implementation, it is shown that the developed protocol mechanism
optimize the conference topology and thus reduce the delay to joining a distributed confer-
ence.

1. Introduction 3

All these steps contribute to development and deployment of a new protocol standard in the
area of P2PSIP. The final task in this progress, is the implementation of all SIP routines which
are partly finished within this work.

1.3. Contribution

This thesis presents a distributed and self-organizing protocol scheme to create session based
multimedia conferences among peers. This principle for Distributed Conferencing (DisCo)
refers to a multiparty conversation in a tightly coupled model that is identified by a unique
URI and located at several independent entities. Multiple SIP [1] user agents uniformly control
and manage the multiparty conversation. The mapping from a single identifier to several end-
points is achieved through a RELOAD [4] overlay. The DisCo principle requires the definition
of two different usages. First a usage to enable cooperative write access to overlay resources.
Second a usage for distributed conference control using SIP and RELOAD. The usage for co-
operative write access due to the access model in RELOAD that permits overlay members an
exclusive write access to few overlay locations related to a user public key certificate. The ex-
clusively write permission can not be shared with further user by following the RELOAD base
specification. The second usage for distributed conferencing is needed to map the Id/locator
separation and to specify a scheme to manage distributed conferences.

The first usage called Usage for Shared Resources in RELOAD (ShaRe) [5] defines a generic
mechanism that enables overlay users to share their exclusive write access to a specific overlay
resource with further users. Write permission is controlled by an Access Control List (ACL) in
which the legal owner of an overlay resource explicitly allows further users access. An ACL
is maintained by the overlay participant that is responsible for storage of the resource to be
shared.

The second Usage called RELOAD Usage for Distributed Conference Control (DisCo) [6]
defines application and signaling procedures that enable distributed conferences based on
RELOAD. This includes a SIP protocol scheme for distributed conference control, a new over-
lay resource and corresponding rules to handle it and a mechanism to provide a coherent con-
ference state among the distributed controller. DisCo further provides a possibility for proximity-
aware routing among the conference participants to reduce delay and jitter in the multimedia
communications.

1.4. Organization

The remainder of this thesis is organized as follows. Section 2 provides an overview on basic
SIP signaling procedures, followed by a description of standard architectures for session based

1. Introduction 4

group conferencing. Further, it gives overview on the emergence of P2PSIP approaches to-
wards the common P2P signaling standard named RELOAD. Section 3 discusses the generic
and particular problem space for distributed conferencing with SIP and RELOAD and sets the
requirements for the possible solutions. Section 4 addresses the issue of sharing resources
in a RELOAD overlay. Therefore, it discusses two concurrent approaches, shows further de-
ployment scenarios for shared resources and specifies a protocol scheme to achieve resource
distribution. Section 5 presents the protocol scheme for distributed conference control based
on RELOAD. After an overview on the DisCo concepts, it discusses the protocol design and
specifies operation to register, join and leave a distributed conference. Further, section 5.4
discusses and explains the mechanisms for backward compatibility to plain RELOAD and SIP
clients, followed by the SIP protocol scheme for conference maintenance. Section 6 intro-
duces an event package for distributed conferences, used to synchronize the focus peers and
to announce the conference state among the participants. Section 7 given an overview into
the implementation of the DisCo protocol while section 8 presents several measurements and
evaluations of the used RELOAD stack and DisCo implementations. This work concludes and
gives a look on future work in section 9

2. Evolution of P2PSIP 5

2. Evolution of P2PSIP

2.1. Traditional SIP Signaling

The area of VoIP is closely related to one of the most successful protocol standards of the
early 2000s – the Session Initial Protocol (SIP) [1]. SIP, from its primitives, is used to initiate
sessions among applications that intent to communicate. The main contributions to session
establishment of SIP are the following:

• Locate remote endpoint

• Contact the endpoint and determine its willingness to initiate a session

• Exchange meta information, e.g., media type and codes

• Modify established sessions

• Terminate existing sessions

SIP is an application layer protocol for signaling and is abstract from session it initiates. The
message body of a SIP request generally contains session description information, e.g., the
Session Description Protocol (SDP) [7] that provides a representation for media types and
session parameters. SIP is a transactional protocol. Each request will be answered with zero
or more provisional response messages and at least a final response. Thereby, each request
message uses a method to indicate the desired transaction, while each response message
contains a status code, indicating the willingness of the remote endpoint to answer the request.
In SIP terminology, a User Agent Client (UAC) sends request messages to a User Agent Server
(UAS) responding with answer messages. The user agents act in these logical roles for the
duration of the transaction. If a UAC receives a request, it assumes the role of a UAS. A typical
scenario for SIP is the call establishment via a SIP INVITE message as shown in the following
section.

2.1.1. Call establishment

Figure 1 shows a typical scenario for SIP call establishment. The example shows two users,
Alice and Bob, intending to create a VoIP call. The intermediate entities atalanta.com and
biloxi.com are representing SIP proxies of the providers of each Alice and Bob. In this
scenario it is assumed that Alice knows Bob’s Address-of-Record (AoR) – Bob’s SIP URI
sip:Bob@biloxi.com.

2. Evolution of P2PSIP 6

SIP ProxiesAlice

atalanta.com bibloxi.com

Bob

INVITE sip:Bob

INVITE sip:Bob

INVITE sip:Bob100 Trying

100 Trying

180 Ringing

180 Ringing

180 Ringing 200 OK

200 OK

200 OK

ACK

Media Streams

BYE

200 OK

Figure 1: Call flow: Call establishment using SIP

1 INVITE sip:bob@bibloxi .com SIP / 2 . 0
2 Call−ID: 0815@141. 22 .26 .6
3 CSeq: 1 INVITE
4 From: " A l i ce " < s ip :a l i ce@ata lan ta . com> ;tag=134652
5 To: "Bob" <s ip :bob@bi lox i . com>
6 Via: SIP / 2 . 0 /UDP 141.22.26.6:5060 ;branch=z9hG4bKf1
7 Max−Forwards: 70
8 Contact: <sip:a l ice@141 .22 .26 .6 >
9 Content−Length: 159

10 . . .

Listing 1: SIP INVITE: Alice calls Bob

In order to call Bob, Alice sends a SIP INVITE request message to Bob 1. This initial INVITE
contains several SIP header, e.g., to and from indicating who will be called and who is calling,
a unique call identifier, a sequence number and a contact address locating Alice’s UA. The
session description in the SIP message body, will announce the preferred media types for the
desired call. As Alice does not know a route to Bob, the INVITE request will firstly be routed
to her outbound proxy atalanta.com. The outbound will resolve the host part of Bob’s AoR
(biloxi.com) by using DNS and forward the request to Bob’s inbound proxy. Additionally, it will

2. Evolution of P2PSIP 7

record its contact into the SIP Via header. SIP uses via headers to be enabled to route a cor-
responding answer along the reserve route of the initial request. In the example, atalanta.com
responds with a 100 Tying provisional response. It indicates to Alice that the INVITE request
was received and that proxy will work on behalf of Alice to route the message to its destination.
As the SIP INVITE request reaches the inbound proxy of Bob, the proxy queries its database if
a user called Bob is actually registered and forwards the request. Once the INVITE reached the
SIP user agent of Bob, it may notify Alice that it is trying to reach Bob (perhaps by a ring tone)
by responding a 180 Ringing messages. This response will be routed back to Alice along the
reverse path of the initial INVITE request. A user agent receiving a 180 Ringing will typically
play any kind of ringback tone.

If Bob answers the call its SIP user agent will send a 200 OK response that will contain Bobs
contact address and an agreement on media types for the desired session. Alice’s UA con-
firms the final 200 response by sending an ACK message. This message is send directly to
Bob since they had already exchanged their contact addresses and acknowledges Bob the re-
trieval of 200 OK. An ACK message in response to an 200 OK that was sent within an INVITE
transaction, is considered its own transaction and thus does not required a further response.
Finally, Bob and Alice can send the negotiated media and hence performing a VoIP call.

The SIP signaling session can be terminated by sending a BYE request routed directly to the
remote UA. By comparing transaction ID the request, the receiver is aware of media session
that has to be ended. To conclude the BYE transaction, Alice responds by an 200 OK and
ends the call.

2.1.2. SIP Notification Mechanism

The Session Initiation Protocol [1] is a flexible protocol that can be extended with further func-
tionalities. Nowadays, there exist about 170 standardization documents in the IETF [8] that are
directly related to SIP. There even exists a standard that is a guideline [9] for authors intending
to extend SIP. However, this section introduces an early extension to SIP whose mechanisms
are used later on.

The SIP Specific Event Notification extension [10] provides a mechanism to subscribe to a
resource of interest, e.g., a call state of a remote host, and to receive event notifications if
the observed state changes. The state of an observed entity are represented by a so called
event packages and are commonly defined as an XML document. Figure 2 shows a sample
call flow for an event notification for a registration event package [11]. An application is inter-
ested to receive notifications if a SIP user agent registers its URI at the proxy/registrar server.
The application might be service of the provider of that user to welcome users on registra-
tion.The application subscribes by sending a SIP SUBSCRIBE request message that contains
a Event header field whose value contains the literals reg, e.g. "Event: reg", which is name

2. Evolution of P2PSIP 8

Proxy/

Registrar
Application

SUBSCRIBE Event: reg

200 OK

REGISTER

200 OK

NOTIFY Content: xml

200 OK

MESSAGE

200 OK

Figure 2: Call flow: Registration event notification

of the event package. The names of event packages are generally registered at the Internet
Assigned Numbers Authority (IANA) [12] and hence well-known to applications supporting an
event package. Since the registrar server supports the registration event package and the sub-
scribing application is allowed to receive those events, it responds with a final 200 OK response
message.

If a user stores its SIP record via an SIP REGISTER request, its registrar will send a SIP NO-
TIFY request to the subscribed application that contains the event notification represented by
an XML document. The XML content than contains information about the registration, e.g., that
the registration is active, the duration of registration and contact addresses of the registered
user agent. Using the contacts, the service application can finally send any kind of welcome
message to the registered user by sending a SIP MESSAGE request whose content is a plain
text message.

2.1.3. Call Transfer

In several cases, a user may want another user to contact a third user to transfer a call. For
instance, a user Alice is in a call with the user Bob and wants a user Carols to establish a call
to Bob. This can be achieved using a SIP REFER request. The REFER method extension
provides a Refer-to header field that contains an address which the recipient of the REFER
should contact. A call transfer implicitly establishes a subscription for a refer event package
that allows the referrer to follow the progress of the transfer. The call transfer from Alice to

2. Evolution of P2PSIP 9

CarolAlice

REFER to: Bob

202 Accepted

Bob

NOTIFY content: trying

200 OK

INVITE sip:Bob

200 OK

ACK

NOTIFY content: OK

200 OK

Figure 3: Call flow: Call transfer and refer notification

Bob is shown in figure 3. The REFER request by Alice is responded with a provisional 202
Accepted response to acknowledge the retrieval followed by the first event notification for the
refer subscription. The body of the NOTIFY message contains a message/sipfrag [13] content.
The sipfrag content is similar to the structure of SIP messages, but also allows well-formed
subsets of SIP messages. For instance, the content of the first event notification is a "SIP/2.0
100 Trying" response-line. Since Carol accepted the reference, she initiates a call to Bob by
performing the 3-way-handshake INVITE/OK/ACK. Carol finally notifies Alice about the success
of the reference by sending a NOTIFY with the content "SIP/2.0 200 OK".

2.2. Conferencing with SIP

2.2.1. Three-way Conference

A common scenario is a three-way conference in which a user agent maintains two dialogs to
other user agents. In this scenario, a pair of users had already an established call and one of
them wants to add another party. The user agent capable of media mixing in a 3-party call,
re-INVITES its dialog partner to a new session. In this re-INVITE, the conference focus may
negotiates new media parameter for the 3-way session and add an additional isfocus parameter
to its Contact header, e.g., "Contact: sip:alice@atlanta.com;isfocus". By receiving the INVITE
with the isfocus parameter, the other party is aware that the user Alice will manage a multiparty
conference. After the re-invitation, the conference initiator can invite the third party and will
further mix and distribute the media of both endpoints.

In an alternative scenario, a three-way conference can be initiated by a third party joining an
established SIP dialog. This can be achieved using a SIP Join header extension [14]. Prior

2. Evolution of P2PSIP 10

to INVITE request, the third party has to obtain the call-id and the values of the From and
To header of the session it intends to join. These may be obtained by some non-SIP source,
e.g., web-page, instant message, etc. The third party then sends a SIP INVITE containing the
additional Join header to one of the parties. An example Join header is shown in listing 2.

1 Join: 815@atlanta .com
2 ;from−tag=1234
3 ;to−tag=4321

Listing 2: Example: SIP Join header to an already establish call

A three-way conference is applied for basic scenarios to establish an ad-hoc multiparty con-
versation among peers (Note that SIP proxies/registrar might be required at all). However, it
represents a centralized topology that does not scale for larger conferences. Furthermore,
as the user agent performing the central focus role disappear, the entire conference must be
restarted. Hence, it represents a central point of failure.

2.2.2. Conferencing Frameworks

Advanced mechanisms for conferencing with SIP are defined within several frameworks [15,
16]. The Framework for Conferencing with SIP [15] specifies terminologies, architectures and
protocol components needed for multiparty conferencing with SIP. It categorizes the following
three conferencing models:

Loosely Coupled: In a loosely coupled model, the conference participants provide no sig-
naling relations amongst each other. There is no central point of control and session
parameter may be distributed via IP multicast. Loosely coupled models maybe desirable
within the boundaries of an IP multicast domain, but are not deployable in a global scale
since IP multicast is often filtered at the provider edges.

Fully Distributed: In a fully distributed model, each conference participant maintains a signal-
ing relation to all further conference members. This model may suit small conferences
in which the number of signaling messages is negligible. However, a coordination within
larger conferences would produce a lot of signaling overhead and its merging would be
complex.

Tightly Coupled: In a tightly coupled model, the conference is managed by a single point of
control. It provides several conferencing functions, e.g., notification service, negotiates
the media sessions among its clients and may perform media mixing functions as well.
The tightly could model is widely deployed and extended by several functionalities. How-
ever, this model may not suit conferences in an ad-hoc or peer-to-peer scenario since a
single peer might not be capable of performing all media functionalities.

2. Evolution of P2PSIP 11

A conferencing service as proposed in [16] is more than just SIP signaling. Central conferenc-
ing system generally provides five functionalities to participate, control and modify a conference
as shown in figure 4 and described as follows:

Conference Object: A conference object is a logical representation of a specific multiparty
conversation. It includes a so called blueprint that represents a configuration for a con-
ference, e.g., supported media types, maximal number of participants per conference or
the availability of floor control. A conference object further contains a conference state
representation during an active conference.

Conference Control Server: A conference control server provides an interface to between
the conferencing system and the clients. It is used by clients to create a conference
by select and modify one of the blueprints provided by the conferencing system and
to make a reservation for the desired multiparty conversation. Client and Server are
communicating via a dedicated Conference Control Protocol (CCP). A conference object
created by a user could be cloned or stored to reuse it for a further conference.

Floor Control Server: A floor control server enables authorized conference users (Floor
Chairs) to manage access to conference resources, such as conference media, with the
conference participants. Floor control is performed by a dedicated floor control protocol,
e.g., the Binary Floor Control Protocol [17].

Foci: Foci are the logical conference entities that maintain the SIP signaling relations with the
conference participants. Each focus maintains the membership operations (join, refer,
leave) and the media negotiation for a single conference object.

Notification Service: The notification service uses the SIP specific event notification mecha-
nism [10] to inform each subscribed participant about the current conference state. The
conference state is generally represented by an XML event package, e.g., the Event
Package for Conference State [18], which will be introduced in section 2.2.3.

The Media Mixer component is not explicitly part of the conferencing framework [16], but natu-
rally part of the conferencing architecture. The media mixer is commonly located on the same
device as the conferencing system or on a dedicated media server also known as Multipoint
Control Unit (MCU). The media mixing could also be performed by the participants of a con-
ference, but there are actually no standards or best practices along this topic. However, the
media distribution is controlled by the focus to a conference object that has to ensure that each
party is connected to the corresponding media.

2. Evolution of P2PSIP 12

Conferencing System

Conference Control
Server

Floor Control
Server

Foci Notification Service
Media Mixer

Conference Object

Conferencing Client

Conference and
Media Control

Client

Floor Control
Client

SIP
Client

Notification Client

CCP BFCP SIP SIP

Media

Figure 4: Overview: Centralized conferencing framework

2.2.3. Conference Event Package

In a SIP multiparty session, it is desirable that each conference member obtains a view on
the entire state of the multiparty session. The conference status includes information about
participants, existing media streams and if auxiliary services are available. A SIP solution to
distribute the conference state among the members is a notification service that updates its
subscribers about changes in the conference state.

This thesis provides a brief overview to the Event Package for Conference State [18] because
its syntax and semantic will be partly reused in an event package for distributed conferences
presented in section 6. The conference package enables users to obtain information about
changes in state for a specific conference instance. It is build on the SIP specific event no-
tifications [10] (or see section 2.1.2) and defines an XML scheme that represents the state
of a actively running conference. Users interested in state updates send a SIP SUBSCRIBE
request to the URI of the conference whose Event header field requests the conference event
package, which is the registered package name at the IANA [12]. The subsequent NOTIFY
message by the focus then contains an XML document in the message body representing the
last recent state of conference. The Document Object Model (DOM) tree of the XML has a
conference-info element as root that has six child elements each describing another aspect of
the conference. The root element and its direct children will be described on a high level as
following:

Conference-Info: This element is the root of the DOM tree and provides three essential infor-
mation. First, which conferences state is represented by the XML document, second, an

2. Evolution of P2PSIP 13

indication if the XML provides the entire state or a delta to the previous state and, third,
a version number to properly order the received notification.

Conference-Description: This child element is a container for several sub-elements
that provide general meta-data to a conference. The meta-data comprises descrip-
tions about the conference content (e.g., display-text or subject), URIs to auxiliary
services or capacities of the conference (e.g., available media types or maximal
user count). The information provided within a conference description is commonly
set up before starting a conference by some kind of Conference Control Protocol
as described earlier in section 2.2.2.

Host-Info: This child element of the root provides meta-data about the entity hosting the
conference such as a display-text or an HTTP URI to an web page providing further
information about the conference. The host-info element is also setup previously
and the information provided will not change during a conference as long as its
remains of the same conference host.

Conference-State: This element comprises three sub-element that enable the confer-
ence host to inform its subscribers about changes in the overall state. This includes
a user count of all participants and if the conference is currently active or locked in
terms of, if a participation request to the conference URI will succeed. In contrast
to the previously described element, is conference-state element a more dynamical
content that will change more frequently during a conference.

Users: This container element provides a dynamical count of user sub-elements, each
representing a conference participant. The relationship from a user to its XML
element is mapped through the user’s SIP URI. Each user element provides an
attribute that binds it a specific user participating the conference. It is further no-
ticeable that this correlation also represents a user who has multiple devices and
signaling relations joined in the conference. Therefore, each user element con-
tains one or more endpoint element each representing a user’s device. However,
user elements further contain meta-data that describe a user’s preferences (e.g.,
language) or roles in the conference in plain text to be read by humans.

Sidebars: The Sidebar-by-ref and Sidebar-by-value elements enable the XML docu-
ment to map the relationship of the conference it describes to other conferences.
A reference scenario for sidebars is, e.g., a user participating the conference who
is simultaneously a focus for another conference. This scenario is called a simplex
cascaded conference. However, as the mechanism for sidebars is not in scope of
the later on presented event package for distributed conferences (see section 6).

2. Evolution of P2PSIP 14

Partial Notifications A technique that will be referenced within this thesis is the partial notifi-
cation mechanism defined in the conference event package. Partial notifications are useful for
XML elements whose children can frequently change during a active conference and to avoid
sending the entire XML document at every state delta. These XML elements own two addi-
tional attributes. First, the "state" attribute and, second, an element key also designed as XML
attribute. The former state attribute defines the three different indications "full", "partial" and
deleted. An element of state full indicates that the subsequent DOM tree will contain a com-
plete representation of this aspect of the conference state. Accordingly, an element with state
partial contains just a subset of elements that are representing the state delta to the previous
conference state. An element of state deleted does not contain any children and indicates that
the entity represented by this element does not exits anymore.

Element keys enable a unique identification of XML elements that have a common parent.
This is essential for processing partial event notifications as the receiver is enabled to update
only the state delta for the corresponding element in its local copy of the XML state docu-
ment. For instance, a notification of the disappearance of a user Bob. Bobs state is rep-
resented by an XML element whose element key is an entity attribute containing Bobs SIP
URI. A conference party Alice receives a SIP NOTIFY with the sample XML shown in listing
3. It contains the root conference-info element declaring its XML namespace in line 3 and
indicates in line 4, which conference is represented by this document identified by the SIP URI
sip:conf-1234@example.com. The state attribute indicates that the subsequent XML document
describes a state delta. The only sub-elements needed to announce Bobs disappearance is a
users element containing just a single user element. Alice is now informed that the user Bob
is not longer participating the conference as indicated by the entity and state attributes shown
in line 7.

1 <?xml version=" 1.0 " encoding="UTF−8" ?>
2 <conference−i n f o
3 xmlns=" u rn : i e t f : pa rams :xm l :ns : con fe rence−i n f o "
4 e n t i t y = " s i p : con f−1234@example . com"
5 s ta te =" p a r t i a l " version=" 815 ">
6 <users>
7 <user e n t i t y = " sip:bob@example . com" s ta te =" de le ted " / >
8 < / users>
9 < / conference−i n f o >

Listing 3: Conference-info example: Announcement of the disappearance of the user Bob

The SIP user agent of Alice may use this information to update the user interface to show the
user Alice the new conference state.

2. Evolution of P2PSIP 15

2.3. Emergence of P2PSIP Approaches

2.3.1. Unstructured P2P Systems

A P2P system is by definition a "self-organizing system of equal, autonomous entities (peers)
which aims for shared usage of distributed resources in a networked environment avoiding
central services" [19]. This citation cut right the chase of matter for P2P networks and further
describes a problem of P2P approaches – avoiding central systems.

Early developments of P2P systems, e.g., the SETI@home project [20] or original Napster Mu-
sic Download service [21] were build around a central component. SETI@home used a central
server to distribute recorded radio signals from space among multiple end-user devices to per-
form calculations. On finishing the calculation, the devices returned their results back to the
SETI server. This architecture is in the true sense no peer-to-peer network, but it demonstrates
the higher scalability of a distributed system compared with a single server system.

The initial music sharing approach of Napster, came even closer to the definition of a P2P
network. Music files were located and shared among the peers within the Napster network.
Napster just provided a central indexing server that maintained global knowledge about the
location of each file. Peers searching for a piece of music, queries the index server to obtain
the address of peers which provide that song. However, this approach violated the definition
that a P2P system has to be self-organizing.

Another pure P2P System that avoids any central component was the Gnutella protocol [22]
since version 0.4. The protocol enabled a fully distributed file-sharing service that used flood-
ing algorithms to find the desired resources. Due to those flooding algorithms, the Gnutella
protocol did not scale for very large P2P networks and produced false negative result while
searching for desired resources.

2.3.2. Distributed Hash Tables

The key technology that enabled the success of P2P networks was the development of so
called structured P2P networks that used distributed hash tables (DHT) as routing algorithm.
DHT provide the following benefits:

Self-organizing: No central instance is needed for coordination

Scalable: Key-based routing (KBR) algorithms have often a logarithmically complexity

Load-balancing: Keys are distributed uniformly

Failure tolerant: Disappearance of nodes does not collapse the entire network

2. Evolution of P2PSIP 16

DHT

192.168.49.103

141.20.32.9

8.8.20.45
86.22.3.87

141.22.27.142

141.22.26.154 101.22.67.30

e45f3
a52e2

a493e

9b43e

5a5c13fa31

1b542

Britney-Spears_

Hit-me-Baby.mp3

1a332

Avatar_mov.avi

3dd43

Figure 5: Key-based routing layer: Overlay network upon the IP network

DHTs provide a lookup service that is similar to hash tables that store (key, value) pairs. Each
node and each data stored within a DHT is assigned a unique key that represents their ad-
dress in an overlay network. The overlay addresses are commonly generated by using a
consistent hash functions, e.g., the Secure Hash Algorithm (SHA1) [23]. For instance, a node
joining an overlay generates its overlay address by hashing its current IP address and port,
e.g., hash(’141.22.26.154:6084’) = 0xFA25– assuming a hash function that pro-
duces 16 bit long hashes. Addresses for data are likely generated by, e.g., calculating the hash
over the filename. The hash function there ensures a uniform distribution of the overlay ad-
dress along the entire address range. Hence, nodes and data values share a flat address
space that abstracts contact addresses and data addresses. Figure 5 visualizes an overlay
network whose KBR algorithm results in a circular address space. On the top, it shows an
overlay network that has a 20 bits long address range from 0x00000 to 0xFFFFF that is ar-
ranged on a circle. The bottom of the figure shows the connection graph among the devices
joining the overlay and several files they provide. Each node in an overlay is thereby respon-
sible to maintain a set data that for which the node is responsible. These responsibilities are
generally bound to the overlay addresses, e.g., a node is responsible for data whose address
are close to its own. Overlay data can be stored directly on its responsible node or as reference
(contact address) to the node it holds. Analogously to data storage, does each node maintain
a distributed routing table enabling to locate nodes and data in the overlay. Each node has a
partial knowledge on the entire overlay topology. If it knows a direct route to the destination it
contacts the remote node. Otherwise a node recursively forwards the messages to a node that
is nearest to the hop destination it knowns, according to the used overlay algorithm.

2. Evolution of P2PSIP 17

Overlay routing and data storage is based on the distributed hash table algorithm of an overlay.
There exist several popular DHTs like Chord, Pastry, CAN or Kademlia [24, 25, 26, 27] which
have different features in terms of scalability or resilience against churn and network partition-
ing. However, this work will further reference on the Chord overlays since it is the default DHT
algorithm used for the RELOAD base protocol [4] described in section 2.4.

2.3.3. Motivation for P2PSIP

In the years 2004 to 2005 several new approaches proposed a combination of SIP and struc-
tured P2P networks to establish a decentralized signaling topology called P2PSIP. The central
SIP proxy1 architecture is replaced by an structured P2P network [2]. This is mainly motivated
by two reasons:

Configuration & Costs: The installation, configuration and maintenance of a dedicated SIP
infrastructure is costly and can not be setup ad-hoc. In contrast, a self-organizing P2P
does not require dedicated hardware or personnel for installation.

Resilience: SIP proxies are central points of failure while a P2P system can are robust against
node failures.

Another disadvantage of the traditional SIP infrastructure identified by [3] is that all traffic, even
internal or confidential, traverses through an external third party. In several companies, it is not
desirable to route confidential VoIP calls or IM messages via an external server infrastructure,
thus many companies have banned those services [3]. While large organizations might be
able to maintain their own SIP infrastructure, it could be too costly for smaller companies to
provide hardware and staff on their own. Users should be enabled to create VoIP and IM
communication with minimal requirements on external hardware and setup times.

2.3.4. SIP over P2P

The first approaches [2, 3] for a combination of SIP and P2P overlays had a common base.
They used standard SIP [1] messages which were partially augmented with SIP extension
headers [28] as signaling protocol to maintain a structured P2P overlay. This SIP over P2P ap-
proach provides the advantage to reuse existing SIP stack implementations and to be compliant
to ordinary SIP user agents. Additionally, SIP was already a widely deployed standard protocol
that was recognized by firewalls or traffic shapers. New P2P protocols might be detected as un-
known and hence filtered by those entities. For instance, each uses SIP REGISTER message
to store SIP records in the P2P overlay.

1For convenience, we will further refer the proxy/register combination defined in [1] by using the term proxy

2. Evolution of P2PSIP 18

1

6

3

5

SIP

2

4

S

D

(a) Approach [2]: Hybrid overlay with iterative routing

2

1

3
4

5

6

SIP

S

D

(b) Approach [3]: Flat overlay with recursive routing

Figure 6: Comparison: Hybrid–Iterate vs. Flat–Recursive routing

Both approaches [2, 3] used the DHT overlay just for resource location. Once the user agents
received a contact address by the overlay, SIP session establishment is done directly between
endpoints with standard SIP procedures. However, both early P2PSIP concepts prefer different
routing strategies and overlay topologies as shown in figure 6.

Figure 6a shows a hybrid overlay approach that uses a iterative routing. Participants in such
an overlay are split in in two roles – simple nodes and super nodes. Both types of nodes
are based in the same P2PSIP implementation and are deployed on end-user devices. Each
performs standard SIP registrations [1] and P2PSIP overlay registration simultaneously, while
super nodes are additionally joined to a Chord DHT [24]. Super nodes are selected by their
capacities, e.g., public IP address, large bandwidth or continues uptime. Simple peers try to
register their SIP records by locating any super node and send them their registration mes-
sage. The latter then use Chord routing procedures to store the record at a super node that
is responsible for the data. The lookup procedure uses an iterative routing. As shown in 6a a
node N send SIP INVITE or MESSAGE request addressed to the destination user agent D to
any known super node S. The latter queries its local routing table and responds with a redirect
message returning the nearest super node S′ it knows to N. N repeats the procedure by send-
ing the request to S′ which may responds with another intermediate super node S′′. Since D is
registered on S′′, the 5th request by N will return a contact address to D. Finally, N and D can
establish a session using normal SIP signaling procedures.

In contrast, figure 6b shows the approach of Bryan et al [3, 29]. All nodes participating the
P2P network are joined to a Chord DHT overlay despite of their capabilities. They likely try

2. Evolution of P2PSIP 19

to register through standard SIP and overlay mechanisms. To locate a remote user agent,
requests are recursively forwarded to a node in the local routing whose overlay address is the
closest to the destination address. The receiver of the request repeats this procedure using
its own local routing table and forwards the message. The node that stored the SIP record of
the destination node responds by sending the response back to last hop node. The message
routes along the reverse path of the request until finally reaching the requesting node that is
now enabled to initiate a SIP call to the desired party. A light modified variant of the this so
called recursive overlay response routing (rorr) is the recursive direct response routing (rdrr)
procedure. After an overlay request has reaches the node stored the SIP records it could send
the response directly back to the requester if the original request contains a contact address.

All routing procedures presented above have their pros and cons. Iterative routing reduces the
opportunity for Denial-of-Service (DoS) attacks compared to recursive routing mechanisms.
There, an attacker just needs to repeat a lookup query to all nodes in its local routing table to
initiate multiple lookup procedures routed over various different routes. Especially in P2P over-
lays that allow parallel lookups, e.g. Kademlia [27], a DoS attack will easily flood an overlay.

On the other hand, recursive routing algorithms provide an advantage if nodes are located
behind a Network Address Translator (NAT). It can be assumed that nodes already joined in
an overlay had traversed their NATs (e.g. by STUN [30] or TURN [31]) in order to establish
transport connection to the nodes in their routing table. Hence, an overlay query profits from
the fact that no additional NATs must be traversed while it is forwarded to its destination. If it a
rdrr routed network, the final response might by require an additional traversal. In an iterative
route only the initial query profits from an existing connection. All subsequent hops may require
methods for reaching a node in private address range and thus have a worse response delay.

2.4. RELOAD – A P2PSIP Application Layer Protocol

2.4.1. A Common Solution

The appearance of several competing P2PSIP approaches [2, 3, 32, 33] and their increasing
relevance, resulted in a new P2PSIP Working Group (WG) at the IETF chartered in March 2007
to develop a P2P protocol for the use of SIP. All drafts proposed at the P2PSIP WG had their
pros and cons. The approach of using SIP as messaging protocol for a P2P network facilitates
the backward compatibility to plain SIP client. A counter-argument is that SIP messages are
heavyweight for P2P overlay signaling. Another discussed aspect is the routing mechanism
of an P2P overlay network. It is preferable to have a hybrid-overlay or aflat and recursive
routing? However, all approaches had a common objective – a new P2PSIP signaling protocol.
In October 2008 Bruce Lowekamp, who was one of the authors dSIP P2PSIP approach initially
presented at the SIPPING WG [34], finally presented the first draft for REsource LOcation And

2. Evolution of P2PSIP 20

Discovery (RELOAD) [35] that represents a consistent merge among all proposed drafts for
P2PSIP and is today in 2012 almost a Request For Comments (RFC).

