
Fakultät Technik und Informatik
Department Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Masterarbeit

Fabian Jäger

How to Keep my Video Chat Fluent:
An Approach to Adapting Scalable Video Flows to Heterogeneous

Network Conditions in Real-time



Fabian Jäger

How to Keep my Video Chat Fluent:
An Approach to Adapting Scalable Video Flows to Heterogeneous

Network Conditions in Real-time

Masterarbeit eingereicht im Rahmen der Masterprüfung
im Studiengang Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Thomas C. Schmidt
Zweitgutachter: Prof. Dr. Franz Korf

Abgegeben am 26.03.2014



Fabian Jäger

Titel der Masterarbeit
Wie realisiert man eine stabile Videokonferenz: Ein Ansatz Videoströme in heterogenen Netzw-
erken in Echtzeit zu skalieren
Stichworte
Echtzeit-Videokonferenz, H.264, SVC, Bandbreitenabschätzung, RTP, Videoadaption, Videokon-
ferenz
Kurzzusammenfassung
Videokonferenzen (VCoIP) sind ein zunehmender Trend im Internet. Dies gilt besonders für mo-
bile Netzwerke, in denen die Bedingungen sehr unbeständig sind und die Videokonferenz beein-
trächtigen. Eine Möglichkeit zur Behebung des Problems ist ein Scalable Video Coding (SVC)
Videostrom, der eine individuelle Adaption an die vorhandene Bandbreite erlaubt. Dafür muss die
verfügbare Bandbreite zunächst abgeschätzt werden. In einer echtzeit Videokonferenz-Software
muss dies schnell und zuverlässig geschehen. In dieser Arbeit werden die Möglichkeiten für
den Sender und Empfänger untersucht, die Bandbreiten auf einem Pfad abzuschätzen. Auf der
Senderseite wird dazu die Variation des RTT Jitters untersucht. Auf der Empfängerseite wird
die Variation der Empfangszeitpunkte für Frames analysiert, um Rückschlüsse auf die Netzw-
erkbedingungen zu ziehen. Die Adaptionsverfahren werden in unterschiedlichen Netzwerkbe-
dingungen untersucht und zeigen eine schnellere Reaktion auf der Senderseite, während der
Empfänger zuverlässigere Ergebnisse erzielt.

Title of the master thesis
How to Keep my Video Chat Fluent: An Approach to Adapting Scalable Video Flows to Hetero-
geneous Network Conditions in Real-time
Keywords
Real-time videoconferencing, H.264, SVC, Bandwidth adaptation, RTP, Video adaptation, Video-
conferencing
Abstract
Video conferencing over IP (VCoIP) is a major trend in current Internet communication and has
particularly spread to the mobile realm. In this environment, users face the problem of hetero-
geneous and fluctuating network conditions. A promising solution to this issue is the scalable
video coding (SVC). It allows an adaptation of the video stream to the available bandwidth, but
requires a reliable bandwidth estimation. Adaptation times for conversational video at fluctuating
network conditions are critical, and a fast strategy for bandwidth estimation is needed to avoid
congestion. In this work, we analyze the capabilities of the sender and the receiver to adapt
the video coding to changing network conditions. We derive an early congestion indicator at the
sender side based on the jitter variation. For receivers, we use the inter-arrival jitter to extract a
feasible scaling. The video adaptation approaches are evaluated in different network conditions
and reveal a faster congestion detection at the sender, while scaling rules work more reliably at
the receiver.



Contents

1 Introduction 1

2 Adaptive Video Scaling and Related Work 3
2.1 Video Codecs and Video Rating Metrics . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Video Codec and their Scalability . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Rating Metrics for Video Streams . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Estimating Network Conditions and Available Bandwidth . . . . . . . . . . . . . . 8
2.2.1 Router Queues, Packet Loss, and Available Bandwidth . . . . . . . . . . . 8
2.2.2 Estimating the Available Bandwidth . . . . . . . . . . . . . . . . . . . . . 11

2.3 Interaction of Video Streams and Network Protocols . . . . . . . . . . . . . . . . 12
2.3.1 Network Protocols in Multimedia Applications . . . . . . . . . . . . . . . . 12
2.3.2 Affects of Packet Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Adapting a Video Stream to the Network Conditions . . . . . . . . . . . . . . . . . 15
2.4.1 Receiver-sided approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Sender-sided approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Hybrid approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.4 HTTP Based Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Video Codec Adaptation 21
3.1 Problem Description of Bandwidth Adaptation . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Observation 1—Who should control? . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Observation 2—Which measurement indicates congestion? . . . . . . . . . 22
3.1.3 Combining both observations . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 Identification of a Congested Path . . . . . . . . . . . . . . . . . . . . . . 23

3.2 A Sender-sided Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 A Receiver-sided Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Measuring the Incoming Throughput . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Detecting a Queuing Delay in the Inter-arrival Jitter of Frames . . . . . . . . 29
3.3.3 Effects of Retransmission Delays . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Comparison between Sender and Receiver Congestion Indication . . . . . . . . . 34
3.5 Parametrizing the Video Codec . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Scaling Timeouts and Quality Upscaling . . . . . . . . . . . . . . . . . . . . . . . 40



Contents v

4 Implementation of the Approach in a Multimedia Application 43
4.1 Video Streaming Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Architecture of the Streaming Application . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Parametrizing the Streaming Application . . . . . . . . . . . . . . . . . . . . . . . 46

5 Performance Evaluation 48
5.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1 Emulation environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.2 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.3 Video sequences and video codec . . . . . . . . . . . . . . . . . . . . . . 51
5.1.4 Rating Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Unscaled Video Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Sender-sided Video Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 Receiver-sided Video Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5 Sender-sided and Receiver-sided Video Adaptation . . . . . . . . . . . . . . . . . 63
5.6 Comparison of the Test Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.7 Lossy paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.8 Long-RTT paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.9 Video Adaptation in the Presence of Competing Traffic . . . . . . . . . . . . . . . 72
5.10 Video Adaptation in a Network with a Congested Return Path . . . . . . . . . . . 74
5.11 Video Adaptation in a Network with a Constant Increasing Congestion . . . . . . . 75
5.12 RTT Delay Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.13 Long Time Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.14 Measurement in a Real Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.15 Analysis and Comparison of the Measurement Results . . . . . . . . . . . . . . . 89

6 Conclusion and Outlook 91

Bibliography 93



List of Figures

2.1 Group of Pictures with one Intra-frame (I) and 3 Inter-frames (P) . . . . . . . . . . 4
2.2 The AQM and the queue status are not known for the traffic streams 1-3 . . . . . . 9
2.3 Traffic stream on a path with multiple hops and competing traffic . . . . . . . . . . 10
2.4 State flow diagram of the TREND approach . . . . . . . . . . . . . . . . . . . . . 16

3.1 Analysis of the sender-sided congestion indication . . . . . . . . . . . . . . . . . 25
3.2 Queuing scenarios for a frame that consists of three packets . . . . . . . . . . . . 27
3.3 Concept of detecting queuing delays in the inter-arrival jitter . . . . . . . . . . . . 29
3.4 Analysis of the receiver-sided congestion indication . . . . . . . . . . . . . . . . . 32
3.5 Bit rate variation of a video stream . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Average bit rate for each encoding setting . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Average bit rate of the testsequence "TW" for each quality setting . . . . . . . . . 38
3.8 Measurement results for one Frame F1, which is sent over the network via three

packets P1,P2, and P3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Architecture of the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Sequence diagram of the application . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Daisy-chain topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Dumbbell topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 One picture of the testsequence TW . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Bit rate of the video stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 Inter-arrival jitter distribution measured for different bandwidth limitations . . . . . . 56
5.6 CDF comparison for several bottleneck settings . . . . . . . . . . . . . . . . . . . 57
5.7 Unscaled video stream with a maximum bandwidth of 1 Mbit/s . . . . . . . . . . . . 58
5.8 Encoding quality for an optimal bandwidth utilization on a 1 Mbit/s path . . . . . . . 59
5.9 RTT and inter-arrival jitter distribution of a sender-sided video adaptation . . . . . . 60
5.10 Bitrate analysis of a sender-sided video adaptation . . . . . . . . . . . . . . . . . 61
5.11 Bit rate analysis of a receiver-sided video adaptation . . . . . . . . . . . . . . . . 62
5.12 Inter-arrival gap variation at the receiver-side . . . . . . . . . . . . . . . . . . . . 62
5.13 Inter-arrival jitter distribution and encoding quality analysis of a receiver-sided

video adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



List of Figures vii

5.14 Sender-sided available bandwidth estimation in comparison to the receiver-sided
approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.15 Sender-sided and receiver-sided video adaptation . . . . . . . . . . . . . . . . . 64
5.16 Bit rate analysis for a sender-sided and receiver-sided video adaptation . . . . . . 65
5.17 RTT of a video stream on a path with a high loss rate . . . . . . . . . . . . . . . . 67
5.18 Inter-arrival jitter distribution in a lossy environment . . . . . . . . . . . . . . . . . 68
5.19 Bitrate and scaling suggestions in a lossy environment . . . . . . . . . . . . . . . 69
5.20 Measurement results for a sender-sided scaled video stream in a lossy environment 70
5.21 Measurement results for a network with high response times . . . . . . . . . . . . 70
5.22 Measurement results for a network with high response times . . . . . . . . . . . . 71
5.23 Scaled video deployed in a dumbbell topology with 0.5 Mbit/s competing UDP traffic

after 15 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.24 Video stream in a dumbbell topology with 0.5 Mbit/s competing TCP traffic . . . . . . 73
5.25 Quality of the video stream on a path with 0.5 Mbit/s TCP side-traffic . . . . . . . . . 73
5.26 Fully congested path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.27 Fully congested path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.28 RTT and RTT jitter variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.29 RTT measurement and sender-sided scaling suggestions . . . . . . . . . . . . . . 76
5.30 Analysis of the video stream in a network with a congested return path . . . . . . . 77
5.31 RTT and RTT jitter variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.32 Analysis of the scaling suggestions . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.33 Measurement results for a scaled video stream in a network with a volatile RTT . . 79
5.34 Analysis of the encoding quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.35 Analysis of the scaling suggestions . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.36 Sender-sided scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.37 Bit rate of the video stream ’Elephants Dream’ . . . . . . . . . . . . . . . . . . . 82
5.38 Test results for the testsequence ’Elephants Dream’ over 15 minutes . . . . . . . . 83
5.39 Unscaled video stream via UMTS . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.40 Sender-sided and receiver-sided scaling . . . . . . . . . . . . . . . . . . . . . . . 84
5.41 Sender-sided scaled video stream via UMTS . . . . . . . . . . . . . . . . . . . . 85
5.42 Inter-arrival jitter distribution and RTT of a sender-sided scaled video stream with

a 1s upscaling timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.43 Encoding quality and resulting bitrate of a sender-sided scaled video stream with

a 1s upscaling timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.44 Sender-sided video adaptation with a 1s upscaling timeout and 20ms threshold for

the congestion indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.45 Bit rate of the sender-sided scaled video stream with 1s upscaling timeout and

20ms RTT jitter variation threshold for the sender-sided congestion indication . . . 88
5.46 Video sequence ’Elephants Dream’ in a real world deployment . . . . . . . . . . . 88



List of Figures viii

5.47 Encoding quality analysis of the video sequence ’Elephants Dream’ in a real world
deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



List of Tables

2.1 MOS rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Maximum acceptable loss rate for videos . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Network notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Video adaptation notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Overview of application requirements and involved parties . . . . . . . . . . . . . 23
3.3 Quality and correspondent codec settings . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Quality mapped to the bit rate of a video stream . . . . . . . . . . . . . . . . . . . 40

4.1 Overview of the supported features . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Comparison of common test sequences with an absolute inter-arrival jitter (I.a.j.)
below 9 ms as rating metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



1 Introduction

Video communication is one of the fastest growing phenomena on the Internet. It has been
implemented in many applications like conferencing software, online games, instant massaging,
and mobile applications. Conversational video inherits delay sensitivity from audio, while its large
bandwidth consumption may easily cause or amplify congestion on the communication path. A
congested path can lead to transmission errors like packet loss, delay and jitter that typically
degrade the visual quality or stall the video flow. Heterogeneous and varying network conditions,
which are common in mobile environments, increase the likelihood of congestions.

Keeping the video fluent and at appropriate quality requires a dynamic adaptation, whenever
network services fluctuate. The current video coding standards H.264/AVC [1] and H.265 [54]
allow for a dynamic rescaling in time (adaptive framerate) and quality (adaptive quantization).
The scalable video coding extensions [52] enable additional spatial scaling and arrange layers
in packet streams. All codecs need a proper parametrization in order to establish a robust and
reliable video conversation.

Appropriate video scaling is derived from estimating the effective bandwidth currently available
in the network. Such estimators are required to detect congestion as early as possible and to
predict a bitrate that complies to the network constraints of the immediate future. Network con-
gestions arise at overloaded network elements when the overall transmission demands exceed
the available bandwidth along the path. It is neither easy to identify the available bandwidth, nor
to determine a congested link in real-time. In general, this can be done at the sender or at the
receiver side, which have access to different measures of network performance.