2.4.2. Overview on RELOAD

The REsource LOcation And Discovery (RELOAD) [4] is a P2P signaling protocol to discover
and locate overlay resources. Currently, the protocol is defined as an Internet draft and still
needs some work before is can be published as RFC. However, RELOAD will become a highly
relevant signaling protocol. Various Internet drafts in the Real-time Application Area (RAI) are
already build on this base document. Figure 7 gives an overview on the entities, roles and sev-
eral RELOAD overlay operations. RELOAD provides abstract messaging and storage service
that is self-organizing and maintained by multiple independent peers forming an overlay net-
work. In contrast to the previous P2PSIP approaches, e.g., dSIP [34] by D. Bryan et al. or the
Peer-to-Peer Protocol [32] by S. Baset et al. that used SIP messages for overlay communica-
tion, RELOAD defines a proper messaging model that abstracts from any specific application.
This enables various types of applications to use RELOAD as signaling protocol and abstracts
from a pure SIP [1] usage.

RELOAD contributes to the existence of several different approaches for P2P routing algo-
rithms by providing a generic routing interface. This enables implementations of RELOAD that
use different structured or unstructured P2P algorithms that adopt to the conditions of the ap-
plication scenario. For instance, in an environment in which peers are frequently joining and
leaving the overlay, it can be favorable to use Kademlia [27] as key-based routing layer to
prevent partitioning of the overlay topology.

A fundamental problem in P2P systems is the lack of any authentication mechanisms. In
contrast to other P2P overlays [24, 25, 26, 27], RELOAD uses a security model for user au-

Enrollment

Server

RELOAD

Peer

Peer Peer

Bootstrap

Certificate X.501

Node-ID: af453a

Username: example

Serial: 1234

Client

Peer

Join

Store & Fetch

NAT
C
on

ne
ct

Figure 7: Overview: Roles and services provided by the RELOAD P2P protocol

2. Evolution of P2PSIP 21

thentication based on a Central Authority (CA) to initiate a trust delegation mechanism among
the peers. Peers establish transport connections to further unknown, even suspect peers. Us-
ing a CA issuing public key certificates to overlay participants enables, authentication of peers
joining the overlay and a pairwise authentication among peers. It further enables establishment
of secure transport connections to prevent unauthorized readings of the overlay messages.

RELOAD is a P2P protocol performed by end-user devices, defines mechanisms for NAT traver-
sal, since many, if not the majority of end-user devices are located in the private address range.
NAT traversal is build on the Interactive Connectivity Establishment (ICE) [36] protocol to find
candidates for "Traversal Using Relays around NATs" (TURN) [31].

RELOAD specifies two types of participants to meet distinct capabilities of different devices.
It defines peers as overlay participants that are actively maintain routing and data storing.
Peers are generally common desktop devices or even dedicated servers used for bootstrap
procedures. So called clients can join the overlay network without the burden of data storage or
routing. Weak devices like handhelds may enroll as clients instead of peers to save processing
power, memory and, especially, saving battery power.

The following sections will explain the main concepts of RELOAD in more detail as they are
fundamental for a understanding the approaches presented in this work.

2.4.3. Protocol Architecture

The RELOAD base [4] protocol defines its own architecture as a layered model similar to the
TCP/IP Model [37] (aka. DoD Model) defining four abstraction layers for P2P communication.
The proposed architecture describing the main components is shown in figure 8. The right
column in the figure shows the proposed protocol architecture. The middle column classifies
each component to a logical layer in the P2P communication model while the left column refers
to Internet layer the components are situated. Starting top down, the following description will
briefly introduce the architecture:

Application: This layer contains so called Usages that represent an interface to the applica-
tions that utilize the RELOAD protocol as abstract messaging and storage service. An
application usage defines procedures of how the application will utilize RELOAD ser-
vices and may define additional data structures (called Kinds) that will be stored in the
overlay.

Transport: This layer contains three components for transportation of overlay messages. The
message transport component provides a generic message routing service for the over-
lay. It is responsible for the end-to-end transactions of messages by monitoring all trans-
action and, if necessary, to retransmit messages. The storage component maintains
data values that are retrieved and requested by the overlay network. On receiving a store

2. Evolution of P2PSIP 22

SIP Usage
DisCo

Usage
Application

Message

Transport
Storage

Topology Plugin

Transport

Network Forward & Link Management

Link DTLS TLS

...

...

Application

Transport

Network

Link

Real

Internet

Overlay

Equivalent
RELAOD Architecture

Figure 8: Architecture: RELOAD P2P layer model compared with DoD Internet model

request, the storage validates if the message originator is permitted at this peer by quir-
ing each corresponding usage and the topology plugin. The latter represents is aware of
the key-based routing layer of use. On behalf the topology-plugin, the stack implementa-
tion is aware how to route overlay messages and is aware of storage responsibilities of
a peer. RELOAD specifies the Chord [24] algorithm as default key-based routing layer.

Network: This layer provides the packet forwarding by using the routing rules provided by
topology-plugin. It established and maintains all physical transport connections to other
peers. Furthermore, this layer implements congestion control to improve the reliability of
the end-to-end transaction.

Link: This layer contains the underlying transport used for end-to-end communication.
RELOAD defines the use of Transport Layer Security (TLS) and Datagram TLS (DTLS)
as default transport protocols.

2.4.4. Usages

A significant features of RELOAD [4] is the possibility to serve as P2P data storage and con-
nection service for a variety of different applications. This is achieved by allowing applications
to define usages that specify how they use the underlying RELOAD protocol for their service

2. Evolution of P2PSIP 23

and specify data values to be stored in the overlay. For instance, the SIP usage [38] defines
a data structure for SIP records and describes how the P2P messaging protocol is used to
initiate SIP dialogs among endpoints. A usage represents some kind of guide for developers
that want to implement an application on top of a RELOAD protocol stack.

2.4.5. Resources and Kinds

RELOAD [4] specifies a hierarchical address space for data stored within the overlay network.
It separates overlay Resources as logical representation of an overlay location, from applica-
tion specific Kinds providing their own ID. Each resource comprises a set of (Kinds) under a
common Resource Name as identifier. The form of Resource names is specified by the us-
ages and are generally plain text tokens. For instance, the resource name of a SIP record is
the Address-of-Record of a overlay user, e.g., sip:alice@dht.example.com. The overlay ad-
dresses of Resources are created by using a consistent hash function. The overlay address
of a resource is a so called Resource-ID. The default RELOAD configuration uses Chord as
key-based routing thus resource-ids are the result of 128 bit SHA-1 [23] hash over the resource
name.

The second depth in the storage hierarchy are Kinds. Kinds are generally simple data struc-
tures that are defined in C-like syntax. Each Kind within an overlay instance is identified with
a unique integer value– the Kind-ID. These Kind identifiers can be registered at the IANA as a
well-known kind or can be defined ad-hoc within the scope of an overlay instance. A sample
Kind data structure is shown by listing 4.

1 enum { sip_registration_uri (1) , sip_registration_route (2) ,
2 (255) } SipRegistrationType ;
3 select (SipRegistration .type) {
4 case sip_registration_uri :
5 opaque uri<0..2^16−1 >;
6
7 case sip_registration_route :
8 opaque contact_prefs<0..2^16−1 >;
9 Destination destination_list<0..2^16−1 >;

10 } SipRegistrationData ;
11 struct {
12 SipRegistrationType type ;
13 uint16 length ;
14 SipRegistrationData data ;
15 } SipRegistration ;

Listing 4: Sample: Definition of the SIP-REGISTRATION Kind [38]

2. Evolution of P2PSIP 24

The presented SipRegistration [38] structure is defined bottom-up starting at line 17.
It It contains the three field: type, length and the nested struct data whose type is
defined at line 11. The RELOAD messaging model defines several type primitives, e.g.,
uint16 for a unsigned short or opaque representing a variable string of bytes. The opaque
<0..2^16-1> syntax indicates the upper boundary of the data length in bytes and fur-
ther implies an unsigned short prefix that indicates the length of the succeeding data value.
RELOAD further defines complex types. For instance, the Destination type in line 10
represents a generic overlay location. Select condition are used to enable different vari-
ants of a single Kind data structure. The syntax in lines 1-2 shows the definition of the
SipRegistrationType enum that separates two possible registration variants:

sipregistration_uri: In this case, the store data value to another SIP URI referring to
the registered user. This registration type is used to delegate calls to further devices.

sip_registration_route: In this case, the registered user has registered from its SIP
URI to a list of overlay destinations. Generally, those list contain a single destination
containing the overlay address (node-id) of the registered user.

2.4.6. Messaging Model

Forwarding Header

Message Content

Security Block

Figure 9: Structure: Composition of a RELOAD message

In contrast to the protocol origins [34, 32], RELOAD [4] provides a proper message protocol
designed for P2P signaling. A RELOAD message is a composition of three message segments
as shown by figure 9. The forwarding header2 contains generic routing information that is pro-
cessed by intermediate peers to forward a overlay message to its destination. The message
content segment is used for end-to-end transactions among pairs of peers such as connec-
tion establishment and data storage and retrieval. The security block contains the public key
certificates and corresponding signatures over the message content. It is used to enable the

2A more detailed description of the forwarding header is omitted in this work, since the mechanism for ShaRe and
DisCo do not modify or require it.

2. Evolution of P2PSIP 25

Application Data

Method

Message Content Meta-Data

+message_code: uint16
+message_body: opaque <0..2^32-1>
+extensions: MsgExtensions<0..2^32-1>

Message Content

+resource: ResourceId
+replica_number: uint8
+values: StoreKindData <0..2^32-1>

StoreReq

+kind: KindId
+generation_counter: uint64
+values: StoredData<0..2^32-1>

StoreKindData

<Kind Data>

Kind
<<interface>>

+length: uint32
+storage_time: uint64
+lifetime: uint32
+value: StoredDataValue
+/signature: Signature

StoredData

StoredDataValue

+exists: Boolean
+value: opaque[0..2^32-1]

DataValue

+index: uint32
+value: DataValue

ArrayEntry

+key: DictionaryKey
+value: DataValue

DictionaryEntry

1

1

1

*

1

*

1

1

1

1

1

1

1

1

1

1

1 11 1

XOR

Figure 10: Message body hierarchy: Structure of a RELOAD store request

trust mechanisms in RELOAD to authenticate integrity and provenance of the originator of a
message.

The messaging model of RELOAD is transactional. It acknowledges each request with a corre-
sponding answer message or an error response if the transaction causes a failure. Exceptions
are made for messages that were retrieved by peers that are not the desired destination. In
those cases a message is silently dropped by the receiver to prevent malicious peers from
scouting the network. However, the default routing strategy of RELOAD is the recursive over-
lay response routing (rorr) thus a response is routed along the reverse path of a corresponding
request.

Message Content The message content structure is the container for all types of RELOAD
messages. It is composed of a preceding uint16 message code, message body and mes-
sage extensions at the end of the body to support future protocol enhancements. It serves as
header for the succeeding content by indicating message type and length of the rest PDU in an
implicitly unsigned integer that precedes the each the message body and extension fields.

Method The content of the message body contains various request methods as described
as follows:

Attach: Attach requests are used to establish transport connections to other peers. These are
added into the connection table of a peer, but not into its routing table. This differentiation

2. Evolution of P2PSIP 26

is due to the different roles of overlay members. A RELOAD client just attaches its
admitting peer to join the overlay. The admitting peer adds the client to its connection
table and will forward messages to the client that are addressed to him. Overlay message
that should actually be routed by the client according to the KBR, will be routed by the
admitting peer.

Update: The Update request is used to update the routing table of a receiving peer. Updates
are typically sent during the join procedure of a peer. For joining, a peer initially sends a
series of Attach request to those nodes it had to contact with respect to the key-based
routing layer. Subsequently, it sends Update requests to indicate that it will take over
routing and storage responsibilities. Updates are responded with Update answers that
can contain neighbour or routing table entries.

Join: A Join request is used to inform its receiver that the request originator has successfully
joined the overlay and takes over the routing and storage responsibilities for a address
range that had belonged to the receiver.

Leave: The contrary of join. Indicates that the message originator releases its overlay func-
tions.

Fetch: A Fetch request is used to obtain a overlay resources.

Store: A Store request is used to put data values into the overlay network. Figure 10 shows
a Store request that is separated into a StoreReq structure that contains multiple
nested StoreKindData. The each nested StoreKindData structure contains the
application data to be stored identified by its kind-id. It is thus possible to store several
data value of different application within the same request.

Meta-Data The data storage and hence corresponding messages, provide meta-data for
each stored value. A StoredData structure provides general meta values, e.g., length and
lifetime but, however, also provides a signature to validate provenance and integrity for a piece
of data. The data can be encapsulated in the three different data models, single value, array
or dictionary as indicated by the XOR delimiter in figure 10. Accordingly, the structure for array
values contains a index and a dictionary provides a dictionary key. The data is actually pro-
vided by the DataValue structure. A boolean exists flag indicates if true, that it contains
application data. Otherwise it is an empty object overwriting an existing one. This is the default
mechanism to delete values from the overlay. In this way, the meta data to a value remains and
any peer receiving this empty object can distinguish that the data was deleted intentionally.

2. Evolution of P2PSIP 27

+certificates: GenericCertificate<0..2^16-1>
+signature: Signature

Security Block

+algorithm: SignatureAndHashAlgorithm
+identity: SignerIdentity
+signature_value: opaque<0..2^16-1>

Signature

+identity_type: SignerIdentityType
+length: uint16
+identity: SignerIdentityValue[length]

SignerIdentity

+type: CertificateType
+certificate: opaque<0..2^16-1>

GenericCertificate

SignerIdentityValue

+hash_alg: HashAlgorithm
+certificate_hash: opaque<0..2^8-1>

Cert_Hash

+hash_alg: HashAlgorithm
+certificate_node_id_hash: opaque<0..2^8-1>

Cert_Hash_Node_Id

XOR

+reservedSignerIdentity = 0
+cer_hash = 1
+cert_hash_node_id = 2

SignerIdentityType
<<enum>>

Signature ObjectSecurity Container

Certificates

Foreign Enums
SignatureAndHashAlgorithm [RFC-5246]

HashAlgorithm [RFC-5246]

CertificateType [RFC-6091]

Figure 11: Structure: Security block including certificates and signature

Application Data The structure of the application data is defined by the usages to RELOAD.
For instance, the struct of the SipRegistration shown in listing 4 would take place in the
opaque value of the DataValue.

Security Block The security block of a RELOAD message comprises several data structure
as shown in figure 11. The Security Block is a container for a list of certificates and a
single Signature object. The certificates are represented in a generic certificate structure.
Each indicates the type, whose default is X.509 [39] and the certificate as DER [40] encoded
string. The certificate type enum is a foreign definition of the Transport Layer Security (TLS)
Authentication standard [41].

The signature object is used to sign an entire RELOAD message and further, to sign the mes-
sage content in store requests and fetch answer messages as shown in the StoredData
structure of the Meta-Data section in figure 10. The signature has three purposes, it indicates
the algorithm used to sign the message, refers to the certificate and signer of the data and con-
tains the signature value itself. The indication of used signature algorithm is provided within
the SignatureAndHashAlgorithm enum. The definition of this enum is made in Trans-
port Layer Security standard [42] and thus not part of the RELOAD specification. However,
each RELOAD implementation must at least be able to sign data using RSASSA-PKCS1-v1_5
signature algorithm [43] and hashed with SHA256.

The signer of a message and stored data object is identified by the certificate_hash
or certificate_node_id_hash field that contains the hash value of the certificate that

2. Evolution of P2PSIP 28

was used to sign the data. Since each RELOAD message contains all certificates needed
to verify the message or data, the receiver calculates the hash over each certificate to iden-
tify the certificate which was used to sign data. In this way, a receiver can verify all data
structures contained within a request, even if the request was not originated by creator of the
data. For instance, a store request sent to replicate data values contains the certificate of
the replicator and the certificate of the peer that originated the data values. In this case, the
SignatureIdentity of the security block in store request contains the hash value of cer-
tificate of replicator. The stored data object in the replica however, contains the hash over
certificate of the originator of the data value. Thus a receiver can validate each signature by
using the corresponding certificate.

The input values for the signature are each different of signing the entire message or a stored
data value:

Message: The signature input for a message are the overlay-id, message transaction-id, en-
tire message content and the signature identity in a continues string representation.

Stored Data: The signature input for a store data are the resource-id, kind-id, storage time
and the store data value and signer identity as continues opaque string.

2.4.7. Enrollment & Security Model

P2P networks do generally not foresee any kind of authentication or security mechanisms.
On the contrary, the popularity of P2P file sharing applications like eMule [44] or KaZaA [45]
was driven by the apparently anonymity of users. In addition, such networks are known to
distribute maleware. The RELOAD base protocol [4] is designed as a serious P2P network
whose primary usage is for telecommunication. Hence, a requirement for a P2PSIP protocol is
an unambiguous assignment of individual entities to establish transmission dialogs in a deter-
ministic way. If a user Alice wishes to call a user Bob, the underlying protocol must ensure that
only Bob retrieves the call.

The security model in RELOAD is based on X.509 [39] public key certificates that are issued by
a central authority (CA). Overlay participant are authenticated by an enrollment server through
their credentials ,e.g., username and password. This binds each overlay instance to an organi-
zation providing a minimal of dedicated hardware. This stands in contrast to the global scope
P2P file-sharing networks. A sample enrollment and authorization procedure is shown in call
flow 12.

The enrollment is initiated by an HTTPS Get request addressed a configuration server. It is
generally addressed by an URL that is the concatenation of the overlay provider appended with
the path /.well-known/p2psip-enroll, e.g., (https://example.org/.well-known/p2psip-enroll). The
.well-known segment is part of the well known URI framework for Internet services defined

2. Evolution of P2PSIP 29

Enrollment
Server

Overlay
User User DB

HTTPS Get: config

200 OK content: XML

HTTPS Post: app/pkcs10

Query for user

Success

202 Accepted content: signed PKC

Figure 12: Call flow: RELOAD enrollment procedure

in [46]. The domain of the provider is commonly the domain name of the overlay instance
and thus the host part of the Address-of-Records of users. The response by the enrollment
server contains an overlay configuration document in XML format. It provides for example
a list of bootstrap peers, the address of the enrollment server or a list of required Kinds an
implementation must support to join this overlay. Further, the configuration document contains
the root public certificate. The root certificate is used enrolling users generate a certificate
signing requests to the enrollment server. The request is sent within an HTTPS Post containing
the credentials of the user. If the user is recognized, the enrollment server signs the user
certificate and issues a node-id within a certificate.

The user certificate allows the overlay participant to authenticate against other peers in the
overlay and allows him to storage values at specific overlay addresses as described in the
following section 2.4.8.

2.4.8. Access Control

The RELOAD protocol [4] specifies a set of rules that control storage of overlay resources.
These so called Access Control Policies (ACP) are based on the public key certificate of a
user and limit the locations where users are allowed to store data. What ACP for a particular
Kind data is used, is defined by the usages. The assignment which ACP applies for what
Kind is specified in the XML configuration document of an overlay. Each peer with storage
responsibilities in the overlay must enforce the access control policies to ensure the correct
storage of data. Access control policies are generally bound to the public key certificates to
prove the identity of the originator of the data and to validate whether this particular user is
allowed to write at resource-id. ACPs just apply for initial store request by the originator of a
data value. If a data will be replicated, the peer receiving the replica must just validate if the
replicating peer is a possible source for a replicating store request, concerning the key-based
routing layer.

2. Evolution of P2PSIP 30

The RELOAD base protocol specifies four default policies and allows the specification of fur-
ther policies by usages. Two of the default access control policies are the USER-MATCH and
USER-NODE-MATCH. In the USER-MATCH ACP, a data value must be stored by the peer
responsible for data storage at requested resource-id, if the security block carries a user certifi-
cate whose username value hashes to the resource-id. The USER-NODE-MATCH is similar,
but additionally requires that the key of to a data value stored in a dictionary data model is
equal to the node-id of the message originator. The two remaining ACPs have similar rules
that reduce the storage permission of a user to resource-ids that are related the username or
node-id of a peer. As a result, the overlay locations a user is allowed to write data are quite
limited since users are issued few public key certificates by the overlay.

3. Challenges of Distributed Conferencing 31

3. Challenges of Distributed Conferencing

3.1. Design Challenges

The protocol scheme specified in this work, distributes the control on a single conference to
several independent endpoints. A subset of the entire conference participants manage sig-
naling and media relations among the remaining session members. This distinguishes the
DisCo principle from the traditional conferencing frameworks and opens a new problem space
for a distributed conference control. This includes general coordination problems, compliance
to the used protocol standards and the capabilities of the endpoints that perform the DisCo
scheme.

3.1.1. Conference Transparency

The DisCo principle is splitting the identifier of a multiparty session which is in SIP the con-
ference URI to several locators– the conference controller. This raises the question of what
view will the conference participants have on the distributed conference. Plain SIP user agent
clients cannot handle a SIP URI with several locators without the assistance of a third party
(e.g., a redirect server or forking proxy [1]) that would violate the transparency while joining
a conference. In a redirect sever scenario for distributed conferencing, the UAC would try to
invite the conference URI and receive a 300 Multiple Locations response containing several
contact addresses to the desired destination. Then, the UAC iteratively try to invite each of
those addresses.

This is not what DisCo intends. In a distributed conference, a user shall call a conference
URI and receive a single destination that will be its conference focus. The participation to a
conference should be transparent each to the user and its SIP application. This is actually not
possible in SIP and represents the first problem, which must be solved.

3.1.2. Coherency of State in a Distributed Conference

In distributed systems, decisions are often based on incomplete information of the entire state.
For instance, in distributed hash tables routing decisions are based on routing tables that con-
tain log(N) of the joined peers, where N is the quantity of all peers in the overlay network. This
is intended to reduce the load of routing and storages responsibilities for the peers. In other
distributed systems it is desired that all endpoints have the same view on the entire state of the
system. This is performed often by replicating the state among all endpoints. The replication
is thereby transparent to the consumers of the system that retrieve a single logical date object
regardless of how many replicas exist.

3. Challenges of Distributed Conferencing 32

Distributed conferences count the latter category of distributed systems. Each controller in
a conference is aware of the participants it serves but has no state information of the other
conference foci. This incomplete knowledge is insufficient from the view of a conference party.
For instance, a minimal requirement would be the information about who is participating the
conference or who left the conversation. Hence, a distributed conferencing model must provide
mechanisms to synchronize the most recent conference state to all its parties. Since a DisCo
is a fully distributed system of independent peers a synchronization mechanism must concern
the possibility of race conditions that may produce a incoherent representation of the entire
state. Hence, a mechanism for distributing a state representation must provide its participants
a consistent view on the entire conference state.

3.1.3. Peer Failures

Distributed conferencing is preliminary designed as a protocol performed by peers. Accord-
ingly, the protocol must be adapted to the typical properties of P2P systems. A core problem
in P2P networks is the continues appearance and disappearance of the nodes joining the net-
work. This behaviour called churn must be considered in a distributed conference architecture.
The peers actively managing the multiparty session are not required to maintain the confer-
ence service as they intent to leave. Furthermore, must a DisCo protocol specify restructuring
mechanisms if peers disappears from a conference unexpectedly. Such failover procedures
enhance the reliability of a distributed conference adapting to the effects of churn.

3.1.4. Load balancing

The protocol design assumes that several members of a multiparty session allocate their device
capabilities in favour of maintaining the conference. It should be considered, however, that the
end-user devices are not overloaded while performing the conference functions. The load
caused, e.g., by mixing mixing and distributing the media streams should be evenly distributed
among the participating endpoints. An approach for distributed conferencing should define
mechanism to estimate to load of its controlling entities and to balance it. Joining conference
parties should select a less loaded conference manager or the latter should be enabled to
forward incoming calls to further managers before overloading.

3.1.5. DisCo in P2PSIP

The DisCo protocol presented in this work is based on the emerging protocol stand RELOAD
[4]. RELOAD is used to announce the conference identifier in a P2PSIP overlay to avoid the
need for dedicated SIP register and proxy servers. All peers controlling the conference should

3. Challenges of Distributed Conferencing 33

be registered on a single record to announce their function as focus to joining peers. However,
the access model of RELOAD has two incapabilities to this conference registration scheme:

• Users have exclusive access permission to overlay resources that cannot be shared

• Users can only access overlay resources that correspond to their public key certificate

The first limitation hampers the registration of several focus peers in a single record. This a
problem to realize a distributed conference control in particular, and further, for any rendezvous
procedures that need a common resource for coordination in RELOAD.

The second limitation represents a problem for the creation of individual conference identifier.
It is be desirable that a multiparty session is identified by a descriptive Address-of-Record. A
discussion about cats and dogs should indicate the topic within its conference URI, e.g., alice-
discussion-on-pets@example.org. By applying the access control policies of RELOAD, it is
impossible for a user to store any kind of Resource under another name.

3.1.6. Backward Compatibility

A general issue in network communication and specially in P2P networks is the heterogeneity
of applications that might implement different extensions to a standard. In a RELOAD overlay,
all parties are implementing at least the RELOAD base specification [4] to provide and main-
tain the overlay messaging and storage service. Apart from this, overlay clients and peers may
implement different RELOAD extensions (e.g. the Direct Response and Relay Routing Exten-
sion [47]) or application usages and Kind data structures. The RELOAD protocol challenges
the heterogeneity of implementation by the overlay configuration document that specifies the
mandatory extensions and the required Kinds application must support. However, the required
Kinds do not prohibit implementations to store and fetch data values of non-required Kinds. If a
storing peer does not support a Kind of inbound store request, it just returns an error response
indicating its incompatibility to the specific Kind.

Another challenge are plain SIP user agents not implementing the RELOAD base protocol.
Those implementations should not be limited to join a distributed conference since it uses
standard SIP signaling for conference maintenance. The DisCo protocol scheme specifies
mechanisms that enable DisCo-unaware applications to join a distributed conference.

3. Challenges of Distributed Conferencing 34

3.2. Organization of Focus Peers

3.2.1. Communication Delay

A general challenge in P2P systems are worse latencies compared with a similar centralized
system. Especially in telecommunication are the end-to-end delay and jitter a critical issue for
the quality of service. Typical delay tolerances recommended by the International Telecom-
munication Union (ITU) [48] for voice over IP are shown in table 1. It shows the one-way
transmission delay to the transmission rating factor (E-Model) [49]. The E-Model is based on a
large number of subjective tests to rate the quality of speech in telecommunications. The table
shows that the user satisfaction is high as long the one-way delay is lower than ~250ms. By
increasing latency, the satisfaction becomes worse. Actually, the ITU recommends to keep the
total delay blow 400ms as users notice a delay while speaking.

VoIP Delay/ms Transmission Rating Factor/R Quality Category User satisfaction
0 - ~200 100-90 Best Users very satisfied

~200 - ~250 90-80 High Users satisfied
~250 - ~400 80-70 Medium Some users dissatisfied
~400 - ~550 70-80 Low Many user dissatisfied

< ~550 60-50 Poor Nearly all user dissatisfied

Table 1: Recommendation: Mouth to ear delay in telecommunication

A crucial factor for end-to-end delay is the delay for transportation of the data packets through
the Internet. In a centralized conferencing scenario the data packages generally flow from
the source to the media server and finally to the destination. In a distributed conference, the
data packets may traverse several intermediate peers. A distributed conferencing architecture
should define mechanisms to minimize the latencies due to IP routing.

3.2.2. Media Capacities

Another factor that should be taken in account while selecting an adequate entry point to a
distributed conference are the media capacities of those devices. Each communication end-
point provides a set media types (voice, video) and corresponding codecs (e.g., speex[50],
h.264[51]) that it offers the remote endpoint for establishing the media session. The latter re-
sponds with an intersection of media codecs he and the offerer are able to de/encode. This
kind of offer/answer model [52] based on the Session Description Protocol [7] tries to negotiate
common media parameters even though if the result returns the least best intersection.

In a distributed conferencing model both the participants and manager are ordinary home
or mobile devices that might not have the same variety on media codecs as provided by a

3. Challenges of Distributed Conferencing 35

dedicated server. However, as each device might have different capabilities, a joining user
agent could select its entry point to the conference by reference to the media codecs the focus
peers provide. Hence, conference parties should be aware of the existing media streams to
optimize their media qualities.

3.2.3. Focus behind NATs

A large number of end-user devices are located behind a Network Address Translation (NAT). A
focus peer could also be located behind a NAT thus limiting its reachability for users joining the
conference. A solution for distributed conference should take NATs in account for the selection
of an adequate focus peer.

3.3. Requirements on Distributed Conferencing

Based on the problem space defined in the previous sections, the following requirements for
distributed conference control are outlined:

Transparent: The compatibility to established SIP implementations must be provided. The
distribution of the conference identifier should be transparent to the clients.

Coherent: The conference state must be coherent on the controlling entities, as well as on
the joined parties. A mechanism must be defined to keep the entire conference stat in
sync.

Robustness: The conference service must be maintained even if controlling entities leave the
multiparty session. This demands mechanisms to compensate the lost of focus peers.

Balanced: The entities providing the conference service should remain in an adequate work-
load. Mechanism must be defined to detect assisting peers and to transfer calls to them.

Controllable Sharing: The mechanism to share an overlay resource with further peers must
be controllable by the resource owner. Any mechanism enabling a shared write access
should ensure that only authorized users are permitted to write the shared resource.

Revocable: The shared write permission on an overlay resource must be revocable. This
includes a mechanism that is able to revoke access for a single user, group of user or
anyone.

Compliant: The mechanism to share resources should be compliant to the RELOAD base
protocol. This compatibility should consider the access control concepts, messaging
protocol and storage design (e.g., storage of small amount of data).

3. Challenges of Distributed Conferencing 36

Responsive: The shared resource should be responsive as long as at least a single user is
actively managing it. The lifetime of a data or duration of the shared access should not
expire as its creator leaves the group.

Proximity-awareness: The entities intending to participate a distributed conference should
aware of their proximity. A mechanism must be define to announce a topological de-
scriptor thus further peers are enabled to make joining decisions on it.

Media-awareness: The entities in a distributed conference should be aware of all provided
media type and codecs. These should be used to optimize the conference topology
along the media capacities.

NAT-awareness: The entities in a distributed conference should consider the surrounding
NAT. Mechanism must be defined for cases in which it is desirable to join a focus behind
NAT. Furthermore, conference joining should consider the cases in which it is desirable
to invite a farther focus if the optimal focus is behind NAT.

Ad-hoc: Any mechanism allowing variable resource names should enable users to create a
new resource name ad-hoc.

Deterministic: Any variable selected resource name should always resolve to its originator.
This is need to prevent hijacking of resource names of other users, e.g., preventing a
user Chuck to register a variable SIP record alice@dht.example.com.

Restrictive/Configurable: Any mechanism for variable resource names should enable the
provider of a RELOAD overlay instance to control the amount and form of variable names
its clients are permitted to use. This prevents uncontrolled resource name allocations by
overlay parties.

4. Shared Resources in RELOAD 37

4. Shared Resources in RELOAD

4.1. Introduction

A design concept of RELOAD [4] is to limit the amount of data values that peers in a P2PSIP
overlay need to maintain. The protocol achieves this constraint by access control policies.
These are generally bound to a users public key certificate and permits him to store value at
overlay locations that are related to a users Address-of-Record (AoR) or his overlay node-id.
This write permission for a user is exclusive and not shareable with other users. However, a
distributed conference is a cooperative service managed by several independent entities that
need a common overlay resource to announce the conference.