The Internet is a highly distributed network that does not guarantee end-to-end performance.
Packet delivery delays are often caused by a congested path between sender and receiver. How-
ever, avoiding a stuttering video stream is important to provide a good user experience during a
video conference. To leverage modern video codecs, which can scale to meet available network
resources, three basic tasks need to be supported: (a) detect a congested path, (b) approximate
the available bandwidth, and (c) adjust the codec accordingly. The time to identify congestion and
estimate the bandwidth is crucial. When a congestion is detected, the ratio of available bandwidth
to the bitrate of the video stream needs to be estimated to scale down the video codec by the
same factor.

Any solution that gives input to parametrize the video codec should not introduce additional com-
plexity to the network. Dedicated probing techniques (e.g., to explore the bandwidth) should be



1 Introduction 2

avoided as they increase congestion in large-scale deployments. The change of network proto-
cols should not be part of the solution space as this prevents easy deployment. The challenges in
designing a solution are twofold. First, a congested link needs to be detected as fast as possible
on the basis of available network metrics. Second, an approximation of proper codec scaling
needs to be derived.

In this thesis, we explore methods to detect changing network conditions at the sender and the
receiver side, as well as corresponding strategies for an appropriate video scaling. In detail, our
contributions read:

1. An algorithm for early congestion indication at the sender based on the jitter variation
observed from a fast feedback loop of the transport protocol.

2. An algorithm for estimating current network conditions at the receiver based on the inter-
arrival jitter. This approach requires an extra feedback channel to rescale the sender.

3. Adaptation strategies for video scaling based on the estimates of the sender, the receiver,
and a combination of both.

The remainder of this thesis is organized as follows. Section 2 discusses the problems and
requirements for an adaptive video conferencing software and gives references to related work.
Our core algorithms for detecting congestion and estimating appropriate scaling parameters is
presented in Section 3. These approaches are applied and extensively evaluated with the help
of our full-fledged video conferencing software system as documented in Section 4. Section 5
analysis the adpatation approaches and discusses the experimental avaluations. We conclude
with an outlook in Section 6.



2 Adaptive Video Scaling and Related Work

The objective of this work overlaps with several independent research areas, most notably (1)
scalable video deployment in heterogeneous regimes, (2) bandwidth estimation techniques, (3)
approaches to adaptive scaling at receiver and sender, and (4) flow control in the presence
of competing traffic. Each of them influence the video stream transmission and needs to be
researched to develop video adaptation strategies. Thus, the following subjects are examined:

• Video codecs, video stream scalability, and video rating metrics

• Common protocols that are used in multimedia applications

• Adapting a video stream to the network conditions

2.1 Video Codecs and Video Rating Metrics

The available bandwidth of networks is often a limiting factor in multimedia streaming scenar-
ios. Especially real-time multimedia applications suffer. The usage of a video codec to reduce
the bandwidth demands is essential to provide a high quality video stream in a network with
low available bandwidth. The advantage of encoded video streams over raw video data is the de-
creased bandwidth requirements, which mainly depend on the codec in use, the encoding quality,
and the compression complexity.

2.1.1 Video Codec and their Scalability

In general, a video codec compresses video data (usually lossy). Every frame of an encoded
video is encoded with common image compression algorithms (eg., JPEG [35]), which reduces
extraneous or duplicate information in the frames. In comparison with image compressing algo-
rithms, video codecs are also able to detect and reduce redundant information in the temporal
scale. Only the parts of a frame that change over time are transmitted.

Most common video codecs have a similar process flow to encode a video stream. First, a
complete frame is encoded that has no dependencies to other frames, named Intra-frame. All
following frames, named Inter-frames, depend on it. This goes on, until a new Intra-frame is



2 Adaptive Video Scaling and Related Work 4

encoded. An Intra-frame and all depending frames is shown in Figure 2.1 and is named a Group
of Pictures (GOP). In this example a simple structure is shown, where every Inter-frames depend
only on its predecessor, but it is also possible that Inter-frames depend on multiple frames in the
same GOP. Multiple dependencies reduces the produced bit rate, but also increases the encoding

I
t

P P P I

GOP

Figure 2.1: Group of Pictures with one Intra-frame (I) and 3 Inter-frames (P)

complexity and more processing power is required. In real-time multimedia applications, the
frames usually depend only on the previous frames. If they also depend on following frames,
they need to be buffered, which delays the playout. For a correct playout at the receiver-side, all
frames are required. If a frame is missing, the depending frames cannot be correctly decoded.

For a fluent video stream, it is necessary to scale the video stream to prevent bandwidth exhaus-
tion. This holds in particular for mobile regimes [50], [10] and can be achieved with the scalable
video coding (SVC) [52], which is an extension to H.264 [1]. In this work, we focus on the H.264
and its SVC extension, which allows to scale the datarate and coding complexity of the video
for each participant individually [9]. It is worth mentioning that on the 25 January 2013 the new
codec standard High Efficiency Video Coding (HEVC, ITU-T H.265 or ISO/IEC 23008-2 [54]) was
released, which only needs half of the bit rate of its predecessor ITU-T H.264 [54]. The HEVC can
provide a smaller video stream with the same quality as H.264, but also requires more processing
power.

T. Schierl et al. [50] present an overview of basic solutions for the deployment of scalable video
streams in mobile realms, regarding various set-ups for IP and non-IP worlds. Particular focus is
given by the authors to the problems of unstable network conditions with significant packet loss.
As such, conversational or broadcast-type multimedia applications suffer from varying throughput
and a scalable video stream bears potentials to adapt to the poor network conditions. The authors
present solutions of the SVC coding standard to face these problems and propose an approach
for integrating the SVC in existing and emerging mobile networks. Insights are given on how
the SVC interacts with mobile networks, different QoS metrics, and content delivery protocols.
Furthermore, some use-cases are introduced and show the relation between the SVC and mobile
delivery methods.



2 Adaptive Video Scaling and Related Work 5

2.1.2 Rating Metrics for Video Streams

The network conditions influence the video stream and are usually percept as quality impair-
ments. To measure the effects of network impairments, a rating metric is needed for the video
streams.

The quality of the video transmission depends on the performance of the network, which is refered
as Quality of service (QoS). Several aspects of the network service can be considered to rate the
QoS, such as error rates, bandwidth, throughput, transmission delay, availability, jitter, etc. The
objective video stream quality depends on the QoS and several objective metrics exist to rate
the video quality. The most popular objective quality metrics are the peak signal-to-noise ratio
(PSNR) [49], the mean squared error (MSE), the moving picture quality metric (MPQM) [57]
and the normalized video fidelity metric (NVFM) [61]. However, the user’s impression on video
conferencing applications depends on the subjective perception rather than the objective QoS.
Thus, the video stream is characterized in terms of Quality of Experience (QoE) rather than QoS
[16].