This work presents an approach to share overlay resources with further users and to permit
the registration of variable AoRs. The approach is designed as Usage for Shared Resources
[5] in RELOAD. It enables rendezvous processes, where a single identifier is linked to multiple,
dynamic instances of a distributed cooperative service. The approach for shared resources
is a generic mechanism, applicable for distributed conferences in particular and for any future
RELOAD usage with similar requirements.

The elaborated solution in this section addresses the problem statements for resource sharing
in a RELOAD overlay. Therefore, it discusses two alternatives to map distributed write access
in P2PSIP with respect to be compliant to the RELOAD protocol. It is also issues revocation of
write permissions and determines if a distributed conference persists even if its initiator leaves
it. Since distributed write access on a single resource can cause race conditions, a mecha-
nism will be defined to coordinate concurrent write attempts on a shared resource. Further,
the following sections show that the approach for shared resources remains controllable and
configurable for an overlay provider to reduce the additional load caused by allowing variable
resource names.

4.2. Design Pattern for Shared Resources

4.2.1. Self-signed Certificate Chain

Shared resources in RELOAD can be realized by distributing user certificates that are derived
from the certificate used to store the registration of a distributed conference. Figure 13 shows
the usages of self-signed certificates that authorize conference participants write access to the
conference registration.

The creator of a conference intends to register a conference identifier that deviates from its own
AoR. To retrieve permission, the creator sends a certificate signing request to the Enrollment

4. Shared Resources in RELOAD 38

CreatorEnrollment Server

1. CSR (Conference)

Root CA

Root Pub Key

Root Signature

Conference PKC

Conf. Pub Key

Creator Sign

2. Issues

Participants

Chained PKC

Party Pub Key

Party Sign

3. INVITE

4. Issues Chained Certs

Figure 13: Chained Certificates: Shared write access by self-signed PKCs

server to obtain a new certificate. This conference certificate is used to store the registration for
the distributed conference. Afterwards, users can resolve the conference ID using RELOADs
lookup mechanism and SIP invite the conference creator. According to a predefined policy,
the creator issues self-signed certificates that are chained to the conference certificate to the
members of the multiparty session. These are used to authenticate against the overlay peer
peer maintaining the registration as permitted user to store an additional mapping to the DisCo-
Registration.

A prerequisite to achieve this authentication model, is an additional access control policy to
the RELOAD base protocol. The policy must permit write access for users that can present
a public key certificate that is derived from the certificate used to sign the registration. In this
way, we achieve the two objectives for shared resources in RELOAD. Once, registration of a
variable conference identifier and, twice, a shared write access on the overlay resource.

4.2.2. Access Control List

Shared resources in RELOAD can alternatively realized by so called access control lists (ACL).
Access control lists are stored along with the overlay resources designated for a shared usage.
An ACL contains the overlay usernames of the peers that are permitted write access to shared
resource. This scenario assumes that creator of the shared resource owns a public key cer-
tificate that permits him store data at the overlay location. As shown in figure 14, Alice adds
Bob into the access control list to permit him write access to shared resource. The particular
overlay data structure that will be shared is referred by its kind-ID. She signs the ACL entry

4. Shared Resources in RELOAD 39

Access Control List

Kind: DisCo-Registration

Alice -> Bob; Signed by Alice

Bob -> Carol; Signed by Bob

Carol -> ...

Alice

Bob

Carol

Allow

Allow

Allow

Figure 14: Access control list: Shared write access via list of permitted users

for Bob with her own private key to prevent it from unauthorized modifications. Bob further
delegates write permission to Carol by adding a new ACL item to the list.

The access model requires the definition of a new access control policy in RELOAD. The
policy must permit write access if a requesting user is registered in the corresponding ACL to
the shared resource. Furthermore, the peer maintaining the resource could comprehend the
entire trust delegation chain to validate if the creator of the shared resource was authorized to
store the resource.

This approach would suite the DisCo requirement to be a shared resource, but offers no solu-
tion to register a variable conference identifier.

4.2.3. Resource Name Pattern

Variable conference identifier can be realized by an approach called resource name pattern.
The approach makes use of the overlay configuration document to announce regular expres-
sions that specify the form of valid resource names for each RELOAD Kind. In this way, a peer
receiving a store request could validate of the chosen resource name for the retrieved data
matches to the regular expression defined for this Kind.

This approach needs to prerequisites to enable this pattern matching. First, the plain resource
name must be sent in within the store request, since the default RELOAD meta-data omit the
transmission of the resource name. Second, a new access control policy that permits the
storage of data if the resource name matches the regular expression defined in configuration
document.

4. Shared Resources in RELOAD 40

4.2.4. Comparison and Selection of an adequate Approach

The certificate chain approach covers the objectives of sharing a resource with further user
and enables a variable resource naming for the conference identifier. Furthermore, certificate
chaining is a common mechanism to delegate trust among third parries. However, two argu-
ments are against the approach for self-signed conference certificates.

Conference certificate: The RELOAD base protocol defines that a certificates can only be
issued while enrollment of a peer. Thus, a certificate signing request by a peer already
joined to the overlay will be rejected. Without the additional conference certificate, the
creator is unable to store a registration at the overlay resource-id that correlates to the
conference identifier. The only remaining alternative would be to generate the chained
certificates for the conference participants based on the user certificate of the creator.
In this case, the requirement of a variable conference ID could be achieved through the
approach resource name pattern.

Revocation: The requirements for distributed conferencing specified that any mechanism to
share a resource must provide a further mechanism to revoke the shared write access.
Using chained certificate, this requirement is hardly to implement. An approach could
be to limit the expiration time for a chained certificate to a short value. Through the expi-
ration of the chained certificate and without reissuing a new once, a conference creator
can revoke write permissions to specific users. A problem with this approach raises up, if
the conference creator leaves the multiparty session and thus will not reissue write per-
missions. This would violate the requirement of a responsive conference. A distributed
conference must continue as long a peers are willing to manage it. An alternative ap-
proach to short expiration times is announcement of a revocation list. A revocation list
could be publicly stored in the P2PSIP overlay indicating bad peers that are no longer
permitted to access the conference resource. However, if the conference creator leave
the session or even the RELOAD overlay, no peer would be permitted to further maintain
the revocation list.

The alternative access control list a mechanism is build a common practice to control write
permission of various operating system. ACLs have in advantage that revocation of write per-
missions are achieved by deleting the corresponding ACL item in the list. In this way, an autho-
rized user could revoke single items or entire branches of the trust delegation tree. Further, the
approach meets the requirements of keeping the conference service responsible in the case
that its creator disappears. The requirement to provide a variable conference identifier could
be achieved in combination this the approach for resource name pattern.

However, even with access control lists it is hardly to revoke write access for certain users if
the conference creator left the overlay. However, the remaining branches of the trust delega-

4. Shared Resources in RELOAD 41

tion tree are still controlled by authorized peers. This enable a continues maintenance of the
conference service without the presence of its creator.

In summary, the approach for chained certificates would suite the requirements of distributed
conferencing if an enrollment server would issue conference certificates. Revocation could
then be handled by an advanced mechanism using revocation lists. On the other hand, access
control list provide a more flexible manner to coordinate and control shared access to an overlay
resource. The advantage comes from the generic mechanism, to share any Kind of overlay
resource and that authorized peers can maintain the shared resource independently. As result,
access control lists are the used to define a RELOAD usage for shared resources.

4.3. Scenarios for Co-Managed Overlay Resources

4.3.1. Third-Party Registration

The Session Initiation Protocol [1] allows to add new bindings between an Address-of-Record
and further contact addresses. This enables a third party to register its contact to an existing
SIP record and to act on behalf of that user agent if desired. A typical scenario is described by
the following example. As shown in figure 15, a secretary accepts calls on behalf of her boss
as he is currently not available. The company provides an own SIP server infrastructure and
uses IP telephones at all desks. The SIP phone of the boss of the company registers at the
server by sending a SIP REGISTER whose To and From header contain the URI of the boss.
The Contact header contains the IP address of the VoIP phone. This is a standard procedure
to register a SIP address.

REGISTER sip:company.com
To: <sip:boss@company.com>
From: <sip:secretary@company.com>
Contact: <sip:141.22.26.238>

REGISTER sip:company.com
To: <sip:boss@company.com>
From: <sip:boss@company.com>
Contact: <sip:141.22.26.154>

company.com

sip:secretary@company.com sip:boss@company.com

Figure 15: Shared resource scenario: SIP third-party registration

The internal policy in this company allows the secretary to answer calls on behalf of her boss.
Hence, her SIP phone is allowed to register as third party by setting the To header to the URI

4. Shared Resources in RELOAD 42

of her boss and the From header to her own URI (sip:secretary@company.com). Both can now
configure whether incoming call will be forwarded to the secretary, her boss or both (forking).

This simple scenario does not work if the company provides a RELOAD overlay for VoIP. In
RELOAD, the owner of the public key certificate has an exclusive write access to the corre-
sponding resource. Simply passing the certificate to the secretary does not work either as the
secretary (hopefully) not knowns the corresponding private key to sign the message. Concern-
ing the SIP usage for RELOAD [38] the boss could configure a forwarding thus redirecting all
calls to his secretary. The problem is he is doing it without the permission of his secretary (she
might be gone for a copy job) and that the VoIP phone of the boss is not able to receive calls
anymore. Shared overlay resources in RELOAD could map the third-party registration behavior
of SIP.

Initially, the boss would register its SIP URI to the node-id of its VoIP/RELOAD phone and
afterwards register the username of his secretary in a corresponding access control list. Then,
she can additionally register her node-id to the registration of her boss as she is available to
answer calls.

4.3.2. Message Board

A native mechanism for group communication are text-based message boards or forums. A
group of registered or anonymous users maintain a digital message board to exchange opin-
ions or report bugs and archive them for further discussions. The RELOAD base protocol [4]
could be used to create P2P message boards whose content is stored among overlay peers
as shown in figure 16. The hierarchical structure of a message board could by mapped on an
overlay by storing each thread as a separate resource. The main thread could refer to the sub-
threads to enable a message board navigation. Each thread could be stored under the topic-
text in an URI scheme, e.g., msg:$user.$topic@$overlay/$sub-thread/$subsub-thread where
$user identifies the initiator of the meassage board. The hash over the URI then specifies
the resource-id and thus the peer that will store the posts of a thread.

The default access control policies in RELOAD would not allow any kind of distributed message
boards. Users would need a separate public key certificate for each thread and sub-thread
they want to create following the presented URI scheme. A mechanism for shared resources
as presented by this work would allow a distributed write access and variable resource names
following the URI scheme.

The URI scheme could be set as resource name pattern for a message board Kind in the
configuration document. The initiator of a message board would be permitted to store thread
in the overlay and, additionally, to store access control lists onto each thread location. The
latter than contain the username of the overlay peers that are permitted to add an modify the
message board.

4. Shared Resources in RELOAD 43

RELOAD

Main Thread

Sub-Thread 1

Sub-Thread 2

Sub-Thread 3

Sub-Thread 1

<Posts>

Sub-Thread 2

<Posts>

Sub-Thread 3

<Posts>

references

re
fe

re
n

ce
s

references

Figure 16: Shared resource scenario: Distributed message board on RELOAD

4.4. Management of Concurrent Write Attempts

The access control list and the resource that is shared by the ACL can be written by several
independent peers. This implies possibility that two or more peer can concurrently store or
modify those resources. Hence, concurrent store request on a resource demand a coordination
procedure to avoid race conditions on the stored data. The coordination procedure defined
here, resolves race condition by assigning each authorized peer a separate part of the overlay
resource. As described in section 2, a resource comprises several RELOAD Kinds and each
Kind can be arranged in the three different data models:

• Single Value

• Dictionary

• Array

A single value cannot be separated into independent pieces and is this by definition not allowed
to be used as a shared resource.

If the shared resources uses the dictionary data model, the Kind data will be separated by the
dictionary key. Per definition, a peer has exclusive write permission to the dictionary value,
whose key is equal to the node-id of the accessing peer. This prevents a dictionary value from
concurrent write attempts and keeps the data coherent.

If the data model of the shared resource is an array, the array index is used to separate the array
item from concurrent writing. Per definition, array indexes must be generated as described in
the following algorithm:

1. Obtain the Node-ID of the certificate that will be used to sign the stored data.

2. Take the least significant 24 bits of that Node-ID

4. Shared Resources in RELOAD 44

3. Concatenate an 8 bit long short individual index value to those 24 bit of the Node-ID

The resulting 32 bits long integer need to be used as the index for storing an array entry
in a shared resource. The 8 bit individual index can be incremented individually for further
array entries and allows for 256 distinct entries per Peer. The mechanism to create an array
index is related to the pseudo-random algorithm to generate a Synchronization Source (SSRC)
identifier of the transport protocol for real-time applications (RTP) [53] for calculating a collision
probability. It generates an array index that most probably not clash with another index of the
same array. The probability that two peers produce the same array index can be approximated
by the with formula [53],

P(C) = 1− (
−N2

2L+1) (1)

with L is length of the identifier and N the number of peer. Assuming 500 peers adding values
to an array, the probability P is 7,4∗10−3 that two peers generate a equal array index.

4.5. Access Control List in RELOAD

4.5.1. The ACL Kind

The concept of Shared Resources in RELOAD [5] adopts a new RELOAD Kind representing
Access Control Lists (ACL). An ACL is a self-managed and shared resource that consists of an
array of AccessControlListItem structures as shown in listing 5. Each entry delegates
write access for a specific Kind data to a single RELOAD user. An ACL enables the RELOAD
user who is authorized to write a specific Resource-ID to delegate his exclusive write access
to a specific Kind to further users of a RELOAD instance. Each Access Control List data
structure therefore carries the information about who obtains write access in the to_user
field in line 5, the Kind-ID of the Resource to be shared in the kind in line 7, and whether
delegation includes write access to the ACL itself in the boolean allow_delegation flag
in line 9. The latter condition grants the right to delegate write access further for the Authorized
Peer. Access Control Lists are stored at the same overlay location (resource-id) as the Shared
Resource and use the RELOAD array data model. They are initially created by the Resource
Owner.

An access control list is also representing a shared resource that needs to be fulfill the
requirements for shared resources presented in section 4.4. Hence, the array indexes
are formed according to the isolated data storage algorithm, its uses the USER-CHAIN-
ACL access control policy and is compliant to the third requirement by containing the
ResourceNameExtension structure as initial field.

4. Shared Resources in RELOAD 45

Access Control List

#index to_user kind ad signed by
0x123abc001 Owner 1234 true Owner
0x123abc002 Alice 1234 true Owner
0x123abc003 Dave 1234 false Owner
0x123abc004 Owner 4321 true Owner
0x123abc005 Carol 4321 false Owner

...
0x456def001 Bob 1234 false Alice

...

(a) Array representation

Owner

Alice

Bob

CarolDave

Owner

ACL for Kind
1234

ACL for Kind
4321

(b) Tree representation

Figure 17: Example: Access control list array including entries for two different Kind-IDs

1 struct {
2 /* Contains the resouce name in plain-text */
3 ResourceNameExtension res_name_ext ;
4 /* The delegator */
5 opaque to_user<0..2^16−1 >;
6 /* The kind-id of the shared kind */
7 KindId kind ;
8 /* If true, allowed to store further ACL items in the list*/
9 Boolean allow_delegation ;

10 } AccessControlListItem ;

Listing 5: Kind structure: A single access control list item

Table 17a shows an example of an access control list while figure 17b represents according
trust delegation tree. The res_name_ext field is omitted to simplify illustration. The array
entry at index 0x123abc001 displays the initial creation of an ACL for a Shared Resource of
Kind-ID 1234 at the same Resource-ID. It represents the root item of the trust delegation tree
for this shared RELOAD Kind. The root entry MUST contain the username of the Resource
owner in the to_user field and can only be written by the owner of the public key certificate
associated with this resource-id. The allow_delegation (ad) flag for a root ACL item
is set to 1 by default. The array index is generated by using the mechanism for isolating
stored data as described in Section 3.1. Hence, the most significant 24 bits of the array index
(0x123abc) are the least significant 24 bits of the node-id of the resource owner.

The array item at index 0x123abc002 represents the first trust delegation to an authorized
peer that is thus permitted to write to the Shared Resource of Kind-ID 1234. Additionally, the

4. Shared Resources in RELOAD 46

authorized peer Alice is also granted (limited) write access to the ACL as indicated by the
allow_delegation flag (ad) set to 1. This configuration authorizes Alice to store further
trust delegations to the Shared Resource, i.e., add items to the ACL. On the contrary, the trust
delegation to user Dave in index 0x123abc003 not allowed Dave to append the ACL (ad
= 0). The array index 0x456def001 illustrates trust delegation for Kind-ID 1234, in which
the authorized peer Bob is not allowed to grant access to further peers. Each authorized peer
signs its ACL items with its own private key, which makes the item ownership transparent.

To manage Shared Resource access of multiple Kinds at a single location, the Resource
Owner can create new ACL entries that refer to another Kind-ID as shown in array entry index
0x123abc004. Overwriting existing items in an access control list that reference a different
kind-id revokes all trust delegations in the corresponding subtree. Authorized peers are only
enabled to overwrite existing ACL item they own. The resource owner is allowed to overwrite
any existing ACL item, but should be aware of its consequence that he might revoke the write
access for still authorized peers. Furthermore, the ACL represented by the arrays store in
RELOAD need to be loop free. Self-contained circular trust delegation from A to B and B to A
are syntactically possible, even though not very meaningful.

4.6. Variable Resource Names

4.6.1. Resource Names Pattern

The mechanism to enable a variable naming scheme for overlay resources is based on reg-
ular expressions. Regular expression are used to define a certain naming pattern on which
the variable resource names must match. The pattern are globally defined for each RELOAD
instance within the XML configuration document and thus maintained by the overlay provider.
Pattern for variable resource names are arbitrary URIs and must contain the @ sign that sepa-
rates the user-info from the host identity accordingly to the generic URI syntax [54] and uses
the following variables:

$USER: This variable contains the legal username of the owner of the X.509 cer-
tificate [39] who initially created the shared resource. The username can
be taken from the SubjectAltName in the X.509 certificate using the
uniformResourceIdentifier type (c.f. [39] section 4.2.1.6.).

$DOMAIN: This variable contains the domain name of the overlay instance and thus specifies
the host identifier of the variable URI.

Several sample pattern for a variable resource could be formed like shown in listing 6. The
variable sub-string in the resource name can be very restrictive like shown in lines 1 and 7 or
allow users to specify arbitrary string concatenations as shown in lines 3 and 5.

4. Shared Resources in RELOAD 47

1 $USER−[0−9]−loc@DOMAIN e .g . , alice−3−loc@example .org
2
3 \d { 1 , 4 } \ . $USER@DOMAIN e .g . , afk .bob@example .org
4
5 $USER−confercne−.∗@$DOMAIN e .g . , carol−conference−ondogs@dht .de
6
7 $USER@$USER \ .@DOMAIN e .g . , dave@dave .domain .org

Listing 6: Sample Pattern: Regular expressions to define resource naming pattern

The overlay providers are free to define any combination of the $USER/$DOMAIN and vari-
able sub-strings. However, should a naming pattern consider an overlay wide uniqueness of
resource names. For instance, a user with a overlay username bill.gates@dht.ms.com could
get hijacked by a user within Address-of-Record gates@dht.ms.com using the second pattern
in listing 6. A simple method to avoid name hijacking lies on the overlay operator side by
defining reserved substrings used to delimit the pattern variables from user defined parts of a
resource name. For instance the string -conference- as shown in line 5 in listing 6 could be
reserved to for constructing conference URIs and shall not be includes in usernames of over-
lay parties. This naming scheme enable operators to control the number or form of allowed
resources names for their overlay users.

4.6.2. Resource Name Extension

Access control in the RELOAD base specification [4] uses the Signature object presented in
section 2.4.6 to validate if a user has write access on an overlay resource. The signature refer-
rers to the public key certificate that authorizes its owner to store values at specific resource-ids.
Access control policies like the USER-MATCH and USER-NODE-MATCH allow the storage if
the hash over username in certificate matches the requested resource-id.

The meta-data in the RELOAD messaging protocol do not provide any default mechanism to
transfer the name of a resource in plain text. It is either not transmitted within the certificate
nor within the meta-structures of the store request. Without having the resource name in clear
text, a receiver of request ain’t able to validate if the chosen resource name matches to the
corresponding regular expression of the naming pattern (see previous section 4.6.1).

To resolve this limitation, the ShaRe specification [5] defines the optional resource name ex-
tension struct shown in listing 7 that carries the resource name. The initial type field in the
structure indicate what in which format the succeeding resource name is present. Currently, the
only defined type is pattern and indicates that the following data structure contains an opaque
< 0..216−1> field containing the Resource Name of the Kind being stored. The type "pattern"
further indicates that the resource name matches to one of the variable resource name pattern

4. Shared Resources in RELOAD 48

defined for this Kind in the configuration document explained following. The unsigned short
length value contains the length of the remaining data structure. It is only used to allow for
further extensions to this data structure. Hence, the ResourceNameType enum and the
ResourceNameExtension structure can be extended by further Usages to define other
naming schemes, e.g., a type free indicating no restriction on the naming scheme.

Any application that defines a RELOAD Kind that intends to use variable resource names must
use the resource name extension as initial field. Hence, when a peer is receiving a request
transporting data, it takes the resource name out of the extension field and validates if its format
is compliant to the corresponding resource name type.

1 enum { pattern (1) ,
2 (255) } ResourceNameType ;
3
4 struct {
5 ResourceNameType type ;
6 uint16 length ;
7 select(type) {
8 case pattern :
9 opaque resource_name<0..2^16−1 >;

10
11 /* Types can be extended */
12 }
13 } ResourceNameExtension

Listing 7: Kind Extension: Extension containing the resource name in plain text

XML Resource Name Extension A strength of the RELOAD base specification [4] is the
configuration of peers and clients towards the overlay properties before joining the RELOAD
instance. This configuration XML includes a kind-block element specifying and configuring a
set of RELOAD Kinds that must be supported by peers joining the P2PSIP overlay. The usage
for shared resources [5] uses this mechanism for the indication if certain Kinds are enabled
for variable resource naming and, if true, deploying the corresponding regular expressions of
the allowed naming pattern. Therefore, ShaRe defines an extension to the kind-block XML
element as shown in 8. The XML extension represented in the Relax NG notation as the
document schema of the RELOAD configuration XML.

The extension defines its own XML namespace as shown in line 3. The Uniform Resource
Name (URN) is a sub-namespace of RELOADs config-base namespace. Each kind-block el-
ement is a aggregation of several kind-parameter as indicated by the notation =& in line 7.
Hence, line 7 extends a variable-resource-name element to the possible kind pa-
rameters. The extension element as a boolean enable attribute and can contain a variable

4. Shared Resources in RELOAD 49

number of pattern elements. The enable flag indicates RELOAD implementations that for
the Kind described within this kind-block :

• There exist resource name pattern it must support.

• Kind data structures sent within store requests or fetch answers contain a preceding
ResouceNameExtension sturct as initial field as defined in listing 7.

As a result, depending on the configuration for a specific Kind in the XML document, implemen-
tation have to parse incoming request in different manners. This protocol scheme is useful to
avoid sending the resource name extension field, if a Kind does not support variable names.

1 < !-- VARIABLE RESOURCE URN SUB-NAMESPACE -->
2
3 namespace share = " u r n : i e t f : p a r a m s : x m l : n s : p 2 p : c o n f i g−base:share "
4
5 < !-- VARIABLE RESOURCE NAMES ELEMENT -->
6
7 kind−parameter &= element share:variable−resource−names {
8
9 attribute enable { xsd:boolean }

10
11 < !-- PATTERN ELEMENT -->
12
13 element pattern { xsd:string }∗
14 }?

Listing 8: XML Extension: Variable resource name extension to the configuration document

A pattern element shown in line 13 must be present if the "enabled" attribute of its parent
element is set to true. Each element defines a pattern for constructing extended resource
names for a single Kind. It is of type xsd:string of the W3C recommendation for data
types [55] and interpreted as a regular expression. In this regular expression, $USER and
$DOMAIN are used as variables for the corresponding parts of the string in the certificate
username field (with $USER preceding and $DOMAIN succeeding the @). Both variables must
be present in any given pattern definition. If no pattern is defined for a Kind or the "enabled"
attribute is false, allowable resource names are restricted to the username of the signer for
shared resource.

A sample of the XML extension for variable resource names in shown in listing 9. The
required-kind element is the container for each kind-block element carrying a sin-
gle kind element describing the Kind that must be supported by implementations. As in the
sample, all RELOAD implementation must support the DisCo-Registration that uses the USER-
CHAIN-ACL access control policy. The max-count and max-size sub-elements in line 6

4. Shared Resources in RELOAD 50

and 7 limit the amount of DisCo-Registration a single peer must store. Lines 8 to 12 define
that variable resource names are allowed and the corresponding pattern. To authenticate the
provenance of the kind element, the succeeding kind-signature element contains a
signature over the Kind element. It is calculated using the private key file that is associated to
the root public key certificate of the overlay provider. Since the root certificate is available for
each overlay party, they are able to verify the signature.

1 <requi red−k inds>
2 <kind−block>
3 <k ind name="DISCO−REGISTRATION">
4 <data−model>DICTIONARY< / data−model>
5 <access−c o n t r o l >USER−CHAIN−ACL< / access−c o n t r o l >
6 <max−count>2< / max−count>
7 <max−s ize>100< / max−s ize>
8 <share :va r i ab le−resource−names enable=" t rue ">
9 < pa t t e rn >

10 $USER−conf−[0−9]@$DOMAIN
11 < / pa t t e rn >
12 < / sha re : va r i ab le−resource−names>
13 < / k ind>
14 <kind−s igna tu re>
15 VGhpcyBpcyBub3QgcmlnaHQhCg==
16 < / kind−s igna tu re>
17 < / kind−block>
18 < / requi red−k inds>

Listing 9: XML Example: Variable resource name extension for a DisCo-Registration Kind

4.7. Protocol Operations

4.7.1. Granting Write Access

Sharing write access with other RELOAD users to a specific Kind at a resource-id can solely
be issued by the owner of the corresponding public key certificate called the resource owner.
A resource owner can share RELOAD Kinds by using the procedure shown in figure 18. The
resource name extension field is omitted in the call flow for a simplified visualization.

• The resource owner (RO) may stores initially the resource to be shared. The subsequent
answer message just acknowledges the storage of the Kind with id 1234.

• The resource owner stores a root item of an access control list at the resource-id of
the shared resource. The root item contains the resource name extension field, the

4. Shared Resources in RELOAD 51

Storing
Peer (SP)

Resource
Owner (RO)

Store: Shared Resource

StoreAns: Kind 1234

Store: ACL, user=RO, ad=1 Kind=1234

Error: Forbidden

Store: Shared Resource

Authorized
Peer (AP)

StoreAns: Kind 13

Store: ACL, user=AP, ad=1 Kind=1234

StoreAns: Kind 13

Store: Shared Resource

StoreAns: Kind 1234

Store: ACL, user=NAP, ad=0, Kind=1234

StoreAns: Kind 13

Figure 18: Call flow: Resource owner sharing a resource

username of the resource owner and kind-id (e.g., 1234) of the shared resource. The
allow_delegation (ad) flag is set to 1 as default for a root ACL item. The array index of
the root item is formed as described in the algorithm for isolated data stored shown in
section 4.4. The store answer message by the storing peer again just acknowledges the
reception of the ACL Kind, whose id is 13 in this example.

• The next ACL item for this kind-id stored by the resource owner will delegate write ac-
cess to authorized peers (AP). This ACL item contains the same resource name exten-
sion field, the username of the authorized peer and the kind-Id of the shared resource.
Optionally, the resource owner sets the "ad" to 1 (the default equals 0) to enable the
authorized peer to further delegate write access. Each succeeding ACL item created by
the resource owner can be stored in the numerical order of the array index starting with
the index of the root item incremented by one.

Figure 18 further shows an attempt to access the shared resource before AP is listed in the
access control list. Hence, the storing peer will not allowed the request and reject in with an
Error Forbidden response.

The authorized peer can now write the shared resource and as is received delegation al-
lowance ("ad"=1) it can extend the access to an existing Shared Resource as follows.

• The authorized peer can store additional ACL items at the resource-id of the shared
resource. These ACL items contain the resource name extension field, the username of
the newly authorized peer (NAP), and the kind-id of the Shared Resource. The "ad" flag
is set to 0 thus not allowing NAP to further delegate write access. The array index MUST
be generated as described in section 4.4. Each succeeding ACL item can be stored in
the numerical order of the array index.

4. Shared Resources in RELOAD 52

The protocol operations shown in figure 18 are shown as a sequence of independent requests.
However, the RELOAD protocol enables to compile several operations within a single request
as long they use the same method. For instance could all store request by the resource owner
be achieved within a single store request.

A store request by an authorized peer that attempts to overwrite any ACL item signed by
another peer is unauthorized and causes an Error_Forbidden response from the ptoring peer.
Such access conflicts could be caused by an array index collision. However, the probability of
a collision of two or more identical array indices will be negligibly low using the mechanism for
isolating stored data (see section 4.4).

4.7.2. Revoking Write Access

The RELOAD base specification [4] does not foresee any mechanism to explicitly remove data
form the overlay. Instead, the data intended for removal gets overwritten by an empty stored
data object. This has in advantage that the "removed" data value still provides meta-data, e.g.,
storage time and the signature object of the removing peer.

Hence, write permissions are revoked by storing a empty value at the corresponding item of the
access control list. Revoking a permission automatically invalidates all delegations performed
by that user including all subsequent delegations. This allows to invalidate entire subtrees of
the delegations tree with only a single operation. Overwriting the root item with a non-existent
value of an access control list invalidates the entire delegations tree.

An existing ACL item MUST only be overwritten by the user who initially stored the correspond-
ing entry, or by the resource owner that is allowed to overwrite all ACL items for revoking write
access.

4.7.3. Validation of an Access Control List

Access control lists are used to transparently validate authorization of peers for writing a data
value at a shared resource. Thereby it is assumed that the validating peer is in possession
of the complete and most recent ACL for a specific resource/kind pair. The corresponding
procedure consists of recursively traversing the trust delegation tree and proceeds as shown
in the pseudo code example in listing 10:

1. Obtain the username of the certificate used for signing the data stored at the Shared
Resource.

4. Shared Resources in RELOAD 53

2. Validate that an item of the corresponding ACL (i.e., for this Resource/Kind pair) contains
a to_user field whose value equals the username obtained in step 1. If the Shared
Resource under examination is an Access Control List Kind, further validate if the "ad"
flag is set to 1.

3. Select the username of the certificate that was used to sign the ACL item obtained in
step 2.

4. Validate that an item of the corresponding ACL contains a to_user field whose value
equals the username obtained in step 3. Additionally validate that the "ad" flag is set to
1.

5. Repeat steps 3 and 4 until the to_user value is equal to the username of the signer
of the previously selected ACL item. This final ACL item is expected to be the root item
of this ACL which SHALL be further validated by verifying that the root item was signed
by the owner of the ACL Resource.

1 function validate_acl(acl, certs ,signer_id) : bool
2 // acl: The entire access control list
3 // certs: All certificates to validate request
4 // signer_id: Id of the siger of the shared resource
5 var signer_cert, last_name ;
6 get_pkc(in certs, in signer_id, out signer_cert) ;
7 var curr_name = signer_cert .username ; // Step 1
8 REPEAT :
9 var in_list = false ;

10 var depth = 0;
11 FOR each item in acl :
12 IF item .to_user == curr_name THEN : // Step 2,4
13 IF acl .kind_id == ACCESS_CONTROL_LIST AND item .ad != 1 THEN :
14 Break ;
15 IF depth > 0 AND item .ad != 1 THEN :
16 Break ;
17 get_pkc(in certs,in item .signature .id , signer_cert) ;
18 last_name = curr_name ;
19 curr_name = signer_cert .username ; //Step 3
20 in_list = true ; depth = depth +1;
21 Continue ;
22 UNTIL (last_name == curr_name OR !in_list) //Step 5
23 return in_list ;

Listing 10: Pseudo code: Algorithm for validating an access control list

4. Shared Resources in RELOAD 54

The trust delegation chain is valid if and only if all verification steps succeed. In this case,
the creator of the data value identified by the signer_id in 10 of the shared resource is
an authorized peer. The ACL validation can be omitted if the signer of the shared resource is
the resource owner. In this case, the validation is achieved via the public key certificate of the
resource owner.

Depending on the role of a peer validating the access control list, it has a different knowledge
about the ACL itself and obligation on the validation procedure. In the following, this thesis
figures out the differences between peers storing the shared resource and peers requesting for
the shared resource.

Storing Peers Storing peers, i.e., peers at which Shared Resource and ACL are physically
stored, are responsible for controlling storage attempts to a shared resource and its corre-
sponding access control list. To assert the USER-CHAIN-ACL access policy presented in the
following section 4.7.4, a storing peer must perform the access validation procedure described
in listing 10 on any incoming store request using the most recent access control list for every
Kind that uses the USER-CHAIN-ACL policy. It has further to ensure that only the resource
owner stores new ACL root items for shared resources or overwrites an existing ACL item.

Accessing Peers Accessing peers, i.e.,peers that fetch a shared resource, might validate
for its own security that the originator of a shared resource was authorized to store data at
a certain resource-id by processing the corresponding ACL. To enable an accessing peer to
perform the access validation procedure described in pseudo code 10, it first needs to obtain
the most recent access control list in the following way.

1. Send a RELOAD Stat request to the resource-id of the shared resource to obtain all
array indexes of stored ACL Kinds. The corresponding StatAns message contains all
meta-data, e.g., storage time, dictionary keys and array indexes of all stored data objects
stored at the resource-id.

2. Fetch all indexes of existing ACL items at this resource-id by using the array ranges
retrieved in the Stat answer.

Peers can cache previously fetched access control lists up to the maximum lifetime of an indi-
vidual item. Since stored values could have been modified or invalidated prior to their expira-
tion, an accessing peer better refreshes its knowledge using Stat requests to check for updates
prior to using the data cache.

4. Shared Resources in RELOAD 55

4.7.4. USER-CHAIN-ACL Access Control Policy

The RELOAD base protocol [4] defines a set of default access control policies that regulate
the write permissions for peers in the overlay. Even though the protocol anticipates that only a
small number of generic access control policies are required (c.f. [4] section 6.3.), it allow the
definition of further policies if required.

The usage for Shared Resources [5] presented in this thesis specifies an additional access
control policy to the RELOAD protocol. The USER-CHAIN-ACL policy allows authorized peers
to write a shared resource, even though they do not own the corresponding certificate. Addi-
tionally, the USER-CHAIN-ACL allows the storage of Kinds with a variable resource name that
are following one of the specified naming pattern. Hence, on an inbound store request on a
Kind that uses the USER-CHAIN-ACL access policy, the following rules apply:

• A given data value must be written by the storing peer if either one of default USER-
MATCH (c.f. [4] section 6.3.1.) or USER-NODE-MATCH (c.f. [4] section 6.3.2.) access
policies applies. The latter policy must be used if the data model of the shared resource
is a dictionary as otherwise the USER-MATCH would mask it.

• If neither of those policies applies, the storing peer must validate if the resource name
of the kind data is conform the variable naming pattern. Hence, the kind data must
be written if the certificate of the signer contains a username that matches to one of
the variable resource name pattern (c.f. section 4.6.2) specified in the configuration
document and, additionally, the hashed resource name matches the resource-id. The
resource name of the Kind to be stored must be taken from the in this case mandatory
resource name extension field in the corresponding Kind data structure.

• If even the latter conditions does not apply, the originator of the store request might be
an authorized peer that does not poss a public key certificate allowing him write access.
Then the storing peer must store the kind data if the ACL validation procedure described
in listing 10 has been successfully applied.

All definition of access control lists, variable resource names and their corresponding XML
extensions are just specified to enable the access control policy described above. Shared
resources in RELOAD were initially intended to serve the usage for distributed conferencing as
base for a secure mechanism to map a group access in RELOAD. However, seem the ShaRe
Internet draft to be a reference for future applications using a shared write access. For instance
will the third party registration scenario presented in 4.3.1 soon be available as new Internet
draft within the standardization progress in the P2PSIP working group in the IETF.

5. Distributed Conference Control based on RELOAD 56

DisCo Registration

- Focus A; <l1, l2, l3, l4, l5, l6>

- Focus B; <l1, l2, l3, l4, l5, l6>

…

New

Participant

RELOAD Overlay

Focus B

Lookup

Conference URI

Media Stream

Focus A

Access Control List

Kind: DisCo

Access-to: Focus B

…

Signaling

Storing

Peer

Figure 19: Reference scenario: Focus peer A and B jointly managing a DisCo

5. Distributed Conference Control based on RELOAD

5.1. Overview

Distributed conference control (DisCo) [6] defines a protocol scheme for managed P2P confer-
ences with SIP [1] using the discovery and locations service of the RELOAD base protocol [4].
A DisCo refers to a multiuser conference over IP in which the controlling entity called focus is
located at many independent endpoints. The distribution of the point of control onto multiple
focus peers is held transparent to users and to its VoIP application and provides backward
compatibility to regular SIP applications. Here, the conference is identified by a single Uni-
form Resource Identifier (URI). In DisCo, its locator is separated onto several focus peers. A
reference scenario of a distributed conference is shown in figure 19. The mapping of the con-
ference URI to one or more focus peers is stored in a RELOAD data structure for distributed
conferencing denoted as DisCo Registration. The DisCo Registration and a corresponding ac-
cess control list is maintained by a storing peer which is part of the RELOAD overlay, but not
necessarily member of the conference.

Each DisCo Registration stores the overlay address (node-id) of a focus peer and a topolog-
ical descriptor called coordinate value that announces a relative position in the network. It
is used to optimize the interconnection graph among the conference participant and its re-
sponsible focus peers. A RELOAD peer that intents to participate in a multiparty conversation

5. Distributed Conference Control based on RELOAD 57

uses RELOADs lookup functionality to resolve the conference URI. It retrieves a dictionary that
contains all actively managing focus peers and all registered but not actively managing focus
peers. The joining peer then may chooses the closest focus peer to join the conference refer-
encing to its own coordinate value. In this instance, it reduces network latencies to its controller
thus minimizing the delay and jitter for the subsequent media streams. Following, the joining
peer establishes a transport connection using RELOAD functionalities, while the instantiated
transport socket is passed to the SIP stack. Using this transport, the latter creates a SIP ses-
sion to participate the distributed conference. The focus peer announces the arrival of a new
participant and negates the media parameters to finally connect the party with the conference
media.

Participants of a conference are obliged to put their device capabilities at the disposal of the
conference. This enhances the scalability of the service while a growing multiparty session.
Following a conference policy, several participants obtains the permission by already estab-
lished focus peers to store data at the overlay location of the DisCo Registration thus to add
their own mappings (AoR -> node-id) into the shared DisCo resource. This is achieved by
adding the overlay usernames of those parties into the access control list. As shown in figure
19, the focus peer B has obtained permission by A to register as a focus.

As a result, participants in a DisCo are arranged in a two-layered hierarchy in which several
focus peers maintain a subset of the entire conference members. The controlling peers dis-
tribute the conference media among their clients and distribute the upstream media of their
clients to the other conference controller. They further maintain an additional signaling relation
for synchronizing the entire state of the conference.

5.1.1. Scope of DisCo

Distributed conferences are designed to enable ad-hoc multiuser conferences in P2P scena-
rios. The motivation for avoiding a centrally managing entity might be reasoned by different
aspects. First of all, a P2P conferencing solution benefits from the characteristics of P2P
networks:

• Self-organization

• Fault-tolerant

• Scalability

The users of a P2P conference can ad-hoc establish new multimedia sessions without booking
and configuring a dedicated conferencing service. A coordinated P2P session can adapt to the
size of the conference and compensate node failures. The DisCo principle can be compared
with further P2P Instant Messengers like Skype [56]. Skype is build on a P2P network that is

5. Distributed Conference Control based on RELOAD 58

mainly self-organized by the peer joining it. Further, Skype provides a free voice conferencing
service and point-to-point video chat. However, its video conferencing service claims for user
charges and demands a potent devices to distributed the conference media for maximal 10
participants3. The DisCo protocol in contrast, is an open standard and can be implemented by
everyone. An open source implementation could enable a conferencing application that scales
to a large number of participants without assistance of a central server. The lack of dedicated
sever enables the establishment of a video conferencing service without user charges.

Another reason for avoiding a third-party service provider are privacy policies within companies.
A company might not want to perform confidential conferences about over third-party supplier.
While larger companies are able to host their own dedicated conferencing infrastructure, it
might be a financial problem for smaller companies to host hardware and personnel. In DisCo
each focus peer managing the conference is also a participant of the group session. This takes
in advantage that a distributed conference is self-managed and does not require a third-party
supplier. The RELOAD overlay can be instantiated within the company network to avoid to the
registration of the conference URI in a public RELOAD overlay. Thus, a confidential meeting
can be achieved without the need of third-party supplier while reducing the costs to provide the
service to a minimal amount.

5.1.2. Concurrent Work in the IETF

An alternative Internet draft on distributed conferencing (DCON) [58] submitted to the IETF
proposes signaling protocol to interconnect multiple centralized conference servers. In this
concept, SIP user agents request a dedicated XCON server [16] to join a certain conference
URI. If conference is not hosted by the Server, it delegates the request to a DCON applica-
tion that is arranged within a DCON not further specified overlay. The overlay is joined by
further XCON instances, each hosting independent conferencing domains. Using the overlay,
a DCON module locates the server managing the desired conference and performs a partici-
pation request behalf of the SIP user agent. If accepted, the conference media is sent from the
host of the remote conference, via the XCON server hosting the user agent, and finally, to the
requesting user agent.

The conferencing approach for DisCo and DCON are designed for different deployment sce-
narios. DCON assumes an infrastructure of several dedicated XCON servers that provide their
clients access to all conferences hosted by these server. DisCo assumes a group of indepen-
dent peers, creating a self-managed conference service.

3Skype recommends video conferences with up to 5 parties [57]

5. Distributed Conference Control based on RELOAD 59

5.2. Protocol Design

5.2.1. Architecture

To design an architecture for distributed conference control, first, the roles and relations of the
participating entities must be identified:

Focus Peer: A focus peer is a participant and a manager of a distributed conference. It must
support the functionalities to resolve and register a distributed conference ID in a P2PSIP
overlay. Further, it must be enabled to accept conference calls and provide mechanisms
to announce changes of the conference state. A focus peer must be aware of the distri-
bution of the conference to enable synchronization mechanism with the other controller.

DisCo-aware Participant: A DisCo-aware participant is a peer that joined a distributed con-
ference by resolving the DisCo Registration in a P2PSIP overlay. It provides the same
functionalities as a focus peer, but is not actively involved in the conference maintenance.

RELOAD-aware Participant: A RELOAD-aware participant is a peer that joined the confer-
ence through a P2PSIP overlay, but is not aware of the its distribution. The conference
distribution must be transparent to such a user to be compliant to its RELOAD and SIP
implementations.

Plain SIP User Agent: A plain SIP UA joined the conference through standard SIP signaling.
It is either not aware of the RELOAD protocol nor the DisCo protocol schemes. The
conference distribution must be transparent to such a user to be compliant to its SIP
implementations.

Storing Peer: The storing peer is the RELOAD peer responsible for the address range of the
hashed conference identifier and not necessarily participating in the multiparty session.
It must be aware of the RELOAD aspects of DisCo to maintain the DisCo Registration
and its corresponding access control list.

The resulting architecture by identifying the entities for distributed conference control is shown
in figure 20. The figure omits the RELOAD-ware participant to simply the illustration. The
conference state is a logical representation of the roles an relations among the distributed
conference. Each focus peer maintains a coherent copy of the conference state. Its synchro-
nization is achieved by a SIP notification [10] mechanism described in more detail in section
6. The synchronization via SIP event has in advantage to reuse existing SIP implementa-
tions. The latter must be extended by a state agent for distributed conferencing to performing
the synchronization procedures. The same state agent is used to announce the conference
state to the DisCo-aware participants. Hence, by implementing a single module we obtain two
functionalities needed for DisCo sessions.

5. Distributed Conference Control based on RELOAD 60

Focus Peer

Storing Peer

DisCo-aware Participant Plain SIP Usager Agent

Focus Peer

SIP Notifications
DisCo Conf-Info

RELOAD

RELOAD

SIPRELOAD SIP Notifications

Conf-Info

Register

Sign
alin

g

N
o

tify

Notif
y

SIP Notifications
DisCo Conf-Info

RELOAD

Sync

Si
gn

al
in

g

Balancing
Lookup

Re
gi

st
er

Notifications

DisCo Conf-Info

Conference State Conference State

Figure 20: Architecture: Roles and interactions within a distributed conference

Since each conference focus provides a copy of the conference state, they can use it to provide
load balancing and failover mechanisms. A focus peers reaching its threshold of serving new
clients can determine a less loaded focus from the state representation.

Focus peers further maintain a single SIP signaling relation to each directly connected partic-
ipant. The SIP dialogs are used to negotiate the media parameters to the subsequent media
session. This is plain SIP behavior and hence compliant to all entities in a DisCo.

DisCo-aware participants retrieve the overlay addresses of the focus peers through the
RELOAD lookup service and initiate transport connections via the RELOAD messaging ser-
vice. DisCo participants are subscribing for DisCo event notifications to obtains a view on
entire conference state. The provided module for the conference-info event package [15] is
only used if it assumes the role of a focus peer to the conference.

Plain SIP user agents can join a distributed conference via plain SIP signaling mechanisms.
However, the conference must either be registered at a dedicated SIP proxy, or the IP address
of one of the focus peers must be passed by an external mechanism. This due to the lack of
SIP-to-RELOAD gateway peers in P2PSIP . Gateways peer are mentioned within the P2PSIP
concepts [59] draft, but no more detailed is available yet. SIP user agents subscribe for the
conference-info event package [15] to obtain the global knowledge of the conference. However,
as the event package for conference state was not intended to map a distributed conferencing
scenario. Hence, the view on the conference state is limited as further described in section
6.

5. Distributed Conference Control based on RELOAD 61

5.2.2. The DisCo Registration

A data structure used to register a distributed conference must map the separation of con-
ference ID to several locators. This requirement implies a data model that can carry multiple
values that are encapsulated within an outer generic structure. The RELOAD protocol [4] pro-
vides the three data models single value, array and dictionary that can be used
to encapsulate data. Accordingly, a DisCo Registration could utilize either an array or dictionary
as data model.

The array data model has several open issues with respect on carrying a DisCo Registration.

• How are the array indexes formed?

• How can the registration be prevented from race conditions while concurrent writing?

• How can a joining participant retrieve all array entries at once?

The last issues is justified by the RELOAD messaging protocol. For value stored in the array
data model there exists no wildcard fetch mechanism to retrieve all array entries at once.
Instead, a RELOAD peer can query for one or more array ranges. An array fetch on the entire
address range from index = 0 to index = 232− 1 would be replied by a response containing
the requested array entries, plus ~4 billion empty array entries.

The dictionary data model fits for all three open issues of the array. The dictionary could be set
to the node-id of registered focus peer. This is an unambiguous assignment of the dictionary
value and separates each mapping from concurrent writing. Furthermore, this approach follows
the SIP Registration usage [38] for RELOAD and thus compliant to RELOAD protocol design.

Furthermore, a DisCo Registration could reused an existing RELOAD Kind to map the confer-
ence ID. For instance, the SIP Registration Kind is also arranged as dictionary and is enable
to map a SIP URI to several locators. However, none of the previously defined Kinds provides
the possibility to register a peers node-id and to announce its relative position in the network.
As a result, we need to define a new RELOAD Kind data structure that fits the requirements for
distributed conferencing.

This work proposes a lightweight DisCo Registration structure that enables an unambiguous
mapping for each registered focus peer. The DisCo Registration and its surrounding data
model are shown in listing 22. Line 1 shows the RELOAD definition of dictionary key type.
The maximal size of the key is large enough to carry the node-id (128 bits) of a focus peer.
The inner DataValue struct is a further meta-data of the overlay data model. The boolean
exists indicates if the carried value contains data. Line 13 to 17 show the definition of the
DisCo Registration. It contains the resource name extension field presented in listing 7, the
node-id of the conference creator and an opaque coordinate value. The latter is designed as
opaque string value to carry any type of topological descriptors.

5. Distributed Conference Control based on RELOAD 62

1 typedef opaque DictionaryKey<0..2^16−1 >;
2 /* The distionary data model */
3 struct {
4 DictionaryKey key ;
5 DataValue value ;
6 } DictionaryEntry ;
7 /* The data value structure*/
8 struct {
9 Boolean exists ;

10 DisCoRegistration value<0..2^32−1 >;
11 } DataValue ;
12 /* The DisCo Registration structure*/
13 struct {
14 ResourceNameExtension res_name_ext ;
15 opaque coordinate<0..2^16−1 >;
16 NodeId node_id ;
17 } DisCoRegistration ;

Listing 11: DisCo-Registration: Data structure to register a distributed conference

The data structure fulfills all previously established requirements for a DisCo Registration. The
res_name_ext field allows the registration of a variable conference ID by following the def-
initions of ShaRe presented in sections 4. Using a dictionary data model, all focus peers can
register their node-id within the same data structure to map the ID/Locator split of DisCo. By
defining a generic field to carry topological descriptor, the focus peer can announce their rela-
tive coordinates with respect to optimize the conference topology.

5.2.3. Routing to a Focus

If the conference URI is resolved to several focus peers by the RELOAD lookup functionalities,
a joining peer must connect to any of the available peers. Here, we identify three mechanisms
to initiate a SIP session to a focus:

Iterative: In an iterative mechanism, the joining peer choses one the focus peers retrieved by
the DisCo Registration and sends an AppAttach request to initiate a SIP dialog. This
approach is favorable with respect to the minimal signaling overhead if the request is
accepted by the focus. Otherwise, the joining peer must repeat this procedure after a
timeout, causing unnecessary delay.

Source-routed in RELOAD: In a source-routed approach, a joining peer could use the
RELOAD destination list feature to build a source-route along the order of the prefer-
ences of the joining peer. A source-routed AppAttach request would traverse the focus

5. Distributed Conference Control based on RELOAD 63

peers until one of them accepts the request. However, the destination list in RELOAD is
not intended to be interrupted by intermediate peers. The default overlay routing speci-
fies that a requests containing more than one destination in the list, must be forwarded
without processing the contained data [4]. Hence, a source-routed AppAttach request
will always have the last focus in the list as its destination thus overlay source-routing is
no option.

Source-routed in SIP: In a SIP source-routed approach, a joining peer would sent AppAttach
requests to all focus peers simultaneously. Then, the peer could extract the IP addresses
of the focus peers responded the AppAttach requests. The obtained addresses could
be used to create a SIP source-route that traverses all focus peers. The latter, aware of
this source-routing procedure could intercept the SIP request and accept the conference
call. This approach is the worst with respect to signaling overlay, but prevents the joining
peer from retransmissions.

As a result of this discussion, the iterative focus selection is the most favorable. It produces
the least overhead and follows the default AppAttach procedures of RELOAD. A focus peer not
accepting the call could alternatively use the DisCo call delegation mechanism to transfer the
caller to anther focus peer. The SIP source-routing approach produces a factor N overhead
to initiate a conference call, with N is the number of available focus peers. The approach is
not scaling well for very large multiuser conferences in which almost any peer is subscribed as
potential focus.

5.2.4. Adding Focus Peers

An advantage of distributed conference control compared with centralized conferencing refers
to the distribution of the load that occurs during operation of a multiparty session. All partici-
pants in a distributed conference can potentially become a focus peer for their conference and
thus obtain the responsibility for signaling and media mixing for a subset of the conference par-
ties. Participants with adequeate capacities (CPU, Memory, Network) of the conference should
become a focus peer according to their capacities. For instance, a mobile device connected
over UMTS would not be a suitable candidate to register as focus peer. However, a more so-
phisticated mechanism to estimate potential, workload and bandwidth of focus peers is left to
future work.

Another challenging issue are potent desktop device which is located behind a NAT. Figure 21
shows two different scenarios that illustrate under which circumstances a focus behind a NAT
is suitable or not. The figure in 21a shows a case where a joining peer jp that has a relative
network position jp = (x1,y1). jJp could connect to the one of the focus peers jp1 and jp2,
with relative coordinates jp1 = (x1 + 1d,y1) and jp2 = (x1,y2 + 2d) with d is the distance
between jp and f p1. Jp chooses f p1 as its focus peer based on its proximity. Unfortunately,

5. Distributed Conference Control based on RELOAD 64

SIP

NAT

TURN Server

SIP

[x]

[y]

NAT

),(11 yxjp 


),1(1 11 ydxfp 


)2,(2 11 dyxfp 


x1

y1

(a) Bad case: Coordinates circumvented via NAT traversal

FP1

NAT

FP2SIPSIP

SIP

SIP

SIP

...

...

TURN Server

(b) Good case: Several parties behind the same NAT

Figure 21: Comparison: Focus peers behind NATs

are both peers located behind two different NATs which both will detect during the RELOAD
AppAttach procedure and subsequent ICE checks [36]. Additionally, the behavior of the NAT is
very restrictive and forces the peers to perform the TURN protocol [31] for further connectivity.
Both peers must establish a transport connections to a TURN server that will relay the data
packets among the endpoints. As a result, media streams will traverse over an circuitous route
and increase the delay and jitter. The second focus peer f p2 would have been the better
choice because he is not behind a NAT.

As a consequence, it could defined that it is not desirable to register as focus peer, if the
application resides in a NAT. However, not all symmetric NATs require relaying through a TURN
server. If the peer applications determine their public IP in front of the NAT, e.g., using STUN
[30], the peers are enabled to setup direct links among each other.

A reasonable circumstance for focus peers behind NAT is shown in figure 21b. Supposing a
large company network behind a restrictive NAT performing a distributed conference. Several
parties of the conference reside in the same company network and would select accordingly
to proximity a focus peer in their domain. Even though the that focus f p1 relays through an
external TURN server to the remaining conference, the established interconnection graph is
optimized in terms of delay, jitter and efforts for NAT traversal.

As a result, a conference party should to register as potential focus peer even though it resides
in the private address space. The joining peers should determines if a chosen focus resides in
its own NAT (c.f. figure 21b) or it must relay the streams via an external TURN server (c.f. figure
21a). These information can be obtained by the ICE Checks [36] performed while RELOAD
AppAttach procedures.

5. Distributed Conference Control based on RELOAD 65

5.2.5. Proximity-awareness

An issue in distributed conference control is the proximity-awareness of the participants. Each
RELOAD peer within the context of a distributed conference should be aware of its relative
position in the network topology. These topological descriptors are used to optimize the con-
nection graph among the DisCo parties in respect of the underlying network. The objective is
to reduce the issues of delay and jitter and to provide an adequate quality of the multimedia
service.

One class of proximity approaches [60] is built on landmarks. To determine the relative network
position p of a node, the round-trip times (RTT) are measured against a fixed set of well known
landmarks l0, l1, .., ln. These measurement results will be ordered according to the landmark
index with the result of a landmark vector < l1, l2, .., l3 >.

The obtained relative position can then be stored in the overlay. Assuming the relative position
p for node-ID idn, then p′ = hash(idn) is an overlay identifier, for position p of node n. Node n
will then be mapped with p′ into the overlay region, stored on the node that is responsible for
this address range. The nodes n1 and n2 are close to each other if the difference of |p1− p2|
is low, with p1 and p2 were retrieved by a lookup operation on p1

′ and p2
′.

The DisCo protocol scheme contributes to landmark approaches by defining a landmarks
extension to the overlay configuration document presented in listing 12.

1 <!−− LANDMARKS URN SUB−NAMESPACE −−>
2
3 namespace disco = " urn : i e t f : params : xml : ns : p2p : conf ig−base : d isco "
4
5 <!−− LANDMARKS ELEMENT −−>
6
7 parameter &= element disco :landmarks {
8 attribute version { xsd :int }
9

10 <!−− LANDMARK−HOST ELEMENT −−>
11
12 element landmark−host {
13 attribute address { xsd :string } ,
14 attribute port { xsd :int }
15 }∗
16 }?

Listing 12: XML extension: List of landmarks to determine relative position in the network

The landmarks element in line 7 is a container for landmark-hosts elements. The
version attribute is incremented if the landmarks host contained within corresponding child

5. Distributed Conference Control based on RELOAD 66

elements changed. The child element contains an address and port field to which the peers
can perform their RTT measurements.

This enables DisCo-aware peers to determine their topological description using a landmark
approach. The resulting landmark vector can be announces within the DisCo Registration to
enable joining peers a proximity-aware conference joining.

As specified in the previous section, the DisCo participants iteratively try to establish a SIP
dialog to their chosen focus. If the latter is is fully booked, it will try to further delegate the joining
party to another focus. The delegation is thereby performed with respect to the coordinates of
the joining peer. Therefore, the SIP INVITE request can contain the coordinate as an URI-
parameter called ’coord’ in the contact-header in base64 encoded form [63]. An example
contact URI shown below.

1 " s ip : alice@example . com; coord=PEknbSBhIHRvcG9sb2dpY2FsIGRlc2NyaXB0b3I+ " .

Listing 13: Coord-parameter: Encoding of the coordiate value as base64

The called focus uses the ’coord’-parameter to determines the next available focus closest to
the calling peer using the received descriptor and the coordinates of the other focus peers.

5.3. Protocol Operations

5.3.1. Conference Creation

The creation of a distributed conference requires several individual steps that have to be done
by the conference creator. The following procedures assume that the creator posses the public
key certificate permitting him to write data at the desired resource-id.

Registering a DisCo After the user has chosen a conference URI that complies to the al-
lowed namespace and determined its coordinates, the DisCo application can begin the regis-
tration procedure in the RELOAD overlay shown in the sequence diagram in figure 22. The
registration procedure is structured as described follows:

Stat Request: Prior to registration, the conference creator checks whether at the desired
resource-id still contains a DisCo registration and corresponding access control list from
a previous conference by sending a StatReq of RELOAD message (cf. [4] section
6.4.3.1.). The request will be routed through the overlay to the resource-id which is the
result of hashing the desired conference URI. The storing peer responds with a StatAns
message (cf. [4] section 6.4.3.2.) containing the meta-data for all Kinds it is currently
holding. It is important to note that the storing peer will just return the meta-data for the

5. Distributed Conference Control based on RELOAD 67

[no state]alt

Overlay
Storing
Peer

Conference
Creator

StatReq Resource: Conf-URI

StatAns Meta: DisCo, ACL

check_state()

Fetch Kind: ACL

FetchAns ACL:{...}

[else]

get_state()

StoreReq Resource: Conf-URI Kinds: DisCo, ACL [,SIP]

StoreAns Kinds: 12,13 [,1014]

[empty]

Figure 22: Message flow: Registration of a distributed conference

requested resource-id and not for all stored data objects it holds. Hence, if the answer
contains meta-information from a previous conference, the creator has to fetch all DisCo
and ShaRe Kinds. If StatAns contains no result, the requested resource-id is empty and
the conference creator can proceed with a StoreReq (cf. [4] section 6.4.1.1.). Otherwise,
it must check the state of previous registration.

State Check: In general, a DisCo application should be aware of previous conference regis-
tration by caching the last recognized DisCo and ACL data objects. If the registration
state retrieved by the StatAns equals the cached state, the registration can proceed with
the storage of of the DisCo and ACL Kinds. However, could both Kinds been changed
during the disappearance as the conference will persists as long as peers are manag-
ing session and could have been added new focus peers. In such a case, the creator
must send a FetchReq message explicitly requesting for all access control list items.
By receiving all ACL items from the subsequent FetchAns message, the creator can re-
construct the existing trust delegation tree whose root item should have been signed by
itself.

Store Request: Finally, the registration completes by sending a StoreReq containing the
DisCo-Registration Kind shown in listing 11, the ACL Kind and, if possible, a SIP reg-
istration Kind enabled to use variable resource names. The access control list Kind
contains at least the root item initiating or refreshing the ACL trust delegation tree. If the

5. Distributed Conference Control based on RELOAD 68

Overlay
Storing
Peer

Participating
Peer

StatReq Resource: Conf-URI

StatAns Meta: DisCo, ACL

Fetch Kinds: DisCo, ACL

FetchAns DisCo:{...}, ACL:{...}

select_focus()

AppAttach application:5060

AppAttach application:5060

Focus
Peer

ICE Checks

SIP INVITE

200 OK

ACK

Figure 23: Message flow: Selecting focus and establishing a transport

creator is already aware of specific users who will participate the conference in focus
role, it can add further ACL items to the initial store request. The optional SIP regis-
tration (see listing 4) should be of type sip_registration_route and register a
destination list containing at least the node-id of the conference creator. In analogy to
the DisCo Kind, the creator is free to store an additional access control list allowing the
future focus peers to register their node-ids in the SIP-Registration Kind. This serves
as backup service enabling DisCo-unaware RELOAD peers to participate the distributed
conference.

The lifetime of a distributed conference is not limited by the participation time of its cre-
ator. As long as the root item of an access control list to a DisCo-Registration is not ex-
pired (cf. StoredData [4] section 6.), authorized peers allowed to further maintain DisCo-
Registrations at the storing peer and even store new focus registrations.

Once the conference creator has registered its node-id for a DisCo, it should be ready to receive
incoming participation request over RELOAD messaging service and via SIP signaling. The
creator is then responsible to negotiate media parameters and to connect all parties to the
conference media.

5. Distributed Conference Control based on RELOAD 69

+resource = 0x43a4f8...

FetchReq

Fo
rw

ar
d

in
g

H
ea

d
er

Se
cu

ri
ty

 B
lo

ck

+kindId = 12
+generation = 1
+length = 0

StoredDataSpecifier

+kindId = 13
+generation = 3
+length = 8

StoredDataSpecifier

+first = 0x123abc01
+last = 0x123abc05

ArrayRange

Length
FH 380 54 70 80 ++

Length
Security

le
n

gt
h

 =
 7

4

4 2 2 2

Method DisCo Request Access Control List Request
m

sg
_c

o
d

e=
9

2

le
n

gt
h

 =
 8

le
n

gt
h

 =
 2

4

le
n

gt
h

 =
 1

4

Figure 24: Message Structure: A FetchReq message represented along the byte stream

5.3.2. Joining the Conference

The joining procedure to a registered DisCo is separated into several steps and is performed
using at least three application layer protocols RELOAD [4], SIP [1] and a transport protocol for
the conference media, e.g., Real-Time Transport protocol (RTP) [53]. This section will describe
the former two protocol procedures in detail shown in figure 23.

Assuming a user obtained the conference URI by some external mechanism, a joining peer
sends a RELOAD StatReq message to the resource-id related to the conference URI. The
message will be routed along the overlay to the peer storing the DisCo Registration and corre-
sponding access control list. The additional StatReq is necessary to obtain the array indexes
of the access control list items, since RELOAD provides no wildcast mechanism for arrays.
Afterwards. the joining peer sends a FetchReq message (cf. [4] section 6.4.2.1.) for the DisCo
and ACL Kinds to the resource-id of the conference URI. The FetchReq should include any
specific dictionary keys, but explicitly fetches for ACL items. These are used by joining peer
to comprehend the trust delegation tree of the shared conference resource and enable him to
verify if the DisCo Registration is stored by authorized focus peers

Figure 24 shows a sample of a FetchReq as it would be represented after serialization. The
forwarding header follows the message body starting with the 2 byte message code and a 4
byte long length field containing the size of the rest of the message body. The message code
is encoded as uint8 in network byte order and identifies the method of this message as fetch
request message. It contains the 32 bytes long resource-id of the desired data objects and
one or more StoredDataSpecifier structures each of with a maximal payload of 216−1
bytes. The size of each specifier is indicated in a preceding length field of 2 bytes. The sample
message contains a specifier requesting for the DisCo kind-id (=12) whose generation counter
is 1. The generation counter gets incremented each time a store request updates the stored
data. The rest of this specifier is the length value whose size is 0. This indicates the receiving
stack a wildcard fetch on a dictionary, since the kind-id of the DisCo registration must be known
and matches dictionary as corresponding data model.