A common way of subjectively characterizing a video is the Mean Opinion Score (MOS). It is
standardized from the ITU in ITU-T Rec. P.910 [30]. The MOS is a measurement of the human
perception and is measured when the video is played out and the user gives direct feedback to
the perception of the quality. It is usually a scale between 1 and 5 and is a representation of the
average human response to the quality of a video. Table 2.1 shows the interpretation for the MOS

MOS Quality Impairment

5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

Table 2.1: MOS rating

values.

The MOS metric has also drawbacks, which are notable [6]:

• Subjective quality is not a standardized metric and depends on the user’s sensation.

• Users avoid extreme scores and most of the videos are rated as 2,3, or 4

• The users tend to ’forgive’ short quality impairments, when the playout is long and smooth
altogether

Video rating metrics (subjective and objective) can be classified in the following schemes:



2 Adaptive Video Scaling and Related Work 6

Full reference (FR): Both, the outcome video and the original video are available and allow a
detailed comparison. The video and its single frames can be compared with objective
and subjective metrics. Full reference metrics require access to the original video and the
received video, but also provide reliable analysis. A good example for a FR metric is PESQ
[29] or the PSNR where the original picture is needed for the calculation.

No reference (NR): In NR metrics, only the outcome video is available and the original video
itself is not accessible nor are any encoding or network parameter from the source. NR
metrics lack the possibility to differentiate between quality impairment from the original
video and additional disturbance by the network. NR metrics are a typical online streaming
scenario, where a video stream is received without access to the original video. Typically,
network measurements such as packet loss ration or jitter are used to evaluate the video
quality.

Reduced reference (RR): In RR metrics, the original video is like in NR metrics not accessible,
but certain parameters are extracted at the source and transmitted to the receiver. The
parameters that are needed for the rating depend on the rating algorithm. The measured
QoE metrics are less accurate than a FR metric but produce less overhead. RR metrics
are often used in application, where the bandwidth utilization is crucial.

The most popular MOS metrics are the Visiual Quality Metric VQM [47], PEVQ [48], and the
Media Delivery Index (MDI) [60]. VQM is a FR metric and provides an objective measurement
of the perceived video quality. For this purpose, the perceptual effects of video impairments are
measured. The measurements include blurring, jerky/unnatural motion, global noise, block dis-
tortion and color distortion, and combines them into a single metric. It is a fairly complex metric,
but it also correlates very well with the human perception. VQM can also be optimized on the
area of application like television or videoconferencing. PEVQ is a FR end-to-end measurement
algorithm to calculate a MOS rating for a video sequence. It also provides various key perfor-
mance indicators (KPIs) like PSNR, delay, jerkiness, and blur. PEVQ models the human visual
system with the anomalies how they perceive the video signal. The algorithm basically consists
of 4 components. The first component is responsible for the spatial and temporal alignment of
the incoming stream. This ensures that only corresponding frames are compared to each other.
The second component determines the perceptual difference in the video signal that is perceived
by the user. The third component classifies the video signal and the forth component calculates
a MOS rating based on the measurement of all components.

The MDI is a lightweight approach, which provides and indication of the expected QoE based on
network level metrics. It consists of two components, the Delay Factor (DF) and the Media Loss
Rate (MLR). We will present the DF component more detailed, because a similar approach is
used to rate the videos in this work.



2 Adaptive Video Scaling and Related Work 7

The MLR is the number of lost packets or packets that are out of order in one second. The MLR
is calculated with equation (2.1),

MLR =
Pe − Pr

δ
(2.1)

where Pe is the number of expected packets, Pr is the number of received packets and δ is the
time interval in seconds. The maximum acceptable loss rates are very demanding, because
every packet loss causes significant visible artifacts in the decoded video. A maximum loss of
up five consecutive IP packets per thirty minutes is recommended for SDTV and VOD and four
hours for HDTV [38]. The resulting MLR values shown in Table 2.2.

Service Max. Acceptable Average MLR

SDTV 0.004
VOD 0.004
HDTV 0.0005

Table 2.2: Maximum acceptable loss rate for videos

The DF estimates a QoE based on the network delay. The delays on the network have various
reasons (eg., congestions or path changes), but in any case, if the arrival rate does not match
the rate at which the destination is consuming data, the packets must be buffered. If packets
arrive at such a high rate, that they fill the buffer completely, they cause an overflow and packets
get dropped. If packets arrive too slow, the buffer underflows and not enough data is available
to feed the decoder at the desired rate. Both situations are undesirable and lower the QoE. The
DF component is a time value indicating how many miliseconds’ worth of data the buffers must
be able to contain to compensate the jitter in the arriving rate [38]. It is based on the buffer filling
level at the receiver side and calculated with equation (2.2) and (2.3).

∆ = |bytes_received− bytes_drained| (2.2)

DF =
(max(∆)−min(∆))

media_rate
(2.3)

The minimum and maximum filling level of the buffer is measured and their difference is divided
by the incoming media rate. A downside of the MDI is that it requires a buffer at the receiver-side
to calculate the DF. In a video conferencing software, a buffered video stream is unwanted and
therefore we will propose another approach to rate the delay from a QoE perspective.

T. Hendrawan and I. Mahadhika [24] examined the effects of packet loss to the QoE of a scalable
video stream on a wireless network. They used a laptop, a tablet and a smartphone as receiver
to analyze the QoE for the different devices. The coding software is the Joint Scalable Video
Model (JSVM), which uses the H.264/SVC standard as reference. A video stream is encoded



2 Adaptive Video Scaling and Related Work 8

with JSVM and sent to multiple receivers over a IEEE 802.11n network. The results show, that it
is not negligible what kind of device is used to playout the video. The same video gets different
MOS ratings on a smartphone than on a device with a bigger display like a laptop. Also, the
compression ratio influences the QoE. A video stream with a high compression has less packet
loss than a video stream with a low compression, but when a packet loss occur, the effects have
more impact than a packet loss on a stream with a low compression.

2.2 Estimating Network Conditions and Available Bandwidth

Variable Description

µ(t) Service rate of the router
λ(t) Sending rate of the sender

c Capacity of the path
w(t) Packet dropping probability
η(t) Competing traffic stream

Table 2.3: Network notation

The limiting factors for a video tranmsissions are the available bandwidth and the loss rate of
the path. If the applications do not react to a changing available bandwidth or a changing loss
rate, the path impend to congest. A detailed analysis of congestions and their course of events
is important to develop strategies to prevent them. Table 2.3 summarizes the notation we use in
the following sections.