5. Distributed Conference Control based on RELOAD 70

The next specifier again precedes with a length field followed by the queried kind-id requesting
the access control list Kind (=13). In contrast to DisCo specifier, contains ACL query a payload
of 8 bytes length represented by the succeeding ArrayRange object. It requests for the array
range from 0x123abc01 which might be the ACL root item of the trust delegation tree, to array
index 0x123abc05. The array range already implies that there exists at least four possible focus
peers to join the conference. Four, because the conference creator must not be necessarily be
registered as focus but needs to initiate the access control list since it is the resource owner.

Note that the additional length field within the data specifier object are not designed to be re-
dundant with each preceding length specification. Instead, it can be used by further extensions
of new data models to indicate their length.

The response on the fetch request is the according FetchAns message carrying all DisCo-
Registrations and the entire access control list.

Application Attach The final operation perform by the RELOAD messaging service is the so
called AppAttach procedure. The application attach is the default mechanism in RELOAD to
establish a direct transport connection among two endpoints. The AppAttach overlay message
therefore carries the ICE [36] credentials ufrag and password, an application field containing
the port number of the desired transport (5060 = SIP port) and a couple of ICE candidates
through which the connection will traverse. The ufrag and password contain a random
at least 4 byte username and 22 bytes long password used to identify each endpoint when
creating a direct connection among them. Each ICE candidate belongs to a host that will be
used to establish the transport connection, e.g., TURN or STUN servers used for NAT traversal.
In the simplest case, an ICE candidate is the local host if the peer has a public IP address.

The focus peer responds the request with a another AppAttach message, containing its own
ICE parameter and candidates. After exchanging the ICE parameters, both peesr try to es-
tablish the connection as indicated by the ICE Checks message flow in figure 23. However,
a detailed description of the ICE procedures [36] will be out of scope of this document. The
result of ICE is a direct transport connection over which the participating peer can send a SIP
INVITE request to the focus peer to finally join the conference.

5.3.3. Leaving a Conference

Participants leave a distributed conference sending a SIP BYE request to its connected fo-
cus peer. The latter acknowledges by responding a 200 OK response and stops sending the
conference media to leaving peer. This is the default SIP behavior as described [1] and thus
transparent to exiting SIP implementations.

5. Distributed Conference Control based on RELOAD 71

A focus peer maintains signaling and media session for its connected parties. Thus, as a focus
leaves several users would loose their connection to the conference. Te ensure a continues
service, the protocol scheme for distributed conferencing provides a procedure for leave man-
agement described in section 5.5. After the leave management is completed, a focus peer
sends a SIP BYE request to each of its participants and to its own focus.

A focus peer must additionally remove its DisCo and SIP registrations. This is achieved by
sending a RELOAD StoreReq containing for each Kind an empty data value that overwrites its
records. This remove procedure is called storage of "nonexistent" values in RELOAD [4].

Any access control list items remain existent up to their individual lifetime. This ensures that
participants and storing peers (in case of a topology switch) can still validate (c.f. listing 10) the
entire trust delegation tree represented by an ACL.

5.4. DisCo-Unaware Participants

5.4.1. RELOAD-aware Applications

Peers joined to an RELOAD overlay obtained the overlay configuration document that defines
the Kinds a peer must support to participate the overlay. A minimal overlay configuration will
require at least the support of the SIP registration Kind. However, overlay peers are permitted
to store Kinds that are not listed in the required Kinds. A minimal configuration opens up the
possibility that peers are aware of the SIP Kind, but not for a DisCo Kind thus DisCo-unaware
RELOAD peers.

As mentioned in section 5.3.1, the conference creating peer addresses this problem by storing
an additional SIP-Registration Kind and deposits a corresponding access control list at the
same resource-id as the DisCo-Registration. Hence, the minimal requirements for DisCo-
unaware peers is the implementation of the SIP usage [38] and the protocol scheme for shared
resources presented in section 4. In this way, a peer or client resolves the conference URI by
the SIP usage and validates the retrieved SIP Registration along the access control list.

The subsequent connection establishment to the focus then follows the protocol scheme
defined in the SIP usage as shown in figure 25. The FetchAns message retrieved
from the overlay contains a dictionary with the two SIP-Registrations of the type
sip_registration_route (c.f., listing 4) for the focus peers A and B and the cor-
responding ACL. The default SIP usage behavior is to take all destination lists and sent an
AppAttach request to each of listed node-ids within the lists. In the example, both focus A and
B just stored a single node-id within the destination list. Accordingly, the joining peer sends
the AppAttach to the node-id of focus A. The capacities to serve another user agent by focus
A are exhausted and it will silently drop the received message. In this way, it emulates devices

5. Distributed Conference Control based on RELOAD 72

Overlay
Focus
Peer A

Participating
Peer

FetchAns DisCo:{...}, ACL:{...}

AppAttach application:5060

AppAttach application:5060

Focus
Peer B

ICE Checks

SIP INVITE

200 OK

ACK

Checking
Capacities

Rejects AppAttach
silently

AppAttach application:5060

Checking
Capacities

Accepts Call

Figure 25: Message Flow: Joining a conference by the SIP-Usage

that is registered by switched off. The next AppAttach is sent to focus B. It determines its
capacities and accepts the application request by responding with the corresponding answer
message. The rest of the procedure for connection establishment is similar to the that of the
DisCo usage. This protocol scheme is transparent to the requesting RELOAD application and
thus backwards compliant to implementation just supporting the SIP and ShaRe usages.

5.4.2. Plain SIP User Agents

The major issue for a plain SIP implementation is the lookup for the conference URI to any
focus peer serving the distributed conference. In general, the conference URI to a DisCo is
registered only within a RELOAD overlay and disable plain SIP user agents to resolve the URI.
In the following, we will discuss the alternatives to enable the participation for plain SIP user
agents.

A straightforward solution is to pass the IP address of a focus peer by any external mechanism,
e.g., Instant Messenger, E-Mail or a simple PSTN telephone call. The user then simply calls
the conference URI by setting the domain to obtained IP address. The SIP application will
generate a SIP INVITE request as shown in the following listing 14.

5. Distributed Conference Control based on RELOAD 73

1 INVITE sip:disco@141.22 .26.154 SIP / 2 . 0
2 Via: SIP / 2 . 0 /UDP 141.22.26.238;branch=z9hG4bK2293940223
3 To: <sip:disco@141 .22.26.154>
4 From: < s i p : a l i c e @ a t l a n t a . com> ;tag=4321
5 Call−ID: 815@atlanta .com
6 CSeq: 1234 INVITE
7 Max−Forwards: 70
8 Contact: sip:alice@141.22 .26.238
9 Content−Length: 123

10 . . .

Listing 14: SIP INVITE: Legacy SIP user agent calling a DisCo

This solution does not require any SIP proxies, P2PSIP overlays and works on SIP signaling
only. As focus peer are expecting incoming SIP calls anyway it identifies the INVITE mes-
sage as request to join the distributed conference by the request-line and To header and can
connects caller to the conference media.

However, determining the IP address of a device, sending it through any out of band mech-
anism to the caller and finally constructing the conference URI, is a complicated procedure
with respect to usability. Hence, this could be an alternative for experts aware of SIP and IP
addresses.

Another alternative approach to resolve a DisCo URI uses SIP proxies or redirect servers that
act as gateways to a RELOAD overlay. The approach was initially mentioned in the Concepts
and Terminology for Peer to Peer SIP draft [59] but not described it in more detail. Conventional
SIP user agents communicate to the P2PSIP overlay through adapting peers which interact in
between of the overlay and plain SIP. Those adapters accept SIP requests and resolve the next
hop by using the RELOAD lookup functionalities. If the address is resolved to a destination,
the adapter peer may proxies or redirects the caller to the destination.

By using gateway peers, a SIP INVITE request to join a distributed conference would be routed
to a gateway peer that might be provided by the operator of the RELOAD instance. Then, the
gateway translates the SIP request to a RELOAD FetchReq message requesting for confer-
ence URI as DisCo Kind, or alternatively as SIP Kind. The challenge is to select an adequate
focus peers as entry point for the caller. The latter and the gateway peer will have no prefer-
ences, e.g. by relative network position to a certain focus.

A gateway acting as proxy or redirect could simply fork the SIP request to all focus peers by
sending each an AppAttach. This would be equivalent to a default connection establishment
as proposed by the SIP usage in which a peer sends an AppAttach to all received destination
peers. The proxy could use the first established TCP connection to either proxy the initial
SIP request or to redirect the caller to the remote endpoint of the TCP connection. All other

5. Distributed Conference Control based on RELOAD 74

successfully establish transports to the remaining focus peers can be canceled. Alternatively,
could a forking proxy use all established TCP connection to fork the initial SIP INVITE of the
caller to all focus peers.

Even though forking SIP requests is a applied practice, could it cause unwanted domino effects
in a distributed conference. Focus peers in a DisCo try to delegate calls to further conference
controller as they are running out of capacities (c.f. section 5.5). A forked SIP request reach-
ing several focuses that are overloaded produces multiple call delegations probably reaching a
single and less loaded controller. Hence, a fork on SIP would produce avoidable call delega-
tions.

The forking of a SIP request on the RELOAD layer followed by proxy or redirect operation
could be a straightforward solution to enabled RELOAD-unaware SIP user agent to join a
DisCo. The additional operations by adapter peers are fully transparent to the joining user and
its SIP application. However, there are currently no detailed specifications or implementation
for SIP-to-RELOAD adapter peers available. Hence, the usage of gateways peers is an area
of research for future work.

5.5. Conference Management

5.5.1. Conference Access

The RELOAD base protocol [4] specifies several access control policies controlling write per-
missions onto the overlay network. Vice versa, are there no restrictions or policies regulating
the read permissions on overlay resources. Hence, all legal peers and clients of an overlay
can fetch any DisCo or SIP registrations and try to participate a distributed conference. As a
consequence, it is desirable for distributed conference to specify a policy that defining who is
allowed to participate and, as appropriate, to define conference credentials.

In a light-wight access model, the validation whether the originator of an incoming SIP call to
a distributed conference is allowed to join, can be clarified verbally among the active parties.
In a more advanced model, the participants of a conference are known previously to creation
and listed within a conference object. The conference object can be represented by an XML
document like the XML event package for distributed conferences presented in the later section
6. Thus, the DisCo applications of conference managers are aware of all permitted users and
can automatically grant access to the multiparty session.

A third access model uses SIP authentication procedures to join a conference. The conference
creator defines a shared secret that it passes to all parties of a conference. The users config-
ure their DisCo application to use the shared secret to authenticate against the focus peers as
shown in call flow 26. The participating peer resolved the conference URI and established a

5. Distributed Conference Control based on RELOAD 75

Participating
Peer

Focus
Peer

INVITE sip:disco

401 Unauthorized (www Auth)

INVITE sip:disco (Credentials)

200 OK

ACK

Figure 26: SIP Authenticate: Participant authenticating against focus peer

direct transport via RELOAD and sends a SIP INVITE to the chosen focus peer. The latter is
aware of the conference policy and responds with a 401 Unauthorized message indicating the
authentication scheme. The participating peer then re-originates a new INVITE request con-
taining the conference credentials, e.g., a shared password to authenticate itself. Finally, both
complete the transaction by sending 200 OK, respectively, the final ACK from the participating
peer.

5.5.2. Call delegation

A main advantage of DisCo conferencing is the possibility to distribute the load to maintain
the service onto several independent entities. In a worst case scenario, it is possible that many
joining peers select the always the same focus as their conference entry point and thus exhaust
its capacities to serve clients. To avoid overloading of focus peers, distributed conference
control enables load-balancing by a mechanism for call delegation. Incoming participation
requests are transferred to another established focus peer or conference participants that are
registered as potential focus peers in the overlay. Call delegations use SIP REFER requests
[64] that are achieved transparently to the transferred party. The transparency due to additional
session information that is passed by the referring user agent and a source route set by the
user agent accepting the REFER request. The sequence diagram shown in figure 27 shown a
sample of a call delegation.

The referred peer RP had chosen the referring focus RF as its entry point to the distributed
conference from a previous RELOAD lookup for the conference URI. On receiving the SIP
INVITE, RF checks its own capacities to serve another conferencing client. Because RF reach
its threshold, it temporarily accepts the call sending a 200 OK but sets the media on hold. This
is achieved within the SDP answer setting the a= attribute to sendonly as shown in listing
15 line 8.

5. Distributed Conference Control based on RELOAD 76

Referred
Peer (RP)

Referring
Focus (RF)

INVITE sip:disco

NOTIFY content: trying

REFER refer-to:RP?call-id=123&sess-id=456

202 Accepted

200 OK

Accepting
Focus (AF)

Check

INVITE sip:RP from: disco record-route:AF

200 OK

200 OK (on hold)

ACK

ACK

NOTIFY content: OK

200 OK

RTP/Media

Figure 27: Call delegation: Transfer of a party due to load-balancing

Hence, after the ACK message of RP, no media session will be established. RF then delegates
the call by sending a SIP REFER to the accepting focus AF . The URI carried within refer-to
header field, has two additional parameter:

1 v=0
2 o=disco 456 456 IN IP4 141.22.26.27
3 s=
4 c=IN IP4 141.22.26.27/127
5 t=0 0
6 m=audio 49172 RTP /AVP 97
7 a=rtpmap:97 iLBC/8000
8 a=sendonly

Listing 15: 200 OK: SDP answer setting media on hold

call-id: This URI parameter contains the call-id the initial SIP dialog among RP and RF . It
uniquely identifies the session and will be used by AF to the subsequent SIP re-INVITE.

sess-id: This URI parameter contains session identifier of the initial offer/answer. The identi-
fier is the same value as the second o= (origin) parameter as shown in listing 15 in line

5. Distributed Conference Control based on RELOAD 77

2. Note, that the origin field normally contains a timestamp of the Network Time Protocol
(NTP) but is set to 456 to simplify the figure.

AF acknowledges the REFER request by responding a 202 Accepted followed by a SIP NO-
TIFY message indicating that the reference is pending. The accepting focus then re-INVITEs
RP to the distributed conference, setting the call-id of the INVITE and the sess-id of the contain
SDP offer to the values retrieved by the previous REFER request. Additionally, AF add an
record-route header field to the re-INVITE that refers to it own SIP URI or contact address.
A record route is generally added by stateful SIP proxies to remain in the path of further SIP
requests within a dialog of user agent client. In case of a focus, the additional record-route
header grants that all requests sent to the conference URI will be routed through the focus
peer. A user agent client sending a SIP request must initially determine a so called route set.
A route set is a collection of SIP URI though which a request must traverse. A record-route
header forces a SIP user agent to add the URI contained in the header to the route set ordered
along the path to destination. Hence, a user agent will route a request firstly to the URI or
contact address of the focus peer in anticipation that the latter will route the message to the
conference URI. Instead, if a focus receives a request addressed to the conference URI it will
intercept it and respond it on behalf of the conference.

This represents a separation of the conference identifier and the locator of a conference in SIP.
For the participating SIP user agent does the signaling relation appear as it is communicating to
a single entity. But actually, after RF has transparently referred RP, RP is in a signaling relation
with AF . The intention behind this ID/Locator separation is to remain compliant to the standards
and hence to existing SIP implementations while performing a distributed conference. Just the
SIP behavior of the focus peers must be adjusted to maintain a DisCo in SIP. Since further SIP
requests enables him to maintain signaling with its participants in the role of focus.

After the 3-way handshake INVITE, OK, ACK the user agent RP and AF have negotiated their
preferred media types and codecs and establish the media session. Finally, notifies AF the
referring focus about the successfully call delegation.

5.5.3. Leave Management

A special issue in distributed conference control is the leave management of focus peers that
are actively maintaining signaling and media connections to several conference parties. De-
pended on whether a focus peer is retired expected or unexpected, the DisCo specifies a
proactive and a reactive leave management.

5. Distributed Conference Control based on RELOAD 78

Proactive Leave Management A focus peer that leaves the conference is responsible to
rearrange all its connected participants to the remaining conference controller. Therefore, a
focus uses the global knowledge provided by the XML event package for distributed conference
presented in section 6. It represents the entire state of a multiparty session and announces
the local states of all other focus peers. This including their remaining capacities to serve
further clients and their relative coordinates in the underlying network. Based on this global
knowledge, a focus peer delegates all participants to the remaining focus peers as described
in the following strategies:

Filling Vacancies: The first strategy is the delegation of participants to those focus peers that
are actively managing the conference. Thereby, the delegating peer should consider the
vacancies of those focus peers and their relative distance to the parties been delegated.
By calculating the order of closest focuses for each participant and a subsequent dis-
tribution onto the further focus peers achieves the best delegation result with respect to
management overhead and conference topology shifts.

Activating Focuses: If all remaining vacancies are exhausted by delegating participants, the
leaving focus delegates the its client to the participants that are registered are registered
as focus. It should redistribute the last remaining participants on as few potential focus
peers as possible to avoid enlarging the diameter of conference topology. It thereby
concerns the relative distance between the potential focuses and the participants. Fur-
thermore it takes in account not to overload a focus by delegation to many parties as the
delegating focus has no information about the capacities of those peers yet. However,
as all peers in a conference should have more or less an equivalent computing power
and hence the leaving peer will have to delegate very few parties.

As all or at least the most of the parties are rearranged to the other conference controller, the
latter can leave the conference as described in section 5.3.3.

Reactive Leave Management If a focus peer leaves unexpected, e.g., by network or system
failures the conference parties rejoin the conference. The following two strategies can be
simultaneously performed by the lost participants and the remaining conference controller.

Rejoin: If a participant detects the loss of its responsible focus (e.g. missing signaling and/or
media packets) it should repeat the joining procedure as described in section 5.3.2. This
ensures at least an early rejoin to the distributed conference.

Re-invite: Focus peers detecting the disappearance of a focus will detect try to re-invite lost
parties. The re-invites should not be performed concurrent with the other focuses since
the INVITE requests by focus peers appear as a single entity for SIP user agent. Hence,
should be re-invites performed according to proximity concerning the relative coordinates

5. Distributed Conference Control based on RELOAD 79

of an user agent. If no proximity information for a peer is available, concurrent focus
peers follow a tie-breaker heuristic to resolve the concurrency. The focus whose node-id
is the numerically smallest should re-invite the lost parties to the maximum of vacancies
it has. Thereafter, the peer with the second smallest node-id fills re-invites to peer until
its maximal capacities, and so forth. The node-id of remote focus peers can be taken
from the XML event package for distributed conferences.

5.6. Media Management

5.6.1. Model for Media Distribution

This section describes a basic scheme for media negotiation and distribution, which is done
in an ad-hoc fashion. Each focus peer forwards all media streams it receives from the con-
ference to all connected peers it is responsible for and similarly all streams from its peers to
its responsible focus. This results in the media stream naturally following the SIP signaling
paths.

When a new peer has been attached to a focus, new media streams may be available to the fo-
cus, which need to be forwarded to the conference. To accomplish this, the new media streams
need to be signaled to the other participants. This is usually done by sending a SIP re-INVITE
that modifies the media sessions by adding the new streams to the SDP. This renegotiation can
be costly since it needs to be propagated through the whole conference. Also, distributing all
media streams separately to all participants can be quite bandwidth intensive. Both problems
can partially be mitigated by focus peers performing mixing of media streams, thus trading
bandwidth and signaling overheads for computational load on focus peers.

5.6.2. Offer/Answer Model

A peer joining a conference negotiates media types and media parameters with its designated
focus using the standard SDP offer/ answer protocol [52]. The focus should offer all existing
media streams that it receives from the conference.

A new participant does not necessarily know about all media streams present in a conference
beforehand, and thus some of the media streams might not be included in the initial SDP offer
sent by the joining peer. An SDP answer sent by the corresponding focus can not contain any
media streams not matching an offer (cf. RFC-3264 [52] Section 6). A joining peer which is
aware of the distributed nature of the conference, should not send an SDP offer in the initial
INVITE message, but instead send an empty INVITE to which the focus replies with an OK,
containing the offer. This prevents the need for a second offer/answer-dialog to modify the

5. Distributed Conference Control based on RELOAD 80

session. But for compatibility the normal behavior with the INVITE containing the complete
offer must be supported.

For new media streams, (i.e., sent by the new participant) the focus should only offer media
types and codecs which are already used in the conference and which will probably be ac-
cepted when forwarded to neighboring peers, unless the focus is prepared to do transcoding
or mixing of the received streams.

A focus has two options when distributing media streams from a new participant to the confer-
ence. The focus can either mix the new streams into his own, thus averting the need to modify
the already established media sessions with neighboring peers or in case the focus is not will-
ing or able to do mixing of the media streams, he should modify the media sessions with all
attached peers by sending a re-INVITE, adding the new media streams coming from the newly
joined participant to the SDP. This should subsequently be done by all other focus peers upon
receiving the new stream, resulting in the stream being distributed across the conference.

6. Management of a Coherent Conference State 81

6. Management of a Coherent Conference State

6.1. Introduction

The constitution of all distributed knowledge about signaling and media relations among the
conference participants and focus peers defines the global state of a distributed conference.
It is composed of the union of every local state at the focus peers. To enable focus peers to
provide conference control operations that modify or require the global state of a conference,
RELOAD usage for distributed conference control defines a mechanism for inter-focus state
synchronization. Global knowledge is essential to comprehend the entire state of a conference
in order to adapt on changes. For instance, the disappearance of a focus peer requires re-
construction procedures, which are only possible if all peers have an even knowledge base.

Even though the conference state could be announced via broadcast or multicast among the
peers, the change event distribution is based on mutual subscriptions for SIP events. The
reason for SIP events is the restricted scope of broadcast and multicast domains. A distributed
conference can be performed on a global scale thus demanding a synchronization mechanisms
not limited by provider boarders.

The Event Package for Distributed Conferences and allows to preserve a coherent knowledge
of the global conference state. This XML based event package named distributed-conference
must be supported by each DisCo-aware application to enable the state synchronization within
a distributed conference. Participants of a distributed conference should subscribe for DisCo-
event package to display the conference state to the user. To provide backward compatibility
to conference members that do not support the distributed-conference event package, a trans-
lation to the Event Package for Conference State [18] called conference-info is provided.

In a previous work [65, 66] we proposed a focus synchronization by using event package for
conference state that was augmented by a multi-focus extension. Further evaluations and
feedbacks pointed out that an extended conference-info XML document does not meet the
requirement for distributed conferencing. In particular, it does not fit race conditions while con-
current and maybe opposed change events. The coherency of the distributed conference state
demands a versioning scheme is able to provide the partial ordering of concurrent change
events. Furthermore, the DOM tree of conference-info package is not proposed to for concur-
rent write change events that could produce race conditions. This motivated the specification
of a new event package adapted to the requirements of distributed conferencing.

6. Management of a Coherent Conference State 82

Subscribe

Subscribe

Subscribe

Notify

Notify

NotifyFocus

Participant Participant

Participant

(a) Central Notifier

Notify

Subscribe Subscribe
Notify Notify Notify

Focus C

Participant Participant

Focus A

Subscribe

Subscribe

Subscribe

Notify

Participant

Focus B

(b) Several Notifiers in DisCo

Figure 28: Distribution Models: Advertisement of change event in SIP

6.2. Distribution of Change Events

SIP event notifications [10] are generally built on a publish/subscribe model. A central service
notifies a group of subscribed user agents about changes on the object of interest. In DisCo,
the object of interest is the conference state which is partly distributed onto several independent
entities each of them assuming the role of a notifier for change events. Hence, focus peers a
that are actively managing a distributed conference are subscribers and notifiers for DisCo
events. Figure 28 compares conventional event notification with the state synchronization in
a DisCo. In traditional SIP conferencing 28a, the central focus has a complete view on the
participating users as it solely maintains the signaling relations. The participants subscribe the
focus for an event package, e.g., the conference-info package to obtain a similar view as the
focus.

In a distributed conference 28b, the participants likewise subscribe to their focus peer to obtain
notifications about changes in state. As shown in the figure 28b the focus peers A,B and C
maintain each a subscription to their neighboring focus. Focus A had subscribed B and focus
B subscribed focus A and C. If the state at focus A has changed, e.g., because it accepted a
new participant, it sends B an SIP NOTIFY containing the state delta represented by the XML
document. B will update its local XML document and will propagate the change event to focus
C and to its subscribers. In this way, change events are flooded via the intermediate focus
peers to the entire conference. This event propagation is loop free by using a version vector
that maps the partial ordering of each change event. If a subscriber receives a change events
several times, it can identify duplicates by the version vectors of the events.

The inter-focus communication paths are generally following the evolution of conference con-
struction. A detailed example for such a scenario is shown in the call flow in figure 29. The
participant B selected focus A as its entry point to conference after it fetched the DisCo-
Registration from the RELOAD overlay. After the SIP 3-way handshake and media estab-

6. Management of a Coherent Conference State 83

Joining
Peer JP

Focus A

INVITE sip:disco

NOTIFY content: full XML

200 OK

Participant B

INVITE sip:disco

200 OK

200 OK

ACK

ACK

Subscribe event: disco

200 OK

RTP/Media

INVITE sip:disco isfocus

200 OK

ACK

RTP/Media

Subscribe event: disco

200 OK

NOTIFY content: partial XML

200 OK

B joins the
conference and
subscribes for
DisCo events

180 Ringing

JP joins the
conference

B becomes focus
of conference

and re-INVITEs A
to announce it

A is aware of B‘s
focus role and
subscribes for
DisCo events

StoreReq DisCo

Figure 29: Mutual subscriptions: Party becoming focus and synchronizing state

lishment, B sends a SIP SUBSCRIBE request to A to obtain notifications for the DisCo event
package indicated in the Event header field. After accepting, the focus A sends the first notifi-
cations that contains an XML document representing the entire state of the multiparty session.
Subsequently registers B its RELOAD node-id in the overlay as indicated by the figure sending
a StoreReq. The registration as potential focus peer may had based on the received confer-
ence state, for instance it recognized that focus A is reaching its threshold to serve additional
clients.

Following, a joining peer JP selected B as its focus to participate in the conference by sending
an INVITE request. B responds with a provisional 180 Ringing to acknowledge the retrieval
of the call but will not answer the call yet. Before replying, B re-INVITES focus A to possibly
renegotiate the media parameter and to publish its switch to focus role by adding the isfocus
parameter to its contact address. Thereafter the new established focus peer B answers the
INVITE by JP and connects him to the conference media.

Since focus A is aware of Bs change of role, it autonomously subscribes for DisCo events at
B. The latter responds by sending its first SIP notification whose body contains the state delta
from the last receive conference state to the last recent state including the appearance of JP.

6. Management of a Coherent Conference State 84

By performing this subscription procedure, the synchronization paths naturally follow the pro-
cess of evolution of a conference. In a worse case scenario, the resulting focus topology
forms a chain of conference controller. However, the DisCo event package provides the global
knowledge of all signaling and media relations among the peers in a multiparty session. This
knowledge can be used to optimize the conference topology to a more sophisticated intercon-
nection graph (e.g., tree or hypercube topology). Such optimization strategies are out of scope
of this document and left to future work.

6.3. Event Package for Conference State

6.3.1. Overview

The distributed-conference event package is designed to convey information about roles and
relations of the conference participants. Conference controllers obtain the global state of the
conference and use this information for load balancing or conference restructuring mechanisms
in case of a focus failure. Figure 30 gives a general overview of the DOM tree while appendix
A contains the entire XML schema definition.

version-vector

distributed-conference

version
conference-description
focus

focus-state
user-count
coordinate
maximum-user-count
active
locked
conf-uris
available-media

users
user

enpoint
media
call-info
...

relations
relation

focus

Figure 30: Overview: Event package for distributed conferences

6. Management of a Coherent Conference State 85

The document structure is designed to allow concurrent change events at several focus peers.
To prevent race conditions, each focus peer has exclusive writing permission to the focus sub
element that describes itself. It is achieved by a unique mapping from a focus peer to its
XML element using the element keys mechanisms for partial notification defined in the event
package for conference state [18] and described in section 2.2.3. A focus peer is only allowed
to update or change that <focus> sub element, whose entity element key contains its RELOAD
username. This restriction also applies to the child elements of the version-vector element.
Each version number belongs to a specific focus peer maintaining the version number.

The local state of a focus peer is described within a focus element. It provides general in-
formation about a focus peer and its signaling and media relations to participants and focus
peers. The conference participants are aggregated within users elements, respectively, user
sub elements.

General information about the conference as a whole, is provided within a conference-
description element. In contrast to the focus and version-vector elements, conference descrip-
tion is not meant for concurrent updating. Instead, it provides static conference descriptions
that rarely change during a multiparty session.

More detailed descriptions about the event package and its elements are provided in the fol-
lowing sections.

6.4. Description of XML Elements

6.4.1. <distributed-conference>

The <distributed-conference> element is the root of a distributed conference XML document.
It uses the following attributes:

entity: This attribute contains the conference URI that identifies the distributed conference.
A SIP SUBSCRIBE request addressed to this URI initiates an subscribe/notify relation
between participants and their related focus peer.

state: This attribute indicates whether the content of a distributed conference document is a
full, partial or deleted information. It is in accordance with the conference-info event
package [18] to enable the partial notification mechanism.

The <distributed-conference> child elements are <vector-version>, <conference-description>
and the <focus> elements. An event notification of state full includes all these elements. An
event notification of state partial contains at least <version-vector> and its sub elements.

6. Management of a Coherent Conference State 86

6.4.2. <version-vector>/<version>

Background Version vectors are based on vector clocks [67] and are used to follow the
changes of data in concurrent distributed system. It enables the receiver to determine an
update precedes another, succeeds it or if a local copy and the received are concurrent. Hence,
systems receiving data that uses vectors for version control can track the causality of retrieved
data. Therefore, each endpoint in the distributed system exclusively maintains its own version
number in the vector that is incremented by one if the local state changes. As a result, version
vector V has n elements with n is the number of entities in the system. An element i in a vector
accordingly represents the updates generate at a System Si. On propagating the update to the
other systems, the entire version vector its attached to enabled the receivers to validate the
causality. An example [68] is shown as follows:

System 1 V1 = {2,0,3} (2)

System 2 V1 = {2,1,3} (3)

System 3 V1 = {2,1,5} (4)

A vector Vx is greater a vector Vy if at least one element i is greater and all remaining elements
of Vx are at least equal to Vy. Thus in the example applies V1 <V2 <V3 identifying system 1 as
out of date concerning the local states of systems 2 and 3. Assuming that the vector of system
2 had been V1 = {2,2,3}, the vectors V2 and V3 were concurrent and demand a resolution.

Version-vector Element The event package for distributed conferences uses the <version-
vector> and its <version> sub elements to enable a scheme for coherent version control. Each
<version> element contains a unsigned integer that describes the state of a specific focus peer
and contains the following attributes:

entity: This attribute contains the username of the focus peer whose local version number is
described by this element.

node-id: This attribute contains the node-id of the focus peer.

Whenever the local status of a focus peer changes (e.g., a new participant arrived) the version
number of the corresponding <version> element is incremented by one. Each change in the
local state also triggers a new event notification containing the entire <version-vector> and the
changes contained in a <focus> element.

6. Management of a Coherent Conference State 87

The recipient of a change event needs to update it local XML document. If a received <version>
number is higher that the local, it updates the <version> element and its associated <focus>
element with the retrieved elements. All other elements remain constant.

If the length or any version number of the retrieved <version-vector> is different from the local
copy it indicates a incoherent knowledge about the entire conference state. If the retrieved
<version-vector> contains any unknown focus peers and any local version numbers for the
known focus peers is lower, the receiver requests a full XML notification.

If any local <version> number is retarded more than one, the receiver requests a full event
notification from the sender. The full state notification updates all <focus> elements whose
corresponding <version> element is out of date.

The version vector is further designed to merge concurrent vectors. Each vector number also
contains the URI of the focus peer. Thus the receiver of a concurrent vector can comprehend
which elements of its local state are greater or lower than of the received element.

6.4.3. <conference-description>

The <conference-description> element provides general information and links to auxiliary ser-
vices for the conference. The following sub elements provide human-readable text descriptions
about the conference:

<display-text>: Contains a short textual description about the conference.

<subject>: Contains the subject of the conference.

<free-text>: Contains a longer textual description about the conference.

keywords: Contains a list of keywords that match the conference topic. The XML schema
definition and semantic is imported from the conference-info event package [18].

The <service-uris> sub element enables focus peers to advertise auxiliary services for the
conference. The XML schema definition and semantic is imported from the conference-info
event package [18].

The <conference-description> element uses the state element key to enable the partial notifi-
cation mechanism.

6. Management of a Coherent Conference State 88

6.4.4. <focus>

Each <focus> element describes a focus peer actively controlling the conference. It provides
general information about a focus peer (e.g., display-text, languages, etc.), contains conference
specific information about the state of a focus peer (user-count, available media types, etc.) and
announces signaling and media information about the maintained participants. Additionally, it
describes signaling or media relations to further focus peers.

The <focus> element uses the following attributes:

entity: This attribute contains the username of the RELOAD peer acting as focus peer. It
uniquely identifies the focus peer that is allowed to update or change all sub elements
of <focus>. All other focus peers are not allowed to update or change sub elements
of this <focus> element. A SUBSCRIBE request addressed to the username initiates a
conference state synchronization with the focus peer.

node-id: This attributed contains the node-id of the peer acting as conference focus.

state: This attribute indicates whether the content of the <focus> element is a full, partial or
deleted information. A partial notification contains at maximum a single <focus> ele-
ment.

Following, a detailed description of the sub elements of the <focus> element.

<focus-state> The <focus-state> element aggregates a set of conference specific informa-
tion about the RELOAD user acting as focus peer. It uses the state attribute to enable the
partial notification mechanism and has the following sub-elements:

<user-count>: This element contains the number of participants that are connected to the
conference via this focus peer at a certain moment.

<coordinate>: This element contains the coordinate value of the focus peer which is stored
in the overlay.

<maximum-user-count>: This number indicates a threshold of participants a focus peer is
able to serve. This value might change during a conference, depending on the focus
peers current load.

<conf-uris>: This element can contain other conference URIs in order to access the confer-
ence via different signaling means. The XML schema definition and semantic is imported
from RFC4575 [18].

<available-media>: This element is imports the <conference-media- type> type XML scheme
definitions from RFC4575 [18]. It allows a focus peer to list its available media streams.

6. Management of a Coherent Conference State 89

<active>: This boolean element indicates whether a focus peer is currently active managing
the conference. If this value is false, the focus peers is registered and ready to accept
incoming participation requests.

<locked>: In contrast to <active>, this element indicates that a focus peer is not willing to
accept further participation or call delegation request.

<users>/<user> The <users>, respectively, each <user> element describes a single par-
ticipant that is maintained by the focus peer described by the parent <focus> element. The
<users> element XML schema definition and its semantic is imported from the conference-info
event package [18]. The <users> element is briefly described in section 2.2.3, however, a
detailed description of this elements is out of scope in this document.

<relations>/<relation> The <relations> element serves as container for <relation> elements,
each describing a specific connection to another focus peer. It enable a conference controller
to trace back the entire interconnection graph among the focus peers. The parent element <re-
lations> uses the state attribute to enable the partial notification mechanism and the following
attributes are defined:

entity: This attribute contains the user name of the remote focus.

node-id: This attribute contains the node-id of the remote focus peer.

The content of each <relation> is a comma separated string that describes the tuple
<CONNECTION-TYPE:IDENTIFIER>. The CONNECTION- TYPE is a string token describ-
ing the type of connection (e.g. media, signaling, etc.) and the IDENTIFIER contains a variable
connection identifier. It is a generic method to announce any kind of connection to a remote
focus. This specification defines following tuples:

<media:label>: This tuple identifies a single media stream. The label variable contains the
SDP label attribute [18] that was used within the offer/answer process while joining the
conference.

<sync:call-id>: This tuple indicates a specific subscription for the event package for dis-
tributed conferences. The ’call-id’ variable contains the call-id of the SIP subscription
dialog. Using this relation, a focus peer can track back the mutual subscriptions for
DisCo event among all conference controller.

6. Management of a Coherent Conference State 90

6.5. Translation to Conference-Info Event Package

The DisCo event package described in the previous sections, imports several XML element
definitions of the Event Package for Conference State [18] due to two reasons. First, the
semantic of these elements are matching the demands to describe the global state of a dis-
tributed conference and, second, it facilitates a backwards-translation to the conference-info
event package. This enables a backward compatibility to DisCo-unaware SIP implementa-
tions. Each focus peer can provide a separate notification service granting to conventional SIP
user agents a view on the conference state.

The following sections describe the translation to the Event Package for Conference State
by defining translation rules for the root element and its direct sub-elements. For a better
understanding, the following sections use a notation ci.<ELEMENT> to refer to a sub-element
of the conference-info element, and disco.<ELEMENT> to refer to an element of the distributed-
conference event package.

6.5.1. ci.<conference-info>

The root element of Event Package for Conference State uses the attributes entity, state and
version and is the counterpart of the <distributed-conference> root element in the DisCo Event
Package. The former two attributes entity and state are equal in both root elements and can
be seamlessly translated.

The version attribute is incremented by one at any time a change event is detected locally or
by an event notification of a remote focus.

6.5.2. ci.<conference-description>

The <conference-description> element exists in both event packages, conference-info and
distributed-conference. Thus, the following elements are seamlessly translatable: <keywords>,
<display-text>, <subject>, <free-text> and <service-uris>.

The sub elements <conf-uris>, <maximum-user-count> and <available- media> in conference-
info have there counterparts below the /focus/focus-state element of the distributed-conference
event package. Each describes a local state of a focus peer in the conference. Hence,
the intersection of every disco.<conf-uris>, disco.<available-media> and the sum over each
disco.<maximum-user- count> element of each disco.<focus> element in distributed- confer-
ence, specifies the content of the corresponding conference- info elements.

6. Management of a Coherent Conference State 91

6.5.3. ci.<host-info>

The ci.<host-info> element contains information about the entity hosting the conference. For
participants in a distributed conference, the hosting entity is their focus peer. Thus, the ci.<host-
info> element contains information about the focus peer.

6.5.4. ci.<conference-state>

The ci.<conference-state> element allows subscribers obtain information about overall state of
a conference. Its sub elements ci.<user-count>, ci.<active> and ci.<locked> are reused as sub
elements of
focus
focus-state to describe the local state of a focus peer in a distributed conference. The transla-
tion rules from the distributed-conference to the conference-info event package are the follow-
ing:

<user-count>: The sum over each value of the disco.<user-count> element defines the cor-
responding ci.<user-count>.

<active>: The boolean ci.<active> element is the logical concatenation over all disco.<active>
elements by an OR-operation.

<locked>: The boolean ci.<locked> element is the logical concatenation over all
disco.<locked> elements by an AND-operator.

6.5.5. ci.<users>/ci.<user>

The distributed-conference event package imports the definitions of the ci.<users> and
ci.<user> elements under a parent disco.<focus> element for each focus peer in a conference.
Thus, the aggregation over all disco.<users> elements specifies the content of the correspond-
ing ci.<users> element.

6.5.6. ci.<sidebars-by-ref>/ci.<sidebars-by-value>

The conference-info event package provides a representation for users in a conference that are
simultaneously joined within another sidebar conference. The DisCo event package does not
provide a sidebar representation thus for the ci.<sidebars-by-ref> and ci.<sidebars-by-value>
apply the rules as specified in RFC4375 [18].

7. Implementation 92

7. Implementation

7.1. Libraries to Implement DisCo

The protocol scheme for distributed conferencing defines behaviors and data structures for the
usage on the SIP [1] and RELOAD base protocol [4]. Since the Session Initiation Protocol is
an established and widely deployed signaling protocol, several commercial and open source
implementations exist in almost every programming language. For example, the implementa-
tion of an early DisCo SIP scheme called SDCON [69] was implemented on the protocol-level
SIP Stack JainSIP [70] for Java.

In contrast to SIP, the RELOAD base protocol is still an Internet draft and has had have several
changes in the past. This might be a reason why there were very few implementations of
RELOAD and most of them were not published. The only partial implementation of RELOAD
was published by Amit Ranpise [71] and just covered the data storage module and a RELOAD
message parser written in C++. Hence, the circumstances to implement and prove the DisCo
concepts were not preexisting. Finally, we obtained an advanced RELOAD implementation by
a cooperation with TLabs/T-Systems of the Deutsche Telekom AG.

7.1.1. MP2PSIP Project aka RELOAD.NET

The used RELOAD stack implementation is the MP2PSIP project. It was initially developed
as a confidential project within the Deutsche Telekom AG, Laboratories to evaluate the usage
of a P2PSIP network that is supporting VoIP infrastructure. The project is scheduled to be
published soon as open source stack named RELOAD.NET. The protocol stack is an .NET/C#
implementation that includes the modules as shown in figure 31.

RELOAD Class: The RELOAD Class subproject comprises the core implementation of the
RELOAD base protocol. This includes a usage layer, the message transport, storage,
the topology plugin implementing Chord [72] key-based routing and the forward and link-
management controlling the underlying transport layer. The core of the stack is not a full
RELOAD implementation. It omits, e.g., the implementation of Interactive Connectivity
Establishment (ICE) [36] used for NAT traversal, due to ICE itself is a new protocol stan-
dard and thus is not available in any programming language. In previous works [73, 74],
the MP2PSIP project (aka RELOAD.NET) had been extended with several functionalities
to be suitable for a implementation of DisCo and Share usages. It includes an abstract
storage and usage layer to enabling the implementation of further application on top of
RELOAD.NET as well as optimizations in the key-based routing layer.

7. Implementation 93

RELOAD
Class

RELO
AD

 ServiceRE
LO

AD
 M

D
I

RELOAD Mobile

PJSIP NGA Mobile

Enum
Server

Microsoft
CCR

Secure
BlackBox

Chord Monitor

DNSHTTP

<<uses>> <<uses>>

IPC

Figure 31: RELOAD.NET: Component Overview

RELOAD MDI: The RELOAD MDI is a graphical user interface for emulating and debugging
the core implementation. It enables to start several RELOAD peers/clients on a single
device and to achieve simple store and fetch operations.

RELOAD Service: The RELOAD Service is a subproject to deploy the core implementation
as Windows Service. It is designed to run, e.g., as bootstrap peer.

RELOAD Mobile: The mobile module of the RELOAD.NET stack contains the RELOAD Mo-
bile subproject and the PJSIP NGA softphone. The former is a variant of the core imple-
mentations using the same source code but adapted to the .NET compact framework.
The adaption to Windows Mobile 6.X devices is mostly handled by pre-compiler direc-
tives, e.g., an adaption to the different environment variables of Windows and Windows
Mobile. The PJSIP NGA is a SIP client based on the PJSIP SIP stack [75] written in C++.
It provides regular VoIP using SIP for signaling, as well as the registration and lookup
functionalities of RELOAD.

Further related to the RELOAD.NET protocol stack is a monitoring tool Chord Monitor and
enum server. The enum server is a ordinary bind9 daemon that translates fully qualified phone
numbers to SIP identifier. It is used to enable a user to call his buddies via SIP/RELOAD by
typing their mobile phone number. The Chord Monitor is an ASP.NET and JavaScript project
based on the Google Maps [76] API. It renders all RELOAD peers and clients on top of a Google
map [5] and displays each predecessor/successor relations and each established transport
connection. The resulting graph arranges all participants of a RELOAD overlay according to
the their overlay addresses in Chord overlay typical ring topology.

7. Implementation 94

The core classes use to two external libraries to provide the RELOAD service. The Eldos
Secure BlackBox (SBB) [77] and the Microsoft Concurrency and Coordination Runtime (CCR)
[78]. SBB is a commercial security framework for .NET/C#. The stack uses its capabilities for
TLS [42] secure transport connections and the handling of X.509 certificates [79]. The MS
CCR is a library from out the Microsoft Robotics Studio. It facilitates the handling of concurrent
procedures by providing a dispatcher class managing multiple method delegates passed to the
dispatcher via queues.

However, the RELOAD.NET stack is still work in progress any several features are not sta-
ble yet. The implementation and the further evaluation of the DisCo protocol scheme were
hampered by bug-fixing the RELOAD stack. Nevertheless, it is still one of the most advanced
RELOAD base implementations and may by improved by publishing it as open source soft-
ware.

The RELOAD.NET stack can be initialized by creating a new instance of the
Reload.Machine class as shown in listing 16. The minimal configuration to run the
stack is a delegate that has a RELOADGLOBALS.TRACEFLAGS enum and string as param-
eter and has no return values. The delegate must be set after stack instantiation by setting
its ReloadConfig.Logger property (see line 8 in 16). The delegate implements a trace logger
using the TRACEFLAGS to categorize the logging output, e.g., TRACEFLAGS.T_ERROR to
indicate an internal error or exception. A minimally initialized RELOAD stack will use the default
configuration that instantiates a RELOAD client application that tries to contact the default
enrollment server and bootstrap peer. A detailed stack configuration can be done through the
ReloadConfig member variable of the Machine class or the ReloadGlobals class
that contains static variables.

1 using TSystems .RELOAD ;
2 namespace ReloadTest {
3 class Program {
4 static void Main(string [] args) {
5 Machine machine = new Machine () ;
6 // Set Logger delegate
7 machine .ReloadConfig .Logger = new ReloadConfig .LogHandler(Logger) ;
8 }
9 void Logger(ReloadGlobals .TRACEFLAGS traces, string s) {

10 /* Implementation of Logger */
11 }
12 }

Listing 16: Initialization: The RELOAD machine class

While the former configuration focuses on user dependent properties (e.g., IMSI, SIP URI,
isClient, isPeer) does the Globals class adjust the stack properties, e.g., retransmission timer

7. Implementation 95

or enrollment server address. Those values are partially settings for a specific RELOAD overlay
instance and will be adjusted automatically through an overlay configuration document that is
retrieved at enrollment.

The initial MP2PSIP project was not designed to serve any application built on top of it via an
adequate interface. In an older version, the stack had only communicated via the Windows
registry to the PJSIP NGA mobile VoIP application. To enable a communication from the
RELOAD stack to the upper application three method delegates were added to the Machine
class as shown in listing 17.

1 /* Returns the dialog object containing the transaction parameter */
2 public delegate bool DStoreCompleted(ReloadDialog dialog) ;
3 /* Returns the list of Usage objects, representing application data */
4 public delegate bool DFetchCompleted(List<Usage> usageResult) ;
5 /* Returns an ICE candidate containing an IP address and port */
6 public delegate void DAppAttachCompleted(IceCandidate ice) ;

Listing 17: Delegates: Enabling application to receive events

The DStoreCompleted delegate returns on a store answer message a ReloadDialog
object. It contains in example, the source and destination addresses (node-ids), the
transaction-id and a status indicating the success of the store request. A list of Usage in-
stances is returned to the application on a successful fetch request. A Usage is an abstract
interface whose implementations provide several methods to handle the received data. For ex-
ample, each usage implementation does de-/serialization of the RELOAD Kind data structures
and implements the procedures to obtain the destination address requested by the application.
The address of the destination has finally returned within an ICECandidate object returned
by the DAppAttachCompleted delegate. The ICE candidate including an IPAddress
object is used by the application to create the application session. This is a design decision
to facilitate the subsequent signaling procedures and not following the RELOAD base protocol
[4] specifies. Following RELOAD, the DAppAttachCompleted delegate should return an
initialized socket object used by the SIP stack to create a INVITE request. However, it is difficult
to pass an C# socket to the used SIP stack natively written in C. The reasons for a native C
SIP stack are explained in the following section.

7.1.2. PJSIP Stack/ Sipek Wrapper

The second protocol used by the DisCo is the Session Initiation Protocol [1]. Hence, to imple-
ment a prototype for distributed conference control, it demands a SIP stack ideally written in
C# for better compatibility to the RELOAD.NET stack. However, are most of the available SIP
stack for .NET under a commercial license. An alternative to a native C# implementation is a C#

7. Implementation 96

wrapper of an open source project written in C/C++. A wrapper recommended wrapper facade
is the pjsipDll/Sipek project under GPL2 license and published as Google Code. The pjsipDll
is a plain C wrapper interface to the high level API of the PJSIP stack [75]. The PJSIP SIP
stack is an advanced SIP implementation including libraries for media negotiation and trans-
port via SDP/ RTP [7, 53], utilities for NAT traversal and implements several SIP standards4.
The Sipek project is build on the pjsipDll wrapper and provides an API for call establishment
and messaging.

The Sipek API provides the CCallManager class as main interface to the underlying pjsipDll
wrapper and respectively, the native PJSIP stack. Listing 18 shows a minimal initialization of
the stack.

1 void InitAndCall(string uri, IPhoneConfig config) {
2 /* Create call manager through a singlton */
3 var manager = CCallManager .Instance ;
4 /* Add method delegate to receive events */
5 manager .CallStateRefresh +=
6 new DCallStateRefresh(CallManager_CallStateRefresh) ;
7 manager .IncomingCallNotification +=
8 new DIncomingCallNotification(IncomingCallNotification) ;
9 /* Init registrar and add a method delegate */

10 pjsipRegistrar .Instance .AccountStateChanged +=
11 new DAccountStateChanged(Instance_AccountStateChanged) ;
12 /* Configure manager, registrar and proxy */
13 manager .Config = config ;
14 pjsipRegistrar .Instance .Config = config ;
15 pjsipStackProxy .Instance .Config = config ;
16 /* Initialize */
17 manager .Initialize(pjsipStackProxy .Instance) ;
18 /* Call */
19 manager .CreateSmartOutboundCall(uri, 0) ;
20 }

Listing 18: Sipek: Initiation call manager

The reason for two independent project libraries is caused by different behaviors of the .NET
runtime and Mono runtime environment. In particular uses the Mono variant other binaries as
the .NET version. The underlying TLS stack of the RELOAD Class sub-project is a dedicated
Mono build. The pjsipDll whose sources are native C are specially compiled for Linux OS based
systems to obtain dynamic .so library instead of an .dll binary. The remaining sub-projects are
described as follows:

4See complete implementation list on the pjsip homepage [80]

7. Implementation 97

RELOAD Class

DisCo.MDI Console Client

DisCo Class

Sipek API

pjsipDll

<<import>>

<<access>>

<<import>>

<<import>>

<<import>>

RELOAD DisCo

PJSIP
<<merge>>

RELOAD Mono <<import>>

Figure 32: Packet Diagram: Project overview

DisCo MDI: The DisCo MDI project provides graphical user interface for creating SIP calls
and conferences using RELOAD base protocol and plain SIP. It imports the DisCo Class
project to perform SIP calls and RELOAD storage and lookup functions.

Console Client: The Console Client component is a terminal application designed for testing
and automated execution. It can be configured to display a user an console interface to
perform RELOAD operations (join, store, fetch, etc.). Alternatively, it can be configured
to accepts console parameters to perform a predefined behavior. E.g., it can start as
bootstrap node or initial creator of a distributed conference. The console client imports
the DisCo class project to be enabled to run the DisCo and Share usages and addi-
tionally imports the RELOAD Class directly. This additional import enables the console
client to directly invoke particular functions for the RELOAD Class project for testing and
evaluation.

DisCo Class: The DisCo Class project is class library and implements the DisCo and ShaRe
usages. It further provides an additional abstraction layer to the applications importing
this class library. E.g., the storage of a DisCo-Registration [6] is implemented as a single
invocation of a method that performs the steps of the registration procedure as described
in section 5.3.1. It imports the Sipek API to perform call establishment and the Reload
Class library for P2PSIP operations.

Sipek API: The Sipek class library provides an interface to the callback functions of the
pjsipDll. It is added to the RELOAD DisCo/Mono project library to directly edit its source
to enable the implementation of the SIP protocol scheme for distributed conferences.

7. Implementation 98

RELOAD Class: This sub-project is the core RELOAD implementation of the RELOAD.NET
project as described in section 7.1. The core library was continuously improved and
extended during implementation of the DisCo protocol.

The external components of the project are the pjsipDll and the PJSIP stack. They are complied
once for each operating system and the created dynamic libraries are accessed by the Sipek
API.

7.1.3. XML Schema Converter

The RELOAD overlay configuration document is specified within a complex XML schema in
Relax NG notation. An efficient method to obtain a class representation in source code is the
usage of XML to source tools. The MS Visual Studio environment provides an xsd.exe tool
to convert XML document to XML schema, and to convert an XML schema to C# or Visual
Basic representation. However, is the xsd.exe tool not able to parse and process the Relax NG
schema notation. This limitation was solved by the usage another XML tool called Trang [81].
Trang is an open source tool for XML schema conversation.

To obtain a C# representation for XML schema defined the ShaRe and DisCo [5, 6] and
RELOAD base [4], all three Relax NG schema were combined in one *.rng file and converted
via Trang to an XML schema. The latter was then used to generate a C# source code repre-
sentation. For a further usage in the application, an retrieved XML document can be parsed
to a C# class using the .NET XMLSerializer class. A sample of its usage is shown in
listing 19. The overlayelement is the class representation of the RELOAD configuration
document generated by xsd.ex and is passed to the serialized to serialize the obtain XML to
an object.

1 var serializer = new XmlSerializer(typeof(overlayelement)) ;
2 var document = (overlayelement)serializer .Deserialize(tr_xml) ;

Listing 19: XML Serializer: Obtaining a class representation of the configuration document

7.1.4. DisCo Class Design

The class library for distributed conference control combines the two class libraries Sipek and
RELOAD Class to an interface for the usage by applications. Therefore it implements two
connectors to each of those libraries and an API to the application. The component diagram
shown in figure 33 illustrates the internal structure of the DisCo Class project. It includes the

7. Implementation 99

DisCo Class

Reload ConnectorUnit Testing
DisCo Call
Manager

DisCoUsage ShaReUsage

Sipek API RELOAD Class

<<uses>>

<<uses>>

<<controls>>
<<controls>>

Figure 33: Component Diagram: Internal structure of the DisCo Class project

implementation of the RELOAD DisCo and ShaRe usages, a DisCoCallManager compo-
nent and the connector interface to the RELOAD Class project. Additionally, it provides a unit
testing module to prove the correct implementation of several methods.

The DisCoUsage and ShaReUsage classes are implementing the RELOAD protocol pro-
cedures to register and resolve a conference identifier for a DisCo. Both classes implement
an abstract Usage interface thus to be compliant to the RELOAD core implementation. That
latter provides a UsageManager class that is build as a factory pattern. The Reload
Connector component registers both usage classes at the manager class of the RELOAD
core and further listens on the method delegates shown in listing 17 to obtain RELOAD
events.

The DisCo Call Manager component is instantiates the Sipek SIP stack and augments it
with the RELOAD/DisCo protocol. It maintains a reference to the Reload connector component
to register conference IDs in the RELOAD overlay that are obtained from the user application,
e.g., the DisCo MDI graphical user interface.

7.2. Implementation of Usages

7.2.1. Shared Resources

The RELOAD usage for Shared Resources [5] as described in section 4 consists mainly of
three aspects listed below:

7. Implementation 100

• An access control list (ACL) data structure each representing a trust delegation from one
overlay user to anther user

• An algorithm to create an array index that separates each individual ACL registration
from concurrent writing

• An access control policy regulating the store attempt on a shared resource

ACL Data Structure The first item is implemented by the two C# structs ACLItem and
ResNameExtension. C# provides the possibility to add contractors, methods to structs.
Both structs use this feature and implement a constructor to directly set all field on instantiation
as shown in listing 20. This allows a more comfortable and save instantiation of the structure if
all values for an ACL are known. Otherwise a developer would have to fist declare the structure
and subsequently assign each value and may forgets to set a data field.

1 public struct ACLItem {
2 public ResNameExtension resNameExt ;
3 public string toUser ;
4 public UInt32 kindId ;
5 public Boolean ad ;
6 /* Struct contructor for the ACL Item */
7 public ACLItem(ResNameExtension resNameExt,
8 string toUser, UInt32 kindId, bool ad) {
9 this .resNameExt = resNameExt ;

10 this .toUser = toUser ;
11 this .kindId = kindId ;
12 this .ad = ad ;
13 }
14 }

Listing 20: ACLItem: C# struct represention

Forming the Array Index The ACLItem struct is maintained within a ShareUsage imple-
menting the Usage interface. The latter is one of the improvements of the RELOAD.NET stack
done in a previous work [74]. One of the methods a Usage realization has to implement is the
Encapsulate() method. The function of this method is to wrap a Usage implementation into an
abstract StoreDataValue object thus the underlying RELOAD core implementation must
be aware of the concrete Usage object it will send or receive. Further, a stored data value is
carrying the meta data specified for the data model of an RELOAD Kind. In the case of the ACL
item which is an array, the StoredDataValue object has to be initiated with array index and
the mandatory exists flag. Hence, the Encapsulate() method has to implement the algorithm
for creating the individual array index. The realization is shown in listing 21.

7. Implementation 101

1 public StoredDataValue Encapsulate(Boolean exists) {
2 /* Obtain the peer node-id from the UsageManager */
3 var localId = myManager .m_ReloadConfig .LocalNodeID ;
4 byte [] bIndex = new byte [4] ;
5 /* Obtain the most significant 24 bit of my node-id */
6 Array .Copy(localId .Data, bIndex, 3) ;
7 /* Add the indivial index */
8 UInt32 index = myManager .MyArrayManager .CurrentIndex(
9 new ResourceId(item .resNameExt .rname) , this .item .KindId) ;

10 bIndex [3] = (byte)index ;
11 /* Convert byte array to UInt32 valie */
12 index = BitConverter .ToUInt32(bIndex, 0) ;
13 /* Create StoredDataValue object an return it to stack */
14 return new StoredDataValue(index, this, exists) ;
15 }

Listing 21: ACL Index: ShaReUsage object creating array index

The Encapsulate method obtains the information by its invoker, if this ACL item contains data
(extist = True) or if this ACL item will overwrite an existing ACL will null (exist = False). The
latter case is the default RELOAD operation to remove values from the overlay. To calculate
the array index, the method obtains the node-id of the peer from its UsageManager object
as shown in line 3. Via the array copy operations, the method obtains the most significant 24
bits of the node-id. The bits will delimiter the array index from array items stored by further
peers accessing the shared resource as all perform the same operation. Following, the ShaRe
usage implementation request its manager for current array index. This operation must be
performed by the usage manager since it is the only component that maintains a global view
on all usages. Therefore, the manager needs the resource-id and kind-id to increment the
corresponding counter. Afterwards, the index be concatenated to the previous 24 bits and re-
converted to an UInt32 as shown in lines 10 to 12. Finally, the index, exist flag and the usage
object are passed to the constructor of the StoredDataValue and returned to the RELOAD
stack.

Request Authorization A further mechanism defined in the usage for shared resources is
the authentication of the originator of an inbound store request or fetch answer. The vali-
dation rules defined in RELOAD access control policies need to be performed by the peer
responsible for storing the data and it is recommended that fetching peers validate the prove-
nance of the retrieved data. Acces control policies are realized in the by core RELOAD.NET
project via an AccessController class. The design and implementation of this com-
ponent was part of the improvements developed during a previous work [74]. On instantia-
tion of the controller class, it just provides the functionality to prove the integrity and prove-

7. Implementation 102

+storePermitted(req: StoreReq): boolean
+answerValid(ans: FetchAns): boolean

+name: string

<<interface>>
IAccessControlPolicy

+RegisterPolicy(policy: IAccessControlPolicy): void
+requestPermitted(message: ReloadMessage): boolean
+valuePermitted(req: StoreReq): boolean
+answerValid(ans: FetchAns): boolean

- topology: Topology

+policies: Dictionary<string, AccessControlPolicy>

AccessController

*

1ConcretePolicy

Figure 34: Access Control: Factory pattern for adding new policies

nance of the sender of the request, but not functions to validate the access control policies
for the Kind data that request contains. The latter functionalities are obtained by implemen-
tations of an IAccessControlPolicy interface whose realizations are registered at the
AccessController class. This factory like pattern is shown in figure 34. A realization
of the IAccessControlPolicy must have a public property returning the name of the
concrete policy, a storePermitted() and a answerValid() method. The name of an access policy
is the string token defined in the corresponding Internet draft or RFC to a RELOAD usage. In
case of the ShaRe usage, the corresponding string token is "USER-CHAIN-ACL". This en-
ables a unique mapping for the access controller class. The latter is aware of mapping kind-id
to the name of an access control policy () from the RELOAD configuration document. Hence, if
it receives an inbound request, it obtains the kind-id of the contained data, maps it to the name
of the access control policy and invokes the corresponding IAccessControlPolicy in-
stance to validate the retrieved Kind data.

The reason for a separate method for due to different procedures to obtain all data to validate a
data value. In case of the ShaRe usage, a storing peer maintains the entire access control list
locally. A peer requesting for data, has to fetch all ACL items from the storing peer to perform
the ACL validation procedure. The latter is implemented as follows 22:

1 pivate Boolean ACLvalidation(List<GenericCertificate> certs,
2 List<StoredData> aclList, StoredData sharedRes) {
3 Boolean inList = false ;
4 Boolean userEqToUser = false ;
5 signerId = sharedRes .signature .Identity ;
6 X509Certificate2 signerCert = CertTools .GetPKC(certs, signerId) ;
7 string username = CertTools .GetRFC822Name(signerCert) ;
8 string toUser = " " ;
9 while (!userEqToUser && !inList) {

7. Implementation 103

10 var aclDepth = 0;
11 foreach (StoredData sd in aclList) {
12 var share = (ShareUsage)sd .Value .GetUsage ;
13 var item = share .Kind ;
14 if (item .toUser == username) {
15 if (sharedRes .kindId == ACLItem .KindId && !item .ad) {
16 inList = false ; break ;
17 }
18 if (aclDepth > 0 && !item .ad) {
19 inList = false ; break ;
20 }
21 signerCert = CertTools .GetPKC(certs, sd .Signature .Identity) ;
22 toUser = username ;
23 username = CertTools .getRFC822Name(signerCert) ;
24 if(username == toUser)
25 userEqToUser = true ;
26 inList = true ;
27 aclDepth++;
28 }
29 else
30 inList = false ;
31 }
32 }
33 return userEqToUser ;
34 }

Listing 22: ACL validation: Authentication of the originator the shared resource

The method obtains a list of all user certificates needed to validate a received data value, the
entire access control list related to the shared resource and the shared resource to be vali-
dated. Initially, the method invokes the CertTools.GetPKC() method to obtain the certifi-
cate that was used to sign the shared resource and translate it into an X509Certificate2
object (line 7). The latter is representation for public key certificates in .NET. The username of
a RELOAD peer is encoded within the this certificate and returned by another utility method
CertTools.GetRFC822Name(). The following loops repeats the ACL walk until the
username in the certificate that signed the last inspected ACL item is equal to the toUser
field of the current ACL item. If the shared resource under test is an ACL item, the condition
in line 15 validates whether the signer of the preceding ACL items was allowed to delegate the
write access to the access control list. For all succeeding validations, the last condition must
be true to validate the trust delegation chain up the root ACL item. Then, the toUser field
becomes the username and username becomes the username of the signer of the ACL item.
If both are equal, we reached the condition to end the while loop and thus can confirm, that the
user originator of the shared resource was permitted store.