2.2.1 Router Queues, Packet Loss, and Available Bandwidth

Congestions arise at routers if the incoming traffic exceeds the available bandwidth of the out-
going link and the router queues start to fill. The router queues are considered to be M/M/1/N
queues, where N is the length of the queue [13] [36] . The router drop packets depending on
the filling level of its queue, which inflicts the QoS of the traffic streams. For an unreliable traffic
stream like UDP flows, the follow-up will be packet loss. The follow-up for a reliable traffic stream
like TCP flows will be a retransmission of the lost packets, but the TCP protocol decreases the
sending rate to avoid a further congesetion.

The decision, which packets are dropped is important to avoid congestions as best as possible.
Active Queue Management (AQM) algorithms has been the focus of research for a long time. The



2 Adaptive Video Scaling and Related Work 9

Stream 1

Stream 2

Stream 3 Router

AQMQueue
??

Figure 2.2: The AQM and the queue status are not known for the traffic streams 1-3

advantage of an AQM over a drop-tail (incoming packets are dropped if the queue is filled) ap-
proach is that it ’informs’ the sender about an impending congestion by scattered packet dropping
before buffers overflow. The senders are informed early on and can react accordingly. The AQM
decides when, which, and how many packets are dropped. AQM algorithms can be classified in
three categories: queue based, rated based and per-flow algorithms. Queue based algorithms
calculate the dropping probability for incoming packets with the average queue length. Rate
based algorithms do not take the queue length into account and calculate the dropping probabil-
ity with the incoming and outgoing rates. Per-flow scheduling mechanisms calculate the dropping
probability for each flow individually, which provides max-min fairness, but it is also necessary to
keep the state for all flows.

The most common AQMs are RED[17], ARED[14], REM[3], BLUE[5] and modifications of these
algorithms. The queue based algorithms (RED,ARED,REM) calculate the dropping rate with the
average queue size. An empty queue means that enough bandwidth is available and the dropping
probability for the incoming packets is low. With a growing queue, the dropping probability for
the incoming packets increases. When the queue is full, the probability reaches its maximum
and every incoming packet is dropped. The approaches mainly differ in the calculation of the
dropping probability. BLUE has a rate base approach and calculates the dropping probability
with the packet loss and link utilization rather than on queue lengths.

The AQM has significant effects on the queuing delay, but without access to the routers, the
operating algorithm is unknown and therefore, the router is a blackbox (cf., Figure 2.2). In a
real network, the bandwidth requirements from the competing traffics are unknown, but we can
assume that the service rate is the capacity without the bandwidth consumed by the competing



2 Adaptive Video Scaling and Related Work 10

η

λ
μ1 μ2 μ3 μ4

w1 w2 w3

η η

Figure 2.3: Traffic stream on a path with multiple hops and competing traffic

traffic streams. The service rate µ(t) for each traffic stream on each router is shown in equation
(2.4),

µi = c−
m(t)

∑
j=0

ηj(t) (2.4)

where η(t) is the competing traffic and m(t) is the amount of competing traffic streams. The
minimum m(t) is zero. If µi(t) is zero, the link is congested and the queuing delay increases.

Usually, a path consists of multiple routers, where the capacities and the competing traffic streams
are unknown. This is shown in Figure 2.3. For the endpoints of a connection, the available band-
width on each router are unknown without any further measurement. The available bandwidth on
a path only depends on the tight link with the smallest available bandwidth. This is not necessarily
located at the bottleneck (smallest capacity) of the path, but can occur on any link (cf., equation
(2.5)).

µ(t) = min({µ1(t), µ2(t), ..., µn(t)}) (2.5)

If the available bandwidth µ(t) is zero, the link is congested. As a result, the queues fill up
and increases the traversal time for the packets. If the situation does not change and the router
queues impend to be completely filled, the AQM starts to drop packets.

In a multimedia application, the traffic streams usually contains video and audio data. The bit rate
of a traffic stream does not change between the routers, although it may happen if IP fragmenta-



2 Adaptive Video Scaling and Related Work 11

tion occurs. These small variations do not have significant influences and therefore, we assume
that the bitrate λ(t) does not change (cf., equation (2.6)).

λ(t) ≈ λ1(t) ≈ λ2(t) ≈ ... ≈ λn(t) (2.6)

In this work, the traffic stream is a video stream with a few additional bytes of the transport
protocol. This overhead is very small and the bit rate of the traffic stream λ(t) is approximately
the bit rate of the video stream β(t) (cf., equation (2.7)).

λ(t) ≈ β(t) (2.7)

Without any further measurement, it is not possible at the endpoints to determine which router
dropped a packet. On both ends of a connection, only the dropping rate of the complete path is
measurable. The dropping probability of the path w(t) depends on the dropping probability of
each link wi(t) (cf., Figure 2.3) and can be calculated with equation (2.8).

w(t) = w1(t) + w1(t) ∗ w2(t) + ... + w1(t) ∗ w2(t) ∗ w3(t) ∗ ... ∗ wn(t) (2.8)

The filling level variation of the queue on an outgoing port can be calculated with the incoming
traffic and the capacity. The variation of the filling level f in an interval [t1,t2] can be calculated
with equation (2.9).

f =

t2∫
t1

(β(τ)− µ(τ)) dτ (2.9)

2.2.2 Estimating the Available Bandwidth

Measuring the available bandwidth is a well researched area and a lot of tools exist to measure it.
The common approaches to measure the available bandwidth, such as PGM (Probe Gap Model)
or PRM (Probe Rate Model), are independent of the application area and require extra probing
packets [56]. The accuracy of the bandwidth estimation depends on the amount of probing pack-
ets, the nature of side traffic, and the duration of the measurement. For a good overview on these
approaches including a comparison of common bandwidth estimation tools we refer to [20], [21].
These techniques are intrusive and rather slow. Therefore, they do not fulfill the requirements for
a real-time video conference.

PGM sends probing packets with a small, fixed gap (time of transmission difference between two
packets) between them over a path to measure the influences of potential side traffic. On a free
path, the gap between the packets is not influenced by any queuing delays and the gap between
the two packet is the same at the receiver-side (as long as the bit rate of the probing packets



2 Adaptive Video Scaling and Related Work 12

is below the capacity of the path; Otherwise the gap is also influenced by the capacity of the
path). If at least one link on the path is congested, the probing packets are also influenced by
the competing side-traffic due to the queuing delays on the router. The gap increases due to the
queuing delays and differs from the gap the packets had at the sender-side. With this variations
of the gap between the probing packets, the receiver is able to estimate the available bandwidth
on path.

2.3 Interaction of Video Streams and Network Protocols

The video stream is sent via a transport protocol over the network and the video stream quality is
influenced by the interaction of the network with the transport protocol. Multimedia applications
use a variety of protocols that operate on different layers and their interaction needs to examined
to allow a bandwidth aware video adaptation.