7. Implementation 104

7.2.2. Usage for DisCo

A core feature of the protocol scheme for distributed conferencing is the registration the con-
ference URI that is mapped to several focus peers in the overlay. The registration is realized in
the DisCoRegistration class shown in listing 23. It contains the ResNameExtension
class used to validate the pattern for variable resource names, an abstract definition of a coor-
dinate value and the node-id of the registered focus peer.

1 pivate Boolean ACLvalidation(List<GenericCertificate> certs,
2 public class DisCoRegistration {
3 /* Meber fields */
4 public ResNameExtension resNameExt ;
5 public ICoordinate coordinate ;
6 public NodeId nodeId ;
7 /* Constructor */
8 public DisCoRegistration(ResNameExtension resName,
9 Coordinate coord, NodeId nodeId) {

10 this .resNameExt = resName ;
11 this .coordinate = coord ;
12 this .nodeId = nodeId ;
13 }
14 }

Listing 23: DisCo-Registration: Authentication of the originator the shared resource

The resource name extension is the class defined by the ShaRe usage described in the pre-
vious section. The ICoordinate interface requires from its realizations of two methods
toOpaque(), GetClosestNode() and a topoAlgorithm class property containing a string token
identifying the topology algorithm. The toOpaque() method shall return a string that can be
parsed by another coordinate class that uses the same algorithm for generating a topological
descriptor. For instance, an algorithm named landmarking could return a comma separated
string representing the measured round-trip times to a set of predefined landmark hosts. A
well-defined and standardized scheme to identify and serialize topological descriptions is it not
defined yet and left to future work. The GetClosest() method takes a list of DisCo-Registration
as arguments and returns the focus peers whose coordinates match next best. Listing 24
shows the implementation of calculation of the closest focus peer in an n-dimensional Carte-
sian space.

1 public NodeId GetClosest (List<DisCoRegistration> coords) {
2 NodeId potFocus = null ;
3 int closest = 0;
4 foreach(DisCoRegistration reg in coords) {
5 var coord = reg .Coordinate ;

7. Implementation 105

6 int dist = 0;
7 for(int i = 0; i < coord .Vector .Length ; i++) {
8 dist += (int)Math .Pow ((vector [i] − coord .Vector [i]) , 2) ;
9 }

10 if(potFocus == null) {
11 potFocus = reg .NodeId ;
12 closest = dist ;
13 }
14 if(dist <= closest) {
15 potFocus = reg .NodeId ;
16 closest = dist ;
17 }
18 }
19 return potFocus ;
20 }

Listing 24: GetClosest(): Implementation of the landmark algorithm

DisCo Usage Class The DisCoUsage class is a realization of the Usage interface which
enables its registration at the usage manager factory of the core RELOAD.NET stack. On
registration at the manager, the DisCo class begins to determine the relative position of the
peer by pinging the landmarks hosts retrieved from the configuration document. The ping
operation is handled asynchronously by using the Microsoft Concurrency and Coordination
Runtime (CCR) [78]. The usage of the MS CCR should be shown in the following example in
25.

The method header of Determine() returns IEmumerator<ITask> object and takes
ReloadConfig instance as parameter. The return value makes this method an Iterator-
Block used in C# to support the foreach loop. In contrast to non-iterators, iterators are finalized
by a yield keyword. For instance in line 3, the yield break operation ends this iterator if the
DisCo usage already had determined its coordinates. A core feature of the CCR is the generic
Port<T> class shown in line 5. It can be seen as a queue to input arguments into a callback
method. If an operations is finished the port is used to post the completion to any interested
receivers and returns the generic object back to the receivers.

Line 6 obtains the landmark hosts used to determine the coordinates vector in the n-
dimensional Cartesian space. The loop shown in lines 8 to 12 starts the asynchronous by
using the CRR static Arbiter class. It enqueues n iterative tasks object to the dispatcher
queue handled by the CCR scheduler. The generic parameter of the iterative task are the ar-
guments of the method delegate whose implementation shown in the next listing 26. Passed
to PingAsync() is the i-th landmark host, the result string array and the host position in the
landmark vector. This is necessary, because all interactive task will be executed concurrent

7. Implementation 106

and might finish in another order as the order of their invocation. The yield return state-
ment in line 18 waits for the completion of all started iterative tasks. Event though the yield
return blocks this task, it does not block the entire system. Note that on execution, this task
is managed by the CCR scheduler and a blocking task will just free resources for other tasks.
However, if all ping tasks are finished, the lamba expression within the Arbiter.Receive() forms
the coordinates vector and creates a new Coordinate instance.

1 public IEnumerator<ITask> Determine(ReloadConfig config) {
2 if(localCoords != null)
3 yield break ;
4 try {
5 finished = new Port<string [] > () ;
6 var hosts = config .Document .Overlay .configuration .landmarks . ←↩

landmarkhost ;
7 dim = hosts .Length ;
8 var coords = new string [dim] ;
9 for(int i = 0; i < hosts .Length ; i++) {

10 Arbiter .Activate(config .DispatcherQueue,
11 new IterativeTask<landmarkhost, int>(
12 hosts [i] , coords ,i , PingAsync)) ;
13 }
14 }
15 catch (Exception ex) {
16 config .Logger(ReloadGlobals .TRACEFLAGS .T_ERROR, " Determine : "+ex . ←↩

Message) ;
17 }
18 yield return Arbiter .Receive(false, finished, coords => {
19 var res = new StringBuilder () ;
20 foreach(string rtt in coords)
21 res .Append(rtt+" , ") ;
22 res .Remove(res .Length−1, 1) ;
23 localCoords = new Coordinate(res .ToString ()) ;
24 if(PositioningCompleted != null)
25 PositioningCompleted(localCoords) ;
26 }) ;
27 }

Listing 25: Async Ping: Using CCR to multitask requests (1)

The next listing 26 shows the asynchronous ping operation. Likely to the Determine() method,
the PingAsync is an iterative task that is handled by CCR scheduler. It function is to ping the
landmark host obtained by the method argument and to put the returned RTT into the coords
result array. The member variable count is incremented each time the ping operation has a
result. As the counter is equal to the dimension of the coordinates vector (line 16), it uses

7. Implementation 107

the Port<T> finished.Post() to announce the completion of the coordinates vector. This post
is the trigger for the previously shown determine task to continue and to create a coordinate
object from the retrieved RTTs.

1 private IEnumerator<ITask> PingAsync(landmarkhost host,
2 string [] coords, int order) {
3 var ping = new Ping () ;
4 try {
5 var reply = ping .Send(host .address, 1000) ;
6 if(reply .Status == IPStatus .Success) {
7 coords [order] = reply .RoundtripTime .ToString () ;
8 }
9 else {

10 /* Failure operation */
11 }
12 count++;
13 } catch(Exception ex) {
14 /* Error operation */
15 }
16 if (coords .Length == count) {
17 finished .Post(coords) ;
18 }
19 yield break ;
20 }

Listing 26: Async Ping: Using CCR to multitask requests (2)

7.3. Demo Application

Finally, the demo application for distributed conferencing is presented in figure 35. The demo
application was initially presented at the 36th IEEE Local Computer Networks [82] conference
and during the Hamburg Lange Nacht des Wissens 2012. It is a prototype implementation that
uses the RELOAD.NET stack for registration of SIP URI and distributed conference URIs and
the VoIP functionalities of the Sipek API. On startup, it joins the t-reload.realmv6.org RELOAD
overlay, whose enrollment server and bootstrap node are hosted at the HAW-Hamburg. In the
demo scenario, two desktop devices are acting as focus peers maintaining a single conference
session. The conference participants are Windows Mobile 6.X executing the mobile variant of
the RELOAD.NET stack. The lookup of the conference URI returned for each mobile device
another focus peer through which they joining the distributed multiparty.

7. Implementation 108

Figure 35: Demo Application: Distributed conferencing softphone prototype

8. Measurements & Evaluations 109

8. Measurements & Evaluations

8.1. Objectives of Measurements

The evaluations in this work, should show the global scaling behavior of the RELOAD.NET
stack and the implemented usages for distributed conference and shared resources. In order to
achieve the most realistic results, measurements are performed in the Planet-Lab [83] testbed.
Planet-lab is global compound of approx. 530 sites, actually providing 1022 nodes. By using
this testbed it is possible to create realistic deployment scenarios of a global RELOAD overlay
and to determine the advantages of the proximity-awareness of the participants in a distributed
conference. The variables measured in these scenarios are:

• Delay to join a RELOAD overlay, without delay to configure and enroll a peer

• Delay to store a DisCo-Registration and corresponding access control list

• Hop-count of intermediate peer to store a registration

• Delay to retrieve a DisCo-Registration and ACL

• Hop-count for retrieving a DisCo-Registration/ACL

• Delay to initiate a connection to a selected focus peer (AppAttach)

• Hop-count for the upper operation

• Delay to establish a transport connection to join a distributed conference

The measurements show the different behaviors of the tested RELOAD.NET stack and DisCo
protocol. The distinct scenarios German-wide, European-wide, North American-wide and
finally on a global scale. Additionally, the test scenarios raveled the robustness of the
RELOAD.NET implementation to sustain a P2PSIP overlay.

8.2. Mono Port

The RELOAD.NET project and thus the usages for distributed conferencing and shared re-
sources are implemented in C#/.NET. The .NET runtime environment is designed to be ex-
ecuted on Windows operating systems and intends an abstraction of the used programming
language. This is a particular problem for a deployment on the Planet-Lab testbed, since the
virtual machines that are created for a Planet-Lab user, are Linux based Fedora [84] distribu-
tions.

8. Measurements & Evaluations 110

The only solution is a porting of the RELOAD.NET stack to a C#/Mono project. Mono [85] is
an open source runtime environment for .NET based applications. The target is to provide an
abstract runtime that executes .NET programs transparently on any device. However, the Mono
project is not covering the entire .NET framework and thus .NET features are not available on
Mono. This has had consequences on the porting of the RELOAD.NET stack on Mono.

The first statement is that the version of the Mono runtime needs to be at least 2.X. Lower
versions have a different implementation of thread pools which are massively used by the used
concurrency library (CCR) [78]. However, this version of the Mono project is not available in
the Fedora repositories. Hence, the source code has to be compiled on Planet-Lab node to the
resulting binaries needed to be distributed among the PL nodes used for the measurements.

The second statement is that the supplied TLS library uses native Win32 binaries to create
secure transport sessions. These are not provided by the Mono runtime thus treated a deploy-
ment on Linux. The vendor of the Secure Blackbox library offers a pure Mono distribution of its
TLS framework for a high fee. However, the vendor has kindly passed time-limited access to
the library on request for a scientific evaluation.

The third statement is that the Mono runtime does not have a similar behavior on each Linux
distribution. For instance, for sending an ICMP request a user needs to have root privileges
on Fedora which is not required if Mono runs on a Ubuntu distribution. Furthermore, many
small differences in the implementation of .NET and Mono caused a lot of bug-fixing to port the
RELOAD.NET stack finally on Mono and Linux OS.

8.3. Measurement Setup

8.3.1. Measurement Architecture

The entire measurement is a setup of the following three components as shown in figure 36:

PL-Manager: The PL-manager is a self-developed Python script to manage a distributed mea-
surement setup in the Planet-Lab (PL) testbed. It establishes SSH connections to each
PL given by a configuration file and invokes further Python scripts on the remote hosts.
The PL-manager initiates the entire RELOAD overlay iteratively. It starts the remote
script and waits until the created RELOAD peers are instantiated and joined to the over-
lay before it continues with the next site. If all overlay peers are joined, the PL-manager
invokes another remote python script sending a further command to the peers. Analo-
gously to the overlay creation, all commands are sent iteratively along the joining order.
If the last procedure has finished, the manager ends all overlay peers and repeats the
entire procedure until a predefined count.

8. Measurements & Evaluations 111

SS
H SS

H

SSH SSH

RELOAD Peers
(Console Client)...

PL Nodes
(Reload-Run)

Localhost
(PL-Manager)

Internet

...

Figure 36: Measurement Architecture: Three-layers to instantiate a RELOAD overlay

Reload-Run: The Python RELOAD-run is deployed on the Planet-Lab to instantiate a vari-
able number of RELOAD peers. By invocation of the PL-manager, the script starts each
peer as subprocess and communicates to the PL-manager via its own stdout to ac-
knowledge the successful startup of the peers. If an invoked peer is unable to join the
overlay, the script terminates the process and continues with the next peer. Afterwards,
RELOAD-run waits for further commands by listening to a stream socket. If it receives a
command called operation, it uses the stdin to communicate with the invoked subpro-
cesses to perform a RELOAD method (Fetch, Store). After finishing achieved operations,
it waits for an end command to shut down all peers.

Console Client: The lowest layer in the measurement architecture, is the console application
of the RELOAD.NET stack. It takes several console arguments that specifies it behavior
on startup and on receiving the operation command. All applications are setup to
log only the measure variables. However, the peers are configured to send a minimal
overlay telemetries to the Web-monitoring tool, to enable the detection of peer failures.

8.3.2. Measurement Configuration

Each measurement scenario uses the same configuration parameters. The target of the con-
figuration is the emulation of a distributed conference with 5 participants on each Planet-Lab.
The peers were only deployed on Planet-Lab nodes that exhibit an appropriate load to mini-
mize the effect of local system disturbances. The nodes are instantiating the peers according
to the following setup:

8. Measurements & Evaluations 112

CAIDA Monitor Location

mnl-ph.ark.caida.org
nrt-jp.ark.caida.org Asia
she-cn.ark.caida.org
dub-ie.ark.caida.org
lej-de.ark.caida.org Europe
her-gr.ark.caida.org
pna-es.ark.caida.org
sea-us.ark.caida.org
mty-mx.ark.caida.org
amw-us.ark.caida.org North America
yto-ca.ark.caida.org
wbu-us.ark.caida.org
hlz-nz.ark.caida.org Oceania
gig-br.ark.caida.org South America
scl-cl.ark.caida.org

Table 2: Landmark selection: Chosen from CAIDA measurement monitors

• The first peer assumes the role of the bootstrap node

• The second peer is the initial creator of a conference by registering a predefined confer-
ence URI

• The Peers 3 to 5 just join the conference

• The first peer started on each subsequent PL node, joins the conference and registers
as additional conference focus

• Each subsequent peer started on a node just joins the conference

As a result, every 5th participant in a conference is a focus peer. The relation of one focus
handling 4 participants is orientated at the Skype recommendation for video group conferenc-
ing [57]. In this configuration, the expected delay to join the conference is longer for the first
peer stated on a node than for the node started subsequently. They should select the first peer
as their focus due to their proximity-awareness. The topological descriptors are generated by
estimating round-trip times against a predefined set of landmark host obtained while RELOAD
enrollment. The quality of landmark approaches depend on an appropriate number of land-
mark nodes and their placement. For the particular measurement configuration, 15 landmarks
are chosen from the set of CAIDA [86] monitor as shown on table 2.

8. Measurements & Evaluations 113

N

S

OW

Landmark

PL-Node

Figure 37: Peer Deployment: The distribution of the PL-nodes in the global scope

The CAIDA nodes are highly reasonable as they are not located behind NATs or firewalls and
they are uniformly distributed around the world. Hence, the positive effect of selecting the focus
by proximity should increase with the global distribution of the measurement scenario.

8.4. Measurements

8.4.1. Measurement Scopes

To evaluate the performance of the RELOAD.NET stack and the proximity-awareness benefits
of distributed conference control, measurements are made in several scopes.

Germany: Representing a nationwide distribution

Europe: Representing a continentalwide distribution

North America: Representing a further continental distribution to be compared with Europe

Global: Representing the maximal possible distribution

8. Measurements & Evaluations 114

The distribution of the Planet-Lab nodes in the global scope is shown in figure 37. The 20
nodes are mainly distributed among Europe and North America. This due for two reasons. At
first, these regions are the most frequent users of the Internet [87, 88]. Secondly, the availability
of adequate PL-nodes is rare on the remaining continents. For instance, only one PL-node in
Africa (Tunisia) fits in the requirements (free CPU and Memory) for a RELOAD measurement.
However, there is at least one PL-node located at each of the five main continents.

Figure 37 also shows the positions of the CAIDA [86] monitors that are used to generate the
relative coordinates of the peers. They are even distributed among the global scope as the
PL-nodes.

8.4.2. Joining a RELOAD Overlay

The first measurement represents the average delay to join a RELOAD overlay. The joining
delay is a concatenation of the delays for the following procedure:

• Attaching the bootstrap peer including onwards forwarding to the admitting peer

• Attaching to a set of RELOAD peers to enrich a peers routing table

• Joining the admitting peer to participate the overlay finally

A previous measurement presented in [74] included the delay to contact the enrollment server
in the joining time. For this measurement, the enrollment delay would mask the P2P delay be-
havior. In particular, it would interfere the compatibility of the European with the North American
measurement since the enrollment server is static deployed on a server in Germany.

In the measurements scopes of Germany, Europe and the global distribution, the bootstrap
node is deployed on the server at the HAW-Hamburg in Germany. For the measurements in
North America, the bootstrap is deployed on a Planet-Lab node at the University of Washington,
USA. Hence, the measurement results for North American and Europe remain comparable.

The measurement results are shown in figure 38. The graphs represent the Cumulative Dis-
tribution Frequency (CDF) in the ordinate and the average joining delay in the abscissa. The
CDF indicates the relative frequency of peers that successfully joined the overlay after a spe-
cific time interval. The figure shows the different delays to join the overlay with reference to
their distribution described as following:

Germany: 90% of the peers are successfully joined to the overlay of approx. 4s. This repre-
sents the best result among the measured scenarios. The least joining delay is gener-
ated by the initially invoked Planet-Lab node hosting the bootstrap node with a delay of
approx. 1,1s.

8. Measurements & Evaluations 115

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

C
D

F

Average Join Delay [s]

Germany
Europe

North America
Global

Figure 38: Joining: Average delay to join a RELOAD overlay in several scopes

Europe: 90% of the peers in a European scope are joined to the overlay after approx. 8s. In
this scenario, delay to join worsens at ~60% overlay size.

North America: 90% of the peers are joined to the overlay within approx. 6s. The frequency
in this scenario has a smooth behavior.

Global: 90% of the overlay peers in global scenario joined the overlay under 12s. The graph
tend to a linearly behavior in comparison to the remaining measurement results.

The measurements for Germany, Europe and North America show an adequate scale behavior.
The long tails of their CDF due to peers that needed a second or third try to connect to their
admitting peer (AP). If the TLS connection establishment to the AP is not successful on the
first try, a joining peer takes a timeout of 10 seconds and retries. Another source of trouble
are intermediate peers that route an Attach response message back to a joining peer. The
implementation of the return routing procedure seems to ignore responses if they have to be
process concurrently.

The delay in the global scenario is also influenced by retransmissions. However, some lo-
cations have very long joining times without failures. For instance, the Taiwanese node
planetlab2.iis.sinica.edu.tw needed in average approx. 11s to join the over-
lay, whereby the measured values have no outliers. This suggests an adequate quality of
connection to the remaining overlay that is influenced by large network delays.

8. Measurements & Evaluations 116

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F

Average Storing Delay [s]

Germany
Europe

North America
Global

(a) Store Delay: CDF to store a DisCo-Registration

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1 2 3 4 5 6 7 8 9

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Overlay Hop for Store Request [#]

Germany
Europe

North America
World

(b) Store Hops: Average overlay hops for a store request

Figure 39: Store Request: Registration of a distributed conference

8.4.3. Storing a DisCo-Registration

The figures in 39 show the overlay behavior to store a DisCo-Registration. Figure 39a shows
the CDF in reference to the delay to register a distributed conference, while figure 39b relative
frequency of the corresponding overlay hops shows. The delay represents the round-trip time
of a Store request and its subsequent Store answer message. The hop count is the number
of hops that are traversed by the store answer. Since RELOAD implements recursive return
routing, the hop count for a request and answer message is equal.

The average delay to store a data value in Germany, Europe and North America shows an
adequate scale behavior. In Germany, a store takes less than 0,5s causing 90% of cases. In
the continental measurements, a store request is finished after approx. 0,75s causing 90%
of cases. The longest storing delays are achieved by the measurement in global scope. The
hops count in all measurements is mostly in the same range. Causing 75% of cases, the hops
count is in between 3 to 5 hops.

In comparison to the joining delay, store requests in Europe have mostly less delay than in
North America. This indicates that several peers in Europe were deployed on PL-nodes that
had initially problems with connecting to the overlay. However, if these peers have established
all their necessary connections, succeeding requests have to traverse shorter physical dis-
tances than in the North American scenario. Nevertheless, the store request in Europe has
had more erroneous tries causing the longer tail in the CDF compared to the American sce-
nario.

8. Measurements & Evaluations 117

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F

Average Fetch Delay [s]

Germany
Europe

North America
Global

(a) Fetch Delay: CDF to Fetch a DisCo-Registration

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1 2 3 4 5 6 7 8 9

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Overlay Hops for Fetch Request [#]

Germany
Europe

North America
World

(b) Fetch Hops: Average overlay hops for a Fetch request

Figure 40: Fetch Request: Retrieval of the DisCo-Registration

8.4.4. Fetching a DisCo-Registration

The measured metrics to obtain a DisCo-Registration and access control list are shown in
figure 40. Analogously to measurements of the store request, sub-figure 40a the delay for
a fetch request and figure 40b the corresponding overlay hops. The presented behavior in
both measurements is similar to those of the store request. A Fetch request takes in average
less than approx. 0,5s in the German scenario and less than 0,8s in the continental scopes.
The average Fetch delay in the global scenario is with a probability of 90% finished after a
duration of approx. 2,25s. The overlay hops counts to retrieve the data approx. even to those
of the store request. The curves for measurements results of the Fetch request are smoother
compared to those of the store request. This dues to the number of samples taken during
measurement. A store request is performed by every 5th peer, while a Fetch is performed by
all peers with except of the conference creator and the bootstrap node.

8.4.5. AppAttach to Focus Peer

The final RELOAD operation performed by the peer to participate a distributed conference is
the AppAttach request. After a peer had chosen its focus peer according to its relative network
position, he sends an AppAttach request. The request will be routed through the overlay, even
if the destination node is located at the same device. This dues to the RELOAD protocol that
does not provide additional proximity information. The measurement results are shown in figure
41.

8. Measurements & Evaluations 118

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F

Average AppAttach Delay [s]

Germany
Europe

North America
Global

(a) AppAttach Delay: Delay to initiate a transport to focus

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 1 2 3 4 5 6 7 8 9

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Overlay Hop for AppAttach Request [#]

Germany
Europe

North America
World

(b) AppAttach Hops: Avg. hops for an AppAttach request

Figure 41: Fetch Request: Retrieval of the DisCo-Registration

The average delay in sub-figure 41a shows, that AppAttach requests to focus peers are com-
pleted after approx. 0,35 causing 90% of cases in the German scenario. In the continental
measurements, an AppAttach takes about 0,65s, while it takes about 1,75s in the global sce-
nario. This represents an average reduction of approx. 23% for the AppAttach compared with
the preceding Fetch request delay. This correlates with the average hop count to perform an
AppAttach request as shown in figure 41b. About 35% to 40% of the requests needed one
single hop to reach their destination.

The reason for this reduction is a relative small size of the overlay. Each peer maintains a
connection table containing all peers they ever had learned, e.g., during routing messages for
other peers. Further, each peer maintains a routing table which is a subset of the connection
table. The difference between them is the routing decision. A peer uses its routing table
exclusively to route messages originated by himself or to route messages for others. The
connection table is only used to send a message, if the destination node-id is equal to an
entry in the connection table. The previous stored and fetched requests are always routed to a
resource-id thus a peer needs to use its routing table to obtain the next hop to destination. In
case of an AppAttach request, the destination is a node-id. The node-id could probably have a
match in the connection table, hence the AppAttach request is send directly to the designating
focus peer. The connection table is periodically cleaned from entries that are not demanded
for the routing table. However, this maintenance routine was set to repeat every half hour and
thus to long to take effect during a measurement iteration.

8. Measurements & Evaluations 119

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100 200 300 400 500

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Peer to Focus Delay [ms]

76% Optimzed by Proximity−awareness

(a) Scope Germany

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100 200 300 400 500

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Peer to Focus Delay [ms]

79% Optimzed by Proximity−awareness

(b) Scope Europe

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100 200 300 400 500

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Peer to Focus Delay [ms]

74% Optimzed by Proximity−awareness

(c) Scope North America

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200 250 300 350 400 450 500

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Peer to Focus Delay [ms]

69% Optimzed by Proximity−awareness

(d) Scope Global

Figure 42: Peer to Focus Delay: Comparison of Scenarios

8.4.6. Connection Establishment to Focus Peer

The AppAttach procedure returns the IP address of the selected focus peer and the SIP port
(5060) on which he will accept incoming calls. For the measurements the final call to the focus
is emulated by sending a ICMP echo request plus a random value. The random value is based
on previous measurement result performed in [65] that determined an average of approx. 30ms
to establish a SIP session. The SIP establishment approximation is not ideal, but is sufficient
to demonstrate the effect of proximity-awareness of the peers.

The measurement results for several distribution scenarios are shown in the figures in 42.
Each figure shows the relative frequency to the delay in milliseconds to establish session to
the chosen focus peer. The bulk of delays is in an interval of {x ∈ R | 25ms≤ x≤ 35ms} that
represents the delay to join a focus hosted on the same Pl-nodes as the joining peer. The high

8. Measurements & Evaluations 120

probability of selecting the locally hosted focus is based on the proximity-information of the
DisCo-Registration. Since focus and joining peer should generate even landmark coordinates,
peers that are invoked after the first will always choose the first peer as their focus. The
remaining connection delays are the delay times of each peer initially invoked on a Pl-node.
Those had to join the conference via a remote host. The amount of peers that selected their
local focus are indicated in the figure. For instance in figure 42a, 76% of the peers had chosen
the focus located at the same device. The amount of continental measurements even have
results with 79% in Europe and 74% in North America. Contrary to expectations, only 69%
of the peers in the global measurement choose their local focus. The smaller amount due to
peer failures. The PL-nodes were under varying load during the measurements and caused
occasionally peer failures. If a failure happened to a peer that should have resisted as focus,
the subsequently started peer had to choose a remote focus. This caused additional and
reasons the results.

8.5. Evaluation

The measurement results show the scaling behavior of the RELOAD.NET stack and the bene-
fits of joining a distributed conference based on proximity-awareness. By increasing the distri-
bution of the overlay peers from a national to a continental scope, the delays to join, store and
fetch are almost doubling. This statement is supported by the uniformity of the overlay hops
in the different scenarios. While the hops count is uniform, the delays increases and thus an
effect on the higher network latencies. This trend is even clearer in the global scenario. There,
the latencies are increased by an approximated factor of three compared to the continental
measurement result. Peers located in the far east (e.g., Taiwan) or far west (e.g., Ecuador) in
relation to the bootstrap node have an average joining delay of approx. 11s without connection
errors. However, several PL-nodes have an uneven workload causing occasional peer failures
that enlarge the joining delay due to overlay topology switches.

An unexpected effect is detected for the AppAttach procedure. Due to a too long set connection
maintenance, entries in the connection table of a peer were used to directly AppAttach to
the focus peer. A future measurement with a more adequate configuration will show that the
overlay hop count to a focus peer will be more similar to those of the store and fetch request.

As previously excepted is the peer-to-focus delay in most cases around approx. 30ms. This
corresponds to the average delay to establish a SIP session on a local host. The conference
participants choose their focus according to the coordinate vector. If no erroneous coordinate
vector are determined, a participant will always choose the focus peer that is located at the
same host. For the entire conference, 69% in the global scope up to 79% of the peers in
the European scope selected the focus next to them. If the amount is adjusted to the 20%
of nodes that must choose a remote focus peer it can be seen that 89% to 99% of the peers

8. Measurements & Evaluations 121

choose their ideal focus peer. Hence, most peers had a delay below the ITU recommendation
for Voice-to-Ear delay previously presented in table 1 in section 3.

The measurement of the global scenario is strongly influenced by variating workloads of the
PL-nodes, causing node failures of the overlay. In a more stable setup, the results for a global
scope should be similar to those of the nation and continental.

9. Conclusion and Outlook 122

9. Conclusion and Outlook

This work presented an approach for distributed conference control based on the RELOAD
protocol. Distributed conferencing (DisCo) is designed as a P2P signaling protocol enabling
multiuser conferences on a large scale. To obtain a base to develop the DisCo scheme this
work initially discussed the generic problem space of distributed conference to identify issues
to be solved by the protocol. The identified challenges concerned issues in the RELOAD base
protocol and the Session Initiation Protocol.

To enabled the registration of a conference identifier that maps a single URI to several indepen-
dent entities a new RELOAD usage for shared resources was developed. The usage adds two
functionalities to the RELOAD base protocol. At first, it provides a mechanism to share certain
resources with further users. Secondly, it defines a scheme that enables variable resource
names that orientate on the default access control policies of RELOAD. The protocol schemes
to register, participate and cooperatively maintain a DisCo are discussed and defined in the
approach for distributed conference control. The DisCo scheme issues proximity-awareness,
load balancing and failover procedures for ad-hoc P2P conferences. Proximity-awareness is
based on topological descriptors that are announced within a DisCo-Registration data struc-
ture. They are used to optimize the conference topology with respect on delay and jitter which
are critical issues in multimedia communications. Load balancing procedures provide enable a
uniform workload on the peers managing the conference. Since each individual entity in a P2P
network is not obliged to continue a conferencing service, the network must compensate the
disappearance of peers. The final challenges issued by the DisCo protocol is synchronization
of the entire conference state. This is achieved through an XML event package for distributed
conferencing, conveying the roles and relations among the participants.

The protocol scheme for distributed conference control was implemented in a C#/.NET project
to demonstrate DisCo principle and to evaluate the protocol. The implementation based on the
RELOAD.NET stack which is one of the first advanced RELOAD implementation in the P2PSIP
community. The DisCo demonstrator applications based the Sipek API. It is a .NET wrapper
for several high level functions of the PJSIP stack, a very advanced SIP stack written in C.

The implementations were used to perform measurements to evaluate the scaling behavior
of the RELOAD and DisCo protocol. The measurements were performed on the Planet-Lab
testbed. Planet-lab is global compound of approx. 530 sites actually providing 1022 nodes.
Using this testbed, it is possible to create realistic deployment scenarios of a global RELOAD
overlay and to determine the advantages of the proximity-awareness of the participants in a dis-
tributed conference. Measurements were setup to represent a scenario of a large conference
with 100 participants in which every 5th node assumed the role of a focus peer. The results
showed an adequate scaling behavior with respect to latency and overlay hop count. By the
proximity-awareness of the overlay peers, the delay to finally establish a transport connection

9. Conclusion and Outlook 123

to a chosen focus was optimized causing 69% of cases in a global scope and up to 78% of
cases in European scope. In several cases, the delay to create a connection was reduced
by a factor of ten. This shows the potential of proximity-awareness in distributed conference
control.

For future work, the implementation of the RELOAD.NET transport layer should be enhanced
the robustness of the stack against connections errors. The measurements revealed a weak-
ness in the implementation of the TLS transport module. Furthermore, the implementation of
the remaining DisCo functionalities is of particular interest. By implementation of the XML event
package, further measurements can demonstrate the potential of load balancing and failover
procedures. To achieve this, it must be considered if the used SIP API should be extended
to wrap further functionalities from the PJSIP stack to .NET. Or, if there exist any other open
source implementation for .NET that can easier been extended with DisCo SIP procedures.

Finally, the concepts for shared resource and distributed conference control are works in
progress in the IETF. These documents will be continuously maintained to be ready for an
adoption by the P2PSIP working group.