2.3.1 Network Protocols in Multimedia Applications

In general, the multimedia stream can be transmited via TCP or UDP. The preferred protocol
depend on the use-case and the area of application. TCP is preferably used in web-based ap-
plications that use HTTP. TCP handles packet loss and retransmit the packets, which prevent
decoding artifacts in the video stream, but can also lead to head-of-line blocking. Head-of-line
blocking occurs, if the TCP experience packet loss or packet re-ordering and the TCP protocol
waits until the required packet arrive. This leads to delayed frames. In real-time scenarios, it is
more beneficial to drop these frames and procede with the next frame to avoid delays. In these
situations, UDP is often used as transport protocol. UDP is an unreliable protocol and transmits
data without a flow control, retransmissons, or QoS metrics. A common area of application is
video conferencing, where artifacts in the video stream are less impairing than delayed video
streams.

A very common protocol to transmit multimedia data, is the Real-time Transport Protocol (RTP)
[51]. It focuses on multimedia transmissions and provides a standardized packet format for de-
livering audio and video data. It is often used in communication and entertainment systems that
involve media streaming. Notable parameters that are contained in the RTP header are:

• The RTP version

• The type of payload (eg., the codec)

• A sequence number to identify the order of incoming packets and to detect packet loss

• The timestamp of the multimedia data, which is important for a correct playout.



2 Adaptive Video Scaling and Related Work 13

• The Synchronization source (SSRC) field, which contains unique identifier to synchronize
incoming packets with the right source.

• The Contributing source (CSRC) field, which is a list of SSRC identifier that contributed
data to the RTP packet. For example, if multiple participants speak at the time, the RTP
packets that contain the mixed audio data include their SSRCs in the CSRC list.

With the SSRC, the sequence number, and the timestamp, a receiver is able to decode a received
packet of the multimedia stream correctly. RTP carries only media streams, but with the RTP
Control Protocol (RTCP) [51] QoS metrics can be monitored. Usually, RTP is transmitted via
UDP, which is unreliable and does not retransmit packets that are lost. Video impairments and
especially the resulting QoE depend on the used protocol, the codec, the network conditions,
and the loss rate. For an unreliable transmission, the factor with the most influence to the QoE is
packet loss [8]. The decoder is not able to decode the video stream correctly if important frames
are missing.

2.3.2 Affects of Packet Loss

The impairments of packet loss to the video quality are hard to predict and still need research
[11]. The impairments depend on the loss rate, the codec and frames that are affected. Also,
different loss pattern (with the same lossrate) have different influences on the video quality [7].

In this work, a reliable transmission protocol is used and thus, dropped packets are retransmitted.
This is beneficial for the QoE, because no packets are lost and the decoder is always able to
decode the video stream correctly. On the other hand, the retransmission causes a delay and also
increases the overhead. This trade-off has to be done for each application and the application
area individually. Nevertheless, packet dropping has huge effects for both video transmission
approaches. Therefore, the effects of packet drops needs to be analyzed. The reasons for
packet loss and their appearance time are often unknown and not predictable. Most common
reasons are the following:

• One of the most common and most frequently reasons is the transmission over a wireless
network, where packet loss occurs fairly often. This already caused a lot of trouble for older
TCP implementations, where packet loss is used as indicator for a congestion and influ-
ences the window size [41]. Packet loss caused by natural influences in wireless network
does not necessarily indicate a congested link and therefore, a downscaling of the sending
rate might be unnecessary. Unfortunately, there is no easy way to determine if a link on a
path is a wireless link [19].

• A rather unusual reason is packet loss caused by a broken link or malfunctioning or mal-
configured router.



2 Adaptive Video Scaling and Related Work 14

• Natural influences can also influence the reliability of a link. An insufficient shielded link
might drop packets due to noise, which depends on the environmental influences. These
are hardly predictable and might also change frequently.

• Common router AQM algorithms starts dropping packets before the router queue is com-
pletely filled. The dropping decision depends on the used AQM and is not predictable nor
useful to determine the queue filling level of the router.

The various causes for packet loss makes it hard to determine the cause for packet loss. How-
ever, some approaches exist to detect packet losses caused by wireless networks. TCP had a
lot of trouble in that regard, some TCP implementations try to detect wireless links [41]. In wire-
less networks, the use of packet loss for congestion detection is too unreliable. With a reliable
transmission protocol, lost packets are retransmitted and no artifacts disturb the QoE. However,
the packet loss influences the transmission time of the frames. Every packet loss causes a re-
transmission of the lost packet and also increases the congestion windowsize of the transmission
protocol, if it supports congestion avoidance.

Packet loss is detected with a missing acknowledgement in a certain period of time, called
retransmission timeout (RTO). The best known reliable transmission protocol is TCP. If an ac-
knowledgement does not arrive in the RTO, the packet is retransmitted. The RTO is adapted to
each connection individually and is calculated with the approximated smoothed transmission time
(SRTT) and the variation of the round-trip-rit (RTT) [43].

A detected packet loss can also influences the sending behavior, because protocols like TCP use
it as an indicator for congested router. TCP uses a sliding congestion window algorithm to avoid
congestions. It contains the number of segments to sent in a window and is initialized with one
maximum segment size (MMS). For every received acknowledgement, the congestion window
is increased by one MMS. This exponential increasing stops when the slow-start threshold is
exceeded. After that, the congestion window is increased by one if all packets in the window
are acknowledged. This goes on until the requested windowsize from the receiver is reached. If
packet loss occurs, the congestion window size is set to one and the slow-start threshold is set
to half of the congestion windowsize.

Modern TCP implementations like TCP Veno take also the lossy characteristics of wireless net-
works into account [19]. The aim is to differentiate between packet loss caused by a low band-
width and other causes. This can be done with an approximation of the expected TCP throughput
and the actual throughput. If they differ, the bandwidth is low and packet loss can be interpreted
as an impending congestion. Veno estimates the number of packets in the router and if it ex-
tends a certain threshold, Veno expects the path to be congested and packet loss is interpreted
as a result of a congestion. In this case, the congestion windowsize will be decreased. If the
queued packets is below the threshold, packet loss will be interpreted as a transmission error by
a wireless network and will decrease the congestion windowsize only by a small factor.



2 Adaptive Video Scaling and Related Work 15

For this work, we use the enet protocol, which is a reliable protocol and operates on top of UDP. It
does not use a slow-start nor a congestion avoidance algorithm. In a video conferencing applica-
tion, a congestion control is unwanted on the transport layer and instead the congestion control
is done on the application layer. The A transport layer congestion control avoids congestions by
lowering the sending rate, which is unwanted. The desired approach is to change the sending
rate by scaling the video stream. With the enet protocol, packet loss only inflects the acknowl-
edgement timeout window from enet. The higher the loss rate, the bigger is the acknowledgement
timeout window and it takes longer until a lost packet is detected and retransmitted.