A. Appendix 124

A. Appendix

1 ï»¿<?xml version=" 1.0 " encoding="UTF−8" ?>
2 <xs:schema xmlns:xs=" h t t p : / /www.w3 . org /2001/XMLSchema"
3 xmlns :c i = " u rn : i e t f : pa rams :xm l :ns : con fe rence−i n f o "
4 xmlns=" u r n : i e t f : p a r a m s : x m l : n s : d i s t r i b u t e d−conference "
5 targetNamespace=" u r n : i e t f : p a r a m s : x m l : n s : d i s t r i b u t e d−conference "
6 elementFormDefault= " q u a l i f i e d "
7 a t t r i bu teFo rmDe fau l t = " u n q u a l i f i e d ">
8 < !--
9 This imports the definitions in conference-info

10 -->
11 <xs : impo r t namespace=" u rn : i e t f : pa rams :xm l :ns : con fe rence−i n f o "
12 schemaLocation=" h t t p : / /www. iana . org / assignments / xml−r e g i s t r y / ←↩

schema / conference−i n f o . xsd " / >
13 <xs : impo r t namespace=" h t t p : / /www.w3 . org /XML/1998/ namespace "
14 schemaLocation=" h t t p : / /www.w3 . org /2001/03 / xml . xsd " / >
15 < !--
16 A DISTRIBUTED CONFERENCE ELEMENT
17 -->
18 <xs:e lement name=" d i s t r i b u t e d−conference "
19 type=" d i s t r i b u t e d−conference−type " / >
20 < !--
21 DISTRIBUTED CONFERENCE TYPE
22 -->
23 <xs:complexType name=" d i s t r i b u t e d−conference−type ">
24 <xs:sequence>
25 <xs:e lement name=" vers ion−vec to r "
26 type=" vers ion−vector−type " minOccurs=" 1 " / >
27 <xs:e lement name=" conference−d e s c r i p t i o n "
28 type=" conference−desc r i p t i on−type "
29 minOccurs=" 0 " maxOccurs=" 1 " / >
30 <xs:e lement name=" focus "
31 type=" focus−type "
32 minOccurs=" 0 "
33 maxOccurs=" unbounded " / >
34 <xs:any namespace=" ## other " processContents= " lax " / >
35 < / xs:sequence>
36 < x s : a t t r i b u t e name=" s ta te " type=" c i : s t a t e−type " / >
37 < x s : a t t r i b u t e name=" e n t i t y " type=" xs:anyURI " / >
38 < x s : a n y A t t r i b u t e namespace=" ## other " processContents= " lax " / >
39 < / xs:complexType>
40 < !--

A. Appendix 125

41 VERSION VECTOR TYPE
42 -->
43 <xs:complexType name=" vers ion−vector−type ">
44 <xs:sequence>
45 <xs:e lement name=" vers ion "
46 type=" vers ion−type "
47 minOccurs=" 1 "
48 maxOccurs=" unbounded " / >
49 <xs:any namespace=" ## other " processContents= " lax " / >
50 < / xs:sequence>
51 < x s : a n y A t t r i b u t e namespace=" ## other " processContents= " lax " / >
52 < / xs:complexType>
53 < !--
54 CONFERENCE DESCRIPTION TYPE
55 -->
56 <xs:complexType name=" conference−desc r i p t i on−type ">
57 <xs:sequence>
58 <xs:e lement name=" d isp lay−t e x t "
59 type=" x s : s t r i n g " minOccurs=" 0 " / >
60 <xs:e lement name=" sub jec t " type=" x s : s t r i n g " minOccurs=" 0 " / >
61 <xs:e lement name=" f ree " type=" x s : s t r i n g " minOccurs=" 0 " / >
62 <xs:e lement name=" keywords "
63 type=" c i :keywords−type " minOccurs=" 0 " / >
64 <xs:e lement name=" serv ice−u r i s "
65 type=" c i : u r i s−type " minOccurs=" 0 " / >
66 <xs:any namespace=" ## other " processContents= " lax " / >
67 < / xs:sequence>
68 < x s : a t t r i b u t e name=" s ta te " type=" c i : s t a t e−type " / >
69 < x s : a n y A t t r i b u t e namespace=" ## other " processContents= " lax " / >
70 < / xs:complexType>
71 < !--
72 FOCUS TYPE
73 -->
74 <xs:complexType name=" focus−type ">
75 <xs:sequence>
76 <xs:e lement name=" d isp lay−t e x t "
77 type=" x s : s t r i n g " minOccurs=" 0 " / >
78 <xs:e lement name=" associated−aors "
79 type=" c i : u r i s−type " minOccurs=" 0 " / >
80 <xs:e lement name=" ro l es "
81 type=" c i : us e r−ro les−type " minOccurs=" 0 " / >
82 <xs:e lement name=" languages "
83 type=" c i : us e r−languages−type " minOccurs=" 0 " / >
84 <xs:e lement name=" focus−s ta te "

A. Appendix 126

85 type=" focus−s ta te−type " minOccurs=" 0 " / >
86 <xs:e lement name=" users "
87 type=" c i : use rs−type " minOccurs=" 0 " / >
88 <xs:e lement name=" r e l a t i o n s "
89 type=" r e l a t i o n s−type " minOccurs=" 0 " / >
90 <xs:any namespace=" # other " processContents= " lax " / >
91 < / xs:sequence>
92 < x s : a t t r i b u t e name=" e n t i t y " type=" xs:anyURI " / >
93 < x s : a t t r i b u t e name=" node−i d " type=" x s : s t r i n g " / >
94 < x s : a t t r i b u t e name=" s ta te " type=" c i : s t a t e−type " / >
95 < x s : a n y A t t r i b u t e namespace=" ## other " processContents= " lax " / >
96 < / xs:complexType>
97 < !--
98 VERSION TYPE
99 -->

100 <xs:complexType name=" vers ion−type ">
101 <xs:s impleContent>
102 <xs :ex tens ion base=" xs :uns igned In t ">
103 < x s : a t t r i b u t e name=" e n t i t y " type=" xs:anyURI " / >
104 < x s : a t t r i b u t e name=" node−i d " type=" x s : s t r i n g " / >
105 < x s : a n y A t t r i b u t e namespace=" ## other " processContents=" lax " / >
106 < / xs :ex tens ion>
107 < / xs :s impleContent>
108 < / xs:complexType>
109 < !--
110 FOCUS STATE TYPE
111 -->
112 <xs:complexType name=" focus−s ta te−type ">
113 <xs:sequence>
114 <xs:e lement name=" user−count "
115 type=" xs :uns igned In t " minOccurs=" 0 " / >
116 <xs:e lement name=" coord ina te "
117 type=" x s : s t r i n g " minOccurs=" 0 " / >
118 <xs:e lement name=" maximal−user−count "
119 type=" xs :uns igned In t " minOccurs=" 0 " / >
120 <xs:e lement name=" conf−u r i s "
121 type=" c i : u r i s−type " minOccurs=" 0 " / >
122 <xs:e lement name=" ava i l ab le−media "
123 type=" c i : con fe rence−media−type " minOccurs=" 0 " / >
124 <xs:e lement name=" a c t i v e " type=" xs:boolean " minOccurs=" 0 " / >
125 <xs:e lement name=" locked " type=" xs:boolean " minOccurs=" 0 " / >
126 <xs:any namespace=" ## other " processContents= " lax " / >
127 < / xs:sequence>
128 < x s : a t t r i b u t e name=" s ta te " type=" c i : s t a t e−type " / >

A. Appendix 127

129 < x s : a n y A t t r i b u t e namespace=" ## other " processContents=" lax " / >
130 < / xs:complexType>
131 < !--
132 RELATIONS TYPE
133 -->
134 <xs:complexType name=" r e l a t i o n s−type ">
135 <xs:sequence>
136 <xs:e lement name=" r e l a t i o n "
137 type=" r e l a t i o n−type "
138 minOccurs=" 0 " maxOccurs=" unbounded " / >
139 <xs:any namespace=" ## other " processContents= " lax " / >
140 < / xs:sequence>
141 < x s : a t t r i b u t e name=" s ta te " type=" c i : s t a t e−type " / >
142 < x s : a n y A t t r i b u t e namespace=" ## other " processContents=" lax " / >
143 < / xs:complexType>
144 < !--
145 RELATION TYPE
146 -->
147 <xs:complexType name=" r e l a t i o n−type ">
148 <xs:s impleContent>
149 <xs :ex tens ion base=" x s : s t r i n g ">
150 < x s : a t t r i b u t e name=" e n t i t y " type=" xs:anyURI " / >
151 < x s : a n y A t t r i b u t e namespace=" ## other " processContents=" lax " / >
152 < / xs :ex tens ion>
153 < / xs :s impleContent>
154 < / xs:complexType>
155 < / xs:schema>

References 128

References

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Han-
dley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC 3261, IETF, June 2002.

[2] K. Singh and H. Schulzrinne, “Peer-to-peer internet telephony using sip,” in Proc. of the int.
workshop on Network and operating systems support for digital audio and video (NOSS-
DAV ’05), (New York, NY, USA), pp. 63–68, ACM, 2005.

[3] D. A. Bryan, B. B. Lowekamp, and C. Jennings, “Sosimple: A serverless, standards-
based, p2p sip communication system,” in Proc. of the 1st Int. Workshop on Advanced Ar-
chitectures and Algorithms for Internet Delivery and Applications(AAA-IDEA ’05), (Wash-
ington, DC, USA), pp. 42–49, IEEE Computer Society, 2005.

[4] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne, “REsource LOca-
tion And Discovery (RELOAD) Base Protocol,” Internet-Draft – work in progress 18, IETF,
August 2011.

[5] A. Knauf, G. Hege, T. Schmidt, and M. Waehlisch, “A Usage for Shared Resources in
RELOAD (ShaRe),” Internet-Draft – work in progress 02, IETF, October 2011.

[6] A. Knauf, G. Hege, T. Schmidt, and M. Waehlisch, “A RELOAD Usage for Distributed
Conference Control (DisCo),” Internet-Draft – work in progress 03, IETF, July 2011.

[7] M. Handley, V. Jacobson, and C. Perkins, “SDP: Session Description Protocol,” RFC 4566,
IETF, July 2006.

[8] “SIP Standards.” http://www.packetizer.com/ipmc/sip/standards.html, 2011.

[9] J. Rosenberg and H. Schulzrinne, “Guidelines for Authors of Extensions to the Session
Initiation Protocol (SIP),” RFC 4485, IETF, May 2006.

[10] A. Roach, “Session Initiation Protocol (SIP)-Specific Event Notification,” RFC 3265, IETF,
June 2002.

[11] J. Rosenberg, “A Session Initiation Protocol (SIP) Event Package for Registrations,” RFC
3680, IETF, March 2004.

[12] “The Internet Assigned Numbers Authority (IANA) homepage.” http://www.iana.org, 2011.

[13] R. Sparks, “Internet Media Type message/sipfrag,” RFC 3420, IETF, November 2002.

[14] R. Mahy and D. Petrie, “The Session Initiation Protocol (SIP) ’Join’ Header,” RFC 3911,
IETF, October 2004.

[15] J. Rosenberg, “A Framework for Conferencing with the Session Initiation Protocol (SIP),”
RFC 4353, IETF, February 2006.

References 129

[16] M. Barnes, C. Boulton, and O. Levin, “A Framework for Centralized Conferencing,” RFC
5239, IETF, June 2008.

[17] G. Camarillo, J. Ott, and K. Drage, “The Binary Floor Control Protocol (BFCP),” RFC 4582,
IETF, November 2006.

[18] J. Rosenberg, H. Schulzrinne, and O. Levin, “A Session Initiation Protocol (SIP) Event
Package for Conference State,” RFC 4575, IETF, August 2006.

[19] A. Oram, Peer-to-Peer Harnessing the Power of Disruptive Technologies. Sebastopol,
CA, USA: O’Reilly Media, 2001.

[20] “The SETI@home homepage.” http://www.setiathome.berkely.edu, 2011.

[21] “The Napster homepage.” http://www.napster.com, 2011.

[22] “The Gnutella Protocol Development homepage.” http://rfc-
gnutella.sourceforge.net/developer/index.html, 2003.

[23] D. Eastlake and P. Jones, “US Secure Hash Algorithm 1 (SHA1),” RFC 3174, IETF,
September 2001.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A scalable
peer-to-peer lookup service for internet applications,” in SIGCOMM ’01: Proceedings of
the 2001 conference on Applications, technologies, architectures, and protocols for com-
puter communications, (New York, NY, USA), pp. 149–160, ACM Press, 2001.

[25] S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker, “Application-Level Multicast
Using Content-Addressable Networks,” in Networked Group Communication, Third Inter-
national COST264 Workshop, NGC 2001, London, UK, November 7-9, 2001, Proceed-
ings (J. Crowcroft and M. Hofmann, eds.), vol. 2233 of LNCS, (London, UK), pp. 14–29,
Springer–Verlag, 2001.

[26] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems,” in IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), vol. 2218 of LNCS, (Berlin Heidelberg), pp. 329–350,
Springer–Verlag, Nov. 2001.

[27] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer information system based
on the xor metric,” in Proc. of the 1st Int. Workshop on Peer-to Peer Systems (IPTPS ’02),
(Cambridge, MA, USA), pp. 53–65, 2002.

[28] D. Bryan, “A P2P Approach to SIP Registration and Resource Location,” Internet-Draft –
work in progress 03, IETF, October 2006.

References 130

[29] D. A. Bryan, M. Zangrilli, and B. B. Lowekamp, “Challenges of DHT Design for a Pub-
lic Communication System,” Technical Report WM-CS-2006-03, College of William and
Mary, June 2007.

[30] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session Traversal Utilities for NAT
(STUN),” RFC 5389, IETF, October 2008.

[31] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Using Relays around NAT (TURN):
Relay Extensions to Session Traversal Utilities for NAT (STUN),” RFC 5766, IETF, April
2010.

[32] S. Baset, H. Schulzrinne, and M. Matuszewski, “Peer-to-Peer Protocol (P2PP),” Internet-
Draft – work in progress 01, IETF, November 2007.

[33] M. Zangrilli and D. Bryan, “A Chord-based DHT for Resource Lookup in P2PSIP,” Internet-
Draft – work in progress 00, IETF, February 2007.

[34] D. Bryan, “dSIP: A P2P Approach to SIP Registration and Resource Location,” Internet-
Draft – work in progress 00, IETF, February 2007.

[35] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne, “REsource LOca-
tion And Discovery (RELOAD) Base Protocol,” Internet-Draft – work in progress 00, IETF,
October 2008.

[36] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol for Network Ad-
dress Translator (NAT) Traversal for Offer/Answer Protocols,” RFC 5245, IETF, April 2010.

[37] R. Braden, “Requirements for Internet Hosts - Communication Layers,” RFC 1122, IETF,
October 1989.

[38] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne, “A SIP Usage for
RELOAD,” Internet-Draft – work in progress 06, IETF, July 2011.

[39] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC
5280, IETF, May 2008.

[40] ITU, “ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER),” recommendation, ITU,
2008.

[41] N. Mavrogiannopoulos and D. Gillmor, “Using OpenPGP Keys for Transport Layer Security
(TLS) Authentication,” RFC 6091, IETF, February 2011.

[42] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC
5246, IETF, August 2008.

References 131

[43] J. Jonsson and B. Kaliski, “Public-Key Cryptography Standards (PKCS) #1: RSA Cryp-
tography Specifications Version 2.1,” RFC 3447, IETF, February 2003.

[44] “The eMule Project homepage.” http://www.emule-project.net, 2011.

[45] “The KaZaA homepage.” http://www.kazaa.com, 2011.

[46] M. Nottingham and E. Hammer-Lahav, “Defining Well-Known Uniform Resource Identi-
fiers (URIs),” RFC 5785, IETF, April 2010.

[47] X. Jiang, N. Zong, R. Even, and Y. Zhang, “An extension to RELOAD to support Direct
Response and Relay Peer routing,” Internet-Draft – work in progress 05, IETF, March
2011.

[48] ITU, “Recommendation G.114 - One-way transmission time,” recommendation, ITU, 2003.

[49] ITU, “Recommendation G.107 - The E-model, a computational model for use in transmis-
sion planning,” recommendation, ITU, 2005.

[50] “The Speex projectpage.” http://www.speex.org, 2009.

[51] “Advanced Video Coding for Generic Audiovisual Services,” Tech. Rep. Recommendation
H.264 & ISO/IEC 14496-10 AVC, v3, ITU-T, 2005.

[52] J. Rosenberg and H. Schulzrinne, “An Offer/Answer Model with Session Description Pro-
tocol (SDP),” RFC 3264, IETF, June 2002.

[53] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for
Real-Time Applications,” RFC 3550, IETF, July 2003.

[54] T. Berners-Lee, R. T. Fielding, and L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” RFC 3986, IETF, January 2005.

[55] “XML Schema Part 2: Datatypes Second Edition,” W3C Recommendation, World Wide
Web Consortium, October 2004.

[56] “The Skype homepage.” http://www.skype.com, 2009.

[57] “Group video calling Product Datasheet.” http://download.skype.com/share/business/guides/gvc-
product-datasheet.pdf, 2011.

[58] S. Romano, A. Amirante, T. Castaldi, L. Miniero, and A. Buono, “A Framework for Dis-
tributed Conferencing,” Internet-Draft – work in progress 09, IETF, June 2011.

[59] D. Bryan, P. Matthews, E. Shim, D. Willis, and S. Dawkins, “Concepts and Terminology for
Peer to Peer SIP,” Internet-Draft – work in progress 03, IETF, October 2010.

References 132

[60] S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker, “Topologically-aware overlay con-
struction and server selection,” in Proc. of 21st Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM ’02), (Washington, DC, USA), pp. 1190–
1199, 2002.

[61] Z. Xu, C. Tang, and Z. Zhang, “Building topology-aware overlays using global soft-state,” in
Proc. of the 23rd Int. Conf. on Distributed Computing Systems (ICDCS ’03), (Washington,
DC, USA), p. 500, IEEE Computer Society, 2003.

[62] A. Knauf, G. Hege, T. C. Schmidt, and M. Wählisch, “A Virtual and Distributed Control
Layer with Proximity Awareness for Group Conferencing in P2PSIP,” in Proc. of IPTComm
2010, Digital Library, (New York), pp. 122–133, ACM, August 2010.

[63] S. Josefsson, “The Base16, Base32, and Base64 Data Encodings,” RFC 4648, IETF,
October 2006.

[64] R. Sparks, “The Session Initiation Protocol (SIP) Refer Method,” RFC 3515, IETF, April
2003.

[65] A. Knauf, “Scalable, Distributed Conference Control in Tightly Coupled SIP Scenarios,”
Bachelor Thesis, Hamburg University of Applied Science, September 2009.

[66] A. Knauf, G. Hege, T. Schmidt, and M. Waehlisch, “A RELOAD Usage for Distributed
Conference Control (DisCo),” Internet-Draft – work in progress 01, IETF, December 2010.

[67] C. J. Fidge, “Timestamps in Message-Passing Systems that Preserve the Partial Order-
ing,” in 11th Australian Computer Science Conference, (University of Queensland, Aus-
tralia), pp. 56–66, February 1988.

[68] D. Ratner, P. Reiher, and G. J. Popek, “Dynamic Version Vector Maintenance,” Tech. Rep.
CSD-970022, University of California, Los Angeles, October 1997.

[69] A. Knauf, T. C. Schmidt, and M. Wählisch, “Scalable Distributed Conference Control in
Heterogeneous Peer-to-Peer Scenarios with SIP,” in Mobimedia ’09: Proc. of the 5th In-
ternational ICST Mobile Multimedia Communications Conference, ACM Digital Library,
(Brussels, Belgium), pp. 1–5, ICST, Sept. 2009.

[70] “The NIST JAIN-SIP homepage.” http://jain-sip.dev.java.net/, 2009.

[71] Amit Ranpise, “RELOAD - implementation of Storage module and message encoder de-
coder.” http://www.ietf.org/mail-archive/web/p2psip/current/msg05669.html, 2010.

[72] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Bal-
akrishnan, “Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Applications,”
IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 17–32, 2003.

References 133

[73] “Analysis and Enhancement Design of the MP2PSIP RELOAD Stack.” http://inet.cpt.haw-
hamburg.de/members/alexander-knauf/knauf, 2011.

[74] “http://inet.cpt.haw-hamburg.de/teaching/ss-2011/master-projekt-i/alex-projekt2.pdf.”

[75] “PJSIP Stack.” http://www.pjsip.org/, 2011.

[76] “Google Maps API.” http://code.google.com/intl/de-DE/apis/maps/, 2011.

[77] “SecureBlackbox Suite.” http://eldos.com/sbb/, 2011.

[78] “Microsoft Robotics - Concurrency and Coordination Runtime (CCR).”
http://msdn.microsoft.com/en-us/library/bb905470.aspx, 2010.

[79] R. Housley, W. Polk, W. Ford, and D. Solo, “Internet X.509 Public Key Infrastructure Cer-
tificate and Certificate Revocation List (CRL) Profile,” RFC 3280, IETF, April 2002.

[80] “PJSIP homepage, feature list.” http://www.pjsip.org/sip_media_features.htm, 2010.

[81] “The Trang homepage.” http://www.thaiopensource.com/relaxng/trang.html, 2008.

[82] A. Knauf, G. Hege, T. C. Schmidt, M. Wählisch, L. Grimm, T. Kluge, and P. Pogrzeba,
“Transparent Conferencing Without Central Control - Demonstration of the DisCo Ap-
proach in P2PSIP,” October 2011.

[83] “The PlanetLab homepage.” http://planet-lab.org/, 2010.

[84] “The Fedora homepage.” http://fedoraproject.org/, 2012.

[85] “Mono Project homepage.” http://www.mono-project.com/Main_Page, 2011.

[86] “The Cooperative Association for Internet Data Analysis homepage.”
http://www.caida.org/home/, 2010.

[87] “The Statista homepage.” http://de.statista.com/statistik/daten/studie/39490/umfrage/anzahl-
der-internetnutzer-weltweit-nach-regionen, 2012.

[88] “The Internet World Stats homepage.” http://www.internetworldstats.com/stats.htm, 2012.

List of Figures 134

List of Figures

1. Call flow: Call establishment using SIP . 6
2. Call flow: Registration event notification . 8
3. Call flow: Call transfer and refer notification 9
4. Overview: Centralized conferencing framework 12
5. Key-based routing layer: Overlay network upon the IP network 16
6. Comparison: Hybrid–Iterate vs. Flat–Recursive routing 18
7. Overview: Roles and services provided by the RELOAD P2P protocol 20
8. Architecture: RELOAD P2P layer model compared with DoD Internet model . . 22
9. Structure: Composition of a RELOAD message 24
10. Message body hierarchy: Structure of a RELOAD store request 25
11. Structure: Security block including certificates and signature 27
12. Call flow: RELOAD enrollment procedure . 29
13. Chained Certificates: Shared write access by self-signed PKCs 38
14. Access control list: Shared write access via list of permitted users 39
15. Shared resource scenario: SIP third-party registration 41
16. Shared resource scenario: Distributed message board on RELOAD 43
17. Example: Access control list array including entries for two different Kind-IDs . 45
18. Call flow: Resource owner sharing a resource 51
19. Reference scenario: Focus peer A and B jointly managing a DisCo 56
20. Architecture: Roles and interactions within a distributed conference 60
21. Comparison: Focus peers behind NATs . 64
22. Message flow: Registration of a distributed conference 67
23. Message flow: Selecting focus and establishing a transport 68
24. Message Structure: A FetchReq message represented along the byte stream . 69
25. Message Flow: Joining a conference by the SIP-Usage 72
26. SIP Authenticate: Participant authenticating against focus peer 75
27. Call delegation: Transfer of a party due to load-balancing 76
28. Distribution Models: Advertisement of change event in SIP 82
29. Mutual subscriptions: Party becoming focus and synchronizing state 83
30. Overview: Event package for distributed conferences 84
31. RELOAD.NET: Component Overview . 93
32. Packet Diagram: Project overview . 97
33. Component Diagram: Internal structure of the DisCo Class project 99
34. Access Control: Factory pattern for adding new policies 102
35. Demo Application: Distributed conferencing softphone prototype 108
36. Measurement Architecture: Three-layers to instantiate a RELOAD overlay . . . 111
37. Peer Deployment: The distribution of the PL-nodes in the global scope 113
38. Joining: Average delay to join a RELOAD overlay in several scopes 115

List of Figures 135

39. Store Request: Registration of a distributed conference 116
40. Fetch Request: Retrieval of the DisCo-Registration 117
41. Fetch Request: Retrieval of the DisCo-Registration 118
42. Peer to Focus Delay: Comparison of Scenarios 119

Listings 136

Listings

1. SIP INVITE: Alice calls Bob . 6
2. Example: SIP Join header to an already establish call 10
3. Conference-info example: Announcement of the disappearance of the user Bob 14
4. Sample: Definition of the SIP-REGISTRATION Kind [38] 23
5. Kind structure: A single access control list item 45
6. Sample Pattern: Regular expressions to define resource naming pattern 47
7. Kind Extension: Extension containing the resource name in plain text 48
8. XML Extension: Variable resource name extension to the configuration document 49
9. XML Example: Variable resource name extension for a DisCo-Registration Kind 50
10. Pseudo code: Algorithm for validating an access control list 53
11. DisCo-Registration: Data structure to register a distributed conference 62
12. XML extension: List of landmarks to determine relative position in the network . 65
13. Coord-parameter: Encoding of the coordiate value as base64 66
14. SIP INVITE: Legacy SIP user agent calling a DisCo 73
15. 200 OK: SDP answer setting media on hold 76
16. Initialization: The RELOAD machine class . 94
17. Delegates: Enabling application to receive events 95
18. Sipek: Initiation call manager . 96
19. XML Serializer: Obtaining a class representation of the configuration document 98
20. ACLItem: C# struct represention . 100
21. ACL Index: ShaReUsage object creating array index 101
22. ACL validation: Authentication of the originator the shared resource 102
23. DisCo-Registration: Authentication of the originator the shared resource 104
24. GetClosest(): Implementation of the landmark algorithm 104
25. Async Ping: Using CCR to multitask requests (1) 106
26. Async Ping: Using CCR to multitask requests (2) 107
listings/distributed–conference.xsd . 124

Danksagung

An dieser Stelle möchte ich mich zunächst bei meiner zukünftigen Ehefrau bedanken, da sie
mich wären der gesamten Arbeit immer moralisch getragen hat.

Dann gilt ein besonderer Dank an Prof. Dr. Thomas C. Schmidt, der meine Arbeiten stets
gefördert hat und ohne den ich nicht so viel erreicht hätte.

Desweiteren, bedanke ich mich auch bei all den Mitarbeitern der Arbeitsgruppe INET, die mich
bei meiner Arbeit immer inspiriert und unterstützt haben.

Versicherung über Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung nach
§24(5) ohne fremde Hilfe selbstständig verfasst und nur die angegebenen Hilfsmittel benutzt
habe.

Hamburg, 16. Januar 2012
Ort, Datum Unterschrift

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contribution
	1.4 Organization

	2 Evolution of P2PSIP
	2.1 Traditional SIP Signaling
	2.1.1 Call establishment
	2.1.2 SIP Notification Mechanism
	2.1.3 Call Transfer

	2.2 Conferencing with SIP
	2.2.1 Three-way Conference
	2.2.2 Conferencing Frameworks
	2.2.3 Conference Event Package

	2.3 Emergence of P2PSIP Approaches
	2.3.1 Unstructured P2P Systems
	2.3.2 Distributed Hash Tables
	2.3.3 Motivation for P2PSIP
	2.3.4 SIP over P2P

	2.4 RELOAD – A P2PSIP Application Layer Protocol
	2.4.1 A Common Solution
	2.4.2 Overview on RELOAD
	2.4.3 Protocol Architecture
	2.4.4 Usages
	2.4.5 Resources and Kinds
	2.4.6 Messaging Model
	2.4.7 Enrollment & Security Model
	2.4.8 Access Control

	3 Challenges of Distributed Conferencing
	3.1 Design Challenges
	3.1.1 Conference Transparency
	3.1.2 Coherency of State in a Distributed Conference
	3.1.3 Peer Failures
	3.1.4 Load balancing
	3.1.5 DisCo in P2PSIP
	3.1.6 Backward Compatibility

	3.2 Organization of Focus Peers
	3.2.1 Communication Delay
	3.2.2 Media Capacities
	3.2.3 Focus behind NATs

	3.3 Requirements on Distributed Conferencing

	4 Shared Resources in RELOAD
	4.1 Introduction
	4.2 Design Pattern for Shared Resources
	4.2.1 Self-signed Certificate Chain
	4.2.2 Access Control List
	4.2.3 Resource Name Pattern
	4.2.4 Comparison and Selection of an adequate Approach

	4.3 Scenarios for Co-Managed Overlay Resources
	4.3.1 Third-Party Registration
	4.3.2 Message Board

	4.4 Management of Concurrent Write Attempts
	4.5 Access Control List in RELOAD
	4.5.1 The ACL Kind

	4.6 Variable Resource Names
	4.6.1 Resource Names Pattern
	4.6.2 Resource Name Extension

	4.7 Protocol Operations
	4.7.1 Granting Write Access
	4.7.2 Revoking Write Access
	4.7.3 Validation of an Access Control List
	4.7.4 USER-CHAIN-ACL Access Control Policy

	5 Distributed Conference Control based on RELOAD
	5.1 Overview
	5.1.1 Scope of DisCo
	5.1.2 Concurrent Work in the IETF

	5.2 Protocol Design
	5.2.1 Architecture
	5.2.2 The DisCo Registration
	5.2.3 Routing to a Focus
	5.2.4 Adding Focus Peers
	5.2.5 Proximity-awareness

	5.3 Protocol Operations
	5.3.1 Conference Creation
	5.3.2 Joining the Conference
	5.3.3 Leaving a Conference

	5.4 DisCo-Unaware Participants
	5.4.1 RELOAD-aware Applications
	5.4.2 Plain SIP User Agents

	5.5 Conference Management
	5.5.1 Conference Access
	5.5.2 Call delegation
	5.5.3 Leave Management

	5.6 Media Management
	5.6.1 Model for Media Distribution
	5.6.2 Offer/Answer Model

	6 Management of a Coherent Conference State
	6.1 Introduction
	6.2 Distribution of Change Events
	6.3 Event Package for Conference State
	6.3.1 Overview

	6.4 Description of XML Elements
	6.4.1 <distributed-conference>
	6.4.2 <version-vector>/<version>
	6.4.3 <conference-description>
	6.4.4 <focus>

	6.5 Translation to Conference-Info Event Package
	6.5.1 ci.<conference-info>
	6.5.2 ci.<conference-description>
	6.5.3 ci.<host-info>
	6.5.4 ci.<conference-state>
	6.5.5 ci.<users>/ci.<user>
	6.5.6 ci.<sidebars-by-ref>/ci.<sidebars-by-value>

	7 Implementation
	7.1 Libraries to Implement DisCo
	7.1.1 MP2PSIP Project aka RELOAD.NET
	7.1.2 PJSIP Stack/ Sipek Wrapper
	7.1.3 XML Schema Converter
	7.1.4 DisCo Class Design

	7.2 Implementation of Usages
	7.2.1 Shared Resources
	7.2.2 Usage for DisCo

	7.3 Demo Application

	8 Measurements & Evaluations
	8.1 Objectives of Measurements
	8.2 Mono Port
	8.3 Measurement Setup
	8.3.1 Measurement Architecture
	8.3.2 Measurement Configuration

	8.4 Measurements
	8.4.1 Measurement Scopes
	8.4.2 Joining a RELOAD Overlay
	8.4.3 Storing a DisCo-Registration
	8.4.4 Fetching a DisCo-Registration
	8.4.5 AppAttach to Focus Peer
	8.4.6 Connection Establishment to Focus Peer

	8.5 Evaluation

	9 Conclusion and Outlook
	A Appendix
	References
	List of Figures
	Listings