The retransmission of lost packets increases the transmission time for the whole frame. On a
lossy path, the frame might be delayed at the receiver-side, which is perceived by the user as a
stuttering video stream.

2.4 Adapting a Video Stream to the Network Conditions

Adapting a video stream to the network conditions is a wide research area. We will present and
discuss approaches that already exist and focus on receiver-sided video adaptation (a), sender-
sided video adaptation (b), hybrid approaches that use both sides (c), and HTTP streaming (d).

2.4.1 Receiver-sided approaches

Barzuza et al. presented TREND [4], a receiver-sided approach to scale a video stream based
on the network conditions. TREND is designed for real-time video applications and does not use
a buffer for the incoming video stream. Instead, the inter-arrival frame gap is used to detect a
congested link. The TREND algorithm has two key functionalities: The delay detection and the
bandwidth adaptation. The delay detection monitores the delay between received video frames
on the receiver-side. A frame is considered delayed if the inter-arrival gap between two frames
differs from the gap of the RTP timestamps. Basically, the TREND algorithm increases the quality
of the video stream until a delayed frame is detected at the receiver-side. If a congestion is
detected, the bandwidth adaptation set the video stream to the last stable bitrate before the
congestion was detected and starts increasing it slowly after some time.

The additional delay between two frames is calculated with equation (3.1),

Di = Rxi − (Rxi−1 +
TSi − TSi−1

90
)

where Rxi is the receiving point in time of the RTP packet and TS is the timestamp of the frame.
An exception are I-frames in this calculation, which are skipped. Their size is significantly bigger



2 Adaptive Video Scaling and Related Work 16

Coarse Scan Fine Scan Steady State
Start Delay

Delay

Timer Expiration 

Delay

Figure 2.4: State flow diagram of the TREND approach

than P-frames and the additional transmission time increases the delay. This is undesired in the
calculation, because the delay is not caused by a congestion.

The algorithm flow is show in Figure 2.4. It has basically two modes:

Scan Mode attempts to increase utilized bandwidth without exceeding the available bandwidth.

Steady Mode sends the video stream with a constant rate, while monitoring the available band-
width for changes.

The algorithm starts with a coarse scan and the bit rate of the video stream is increased in big
steps, until the receiver detects a delay. In this case, the current bitrate is dismissed and a fine
scan starts with the previous, stable bit rate. The fine scale increases the bit rate in small steps
until a delay is detected by the receiver. The algorithm enters the steady mode, where the video
stream is sent with a constant bit rate and the receiver monitors the incoming packets to detect
delays. If delays occur, the algorithm starts a new coarse scan. If no delays occur, the algorithm
starts a new fine scale after some time to test if more bandwidth is available.

Another option to obtain information about the network conditions is to examine the video stream
directly with an approach similar to PGM. Nguyen and Ostermann [40] present a scheme to scale
a video stream at the receiver-side. Their work is part of a streaming system, which uses the
scalability extension of H.264/AVC and provides a congestion control algorithm. Their approach
is similar to the bandwidth estimation algorithm PTR, which is a PGM approach [25]. Instead of
extra probing packets, the sending time of the RTP [51] video packets is manipulated for re-use
as probing packets. Therefore, the RTP packets are sent with a certain gap between them. Like
in PGM, the competing traffic will influence the gap between the RTP packets. On the receiver-
side, the gap between the RTP packets is measured and used in a modified bandwidth estimation
formula of the PTR tool.

2.4.2 Sender-sided approaches

Precise one-way available bandwidth estimations at the sender-side are complex and usually rely
on the RTT or the loss rate, which are also influenced by the return path [27]. The measurement



2 Adaptive Video Scaling and Related Work 17

results are less accurate than receiver-sided approaches, which are preferred for precise estima-
tion. However, instead of a precise available bandwidth estimation, these metrics can be used as
indicator for a congested link.

A sender-sided video adaptation approach that focuses on loss detection is presented by Euy-
Doc Jang et al. [34]. They examine the influence of packet loss on a video stream and present
an adaptation approach that indicates a congested path if packet loss occurs that disturbs the
video transmission. A SVC video stream that consists of spatial, temporal, and quality layers is
sent over a lossy path. Packet loss is caused by transmission errors or buffer overflow due to
traffic congestion. Random packet loss leads to video streams, that are hard or impossible to
decode for the decoder, especially if important frames are missing (eg., frames of the baselayer).
The more frames rely on a missing frame, the lower is the quality at the receiver-side. This
can lead to a very poor video quality, even if the incoming stream has a high bit rate. To solve
this problem, a packet loss event is used as an indicator for a congestion. If a congestion is
detected, the bit rate of the video stream is reduced by discarding less important packets with
considering layer dependencies. This produces a higher decoding rate by an equal bit rate. A
loss based congestion detection is not suitable for mobile video conferencing, because packet
loss in a mobile realm does not always indicate a congestion, but is a common incident caused
by natural influences. Another crucial requirement is the reaction time to a congestion. In a
real-time video conference, it is necessary to scale the video stream before packet loss occurs.
If packet loss occurs, the router queues are already filled. Depending on the router queue size,
the video stream is already delayed at the receiver-side, which lowers the QoE. In an area of
application, where the video stream is buffered at the receiver-side, this is not a problem, but for
a real-time video conferencing software, a more direct and faster approach is desired.

G. Toma et al. [55], [15] presented a sender-sided approach, which indicates a congested link
with variations in the RTT and use a scanning algorithm for upscaling. The general approach
consists of an upscaling algorithm and a congestion indication algorithm that downscales the
video stream if necessary. The application sends a video stream with a certain bit rate, which is
the the lowest selectable bit rate in the beginning. For a safe upscaling, the probing algorithm
temporarily increase the bit rate of the current video stream (burst) to emulate the next higher
selectable bit rate. If the video stream is already close to the available bandwidth, the short
burst will congest the link and the RTCP will feed-back a higher RTT. If the RTT does not change
significantly, the higher bit rate is considered to be stable and the video stream will be sent with
the higher bit rate. Additional probing packets are not required, because the RTP packets would
have been sent anyway. The change of the bit rate is not noticeable for the user and does not
influence the QoE, because of a buffer at the receiver-side. The drawback of this upscaling
approach is that it requires a buffer at the receiver-side to absorb the bursts.

The downscaling algorithm does not need information about the any buffer states, but is based
on the RTT deviation and the loss rate. If the RTT deviation or the loss rate exceeds a certain
threshold, the path is considered to be congested and a video stream with a lower bit rate is



2 Adaptive Video Scaling and Related Work 18

chosen. The approach was tested in controlled test setups and two real wireless networks.
The results showed an advantage over non-adaptive streaming solutions. A disadvantage of
this congestion detection approach is the slow feed-back time of the RTCP protocol. In the
presented scenario, the receiving media players only sent a report every 5 seconds. For a video
conferencing software, this approach is not suitable due to the required buffer at the receiver-side
to absorb the burst of the upscaling testing.

2.4.3 Hybrid approaches

Jérôme Viéron and Christine Guillemot [59] presented a combination of a sender-sided and a
receiver-sided approach. The basic bandwidth adaptation is based on the TFRC [23] protocol.
The TFRC protocol however, does not take the characteristics of multimedia flows into account.
Thus, they developed a new TCP-friendly protocol on top of RTP/RTCP, which takes the multime-
dia flows characteristics into account.

TCP-friendly protocols like TFRC can be classified into two main categories. Protocols that rely
on an Addaptive Increase Multiple Decrease (AIMD) approach and react similar like TCP to
packet loss [31]. This causes usually abrupt changes in the bit rate, which is not suitable for
multimedia flows. The other category are protocols that are based on analytical models of the
TCP throughput. In their work, they use both approaches. The throughput is estimated and also
the loss rate is taken into account. The adaptation to the loss rate is similar to TFRC. However,
most approaches assume constant packet sizes and TFRC recommends to set the maximum
segment size (MSS) to an average. This penalize the multimedia flows when competing with
TCP flows. Instead, they developed a new approach, which takes the varying packet sizes of
multimedia flows into account. As result, the presented protocol shows a smoother rate varia-
tions than TFRC, which is beneficial for multimedia flows.

The network conditions and the available bandwidth are estimated at the receiver-side, while
a video bit rate estimation is done at the sender-side and adapted to the estimated available
bandwidth. A source rate control model scales a H.263+ compatible loss resilient encoder. Three
approaches are proposed to map the estimated bandwidth to the encoder

1. The direct approach simply feeds the encoder with the available bandwidth as requested
bit rate. It does not take the end-to-end delay or the encoder buffer status into account.
This leads to severe timeout effects, which decreases the QoE for the user.

2. An approach with better results is provided when the encoder buffer state is taken into
consideration. The resulting encoding bit rate must be able to drain the encoding buffer.

3. The best results are accomplished when in addition to the encoder buffer state also the
delay constraints are taken into account, since estimated bandwidth does not include the



2 Adaptive Video Scaling and Related Work 19

delays that are caused by buffering, decoding, and encoding. They lower the effective bit
rate of the end-to-end transmission and are also considered.

The coupling of both rate adaptation approaches decreases the timeouts phenomenon signifi-
cantly and minimize the expected distortion of the decoded stream. The approach is tested on
a sample network, with controlled conditions but also via a large set of experiments on the In-
ternet. The timeout effects are reduced significantly. The congestion control is compatible and
also takes the characteristics of multimedia flows into account. The downside of this approach
for our area of application is the complexity, the scaling of the bit rate on the transport layer, and
the reaction time to a congestion. The adaptation to the available bit rate tries to find a fitting bit
rate, that produces a stable video stream, but the throughput as a metric for a congestion does
not react instantly to a congested path. The other indicator for a congestion is the packet loss,
which usually occur when the queues are already filled.

2.4.4 HTTP Based Adaptation

Another area of applications with high bandwidth demands are streaming servers. These ap-
proaches usually use HTTP streaming [42] over TCP. Huang et al. [26] examine the video bit rate
adaptation strategies of three popular video streaming services (Hulu, Netflix, and Vudu). These
services face the problem that they operate via HTTP and their adaptation algorithms compete
with the TCP congestion control algorithm. Choosing the right video stream bit rate is complex.
In comparison to video conferencing application, they are allowed to buffer the video stream at
the receiver-side. The focus differs from video conferencing applications, but the work gives in-
sights into the problems that video streaming applications face when they have to compete with
side-traffic.

On the application layer, the video stream can be used to obtain information about the network
conditions. This approach is used in web-based video players like Open Video Player (OVP)
[46] or the Strobe Media Playback, which uses the Open Source Media Framework (OSMF)
[18]. These video players are specialized to play videos, which are hosted on websites and are
delivered via a HTTP stream [42]. The server provides the same video with different bit rates.
The streaming client is made aware of the available bit rates by a manifest file and requests one
of them. The bandwidth estimation is done at the client side, which monitors the filling level of
the video buffer. If the buffer chains drops below a certain threshold, the path has not enough
available bandwidth to deliver the video stream in the current quality and the receiver requests
a video stream with a lower bit rate. If the buffer is filled over a longer period of time, the client
requests a video stream with a higher bit rate. In most scenarios, the video is pre-encoded with
different bit rates, but it would also work for a scalable video stream. This approach is often used
for HTTP stream based applications, because HTTP is widely deployed and the content providers
mostly already have a HTTP infrastructure. Non-HTTP streaming solutions would require an



2 Adaptive Video Scaling and Related Work 20

additional specialized streaming server infrastructure. On the downside, this approach is more
complex than other streaming technologies. The video stream is transmitted via TCP [32], which
simplifies the traversal of firewalls and NATs, but it already has a congestion control and might
inflict the application layer congestion control [2]. Also, a buffer-based video delivery estimation
is not desired in a real-time video application like a video conferencing software, because the
buffering at the receiver-side increases delay in an undesirable fashion.



3 Video Codec Adaptation

Variable Description

µ(t) Available bandwidth on a path
β(t) Bit rate of the video stream
ω(t) Frame rate of the video
k(t) video scaling factor

d Delay caused by packet loss
y physical transmission delay

L(t) Filling level of a queue at time t
q(t) Queuing delay of a packet on path
ri(x) Reception time of the i-th bit of frame x

Table 3.1: Video adaptation notation

A common approach to determine a congested path based on video stream mechanisms is to
observe the filling level of the receive buffer. Unfortunately, this is not applicable in a real-time
video conferencing application, where an unbuffered video output is desired. In the following,
we discuss different aspects when designing solutions for adapting the video codec. Table 3.1
summarizes the notation that we use for deriving algorithms in the following.

3.1 Problem Description of Bandwidth Adaptation

In a video streaming application with an end-to-end connection, both sides can observe different
network metrics, which can be used to detect a congested path. Thus, we need to clarify which
end is used to detect a congestion and how they can be detected.

3.1.1 Observation 1—Who should control?

In the spirit of end-to-end connectivity, solutions should not be implemented at middleboxes but at
the sender or the receiver. The receiver has no direct influence on encoding or the transmission



3 Video Codec Adaptation 22

of the video flow. It has to request the sender to scale the video stream if it detects a congestion.
Unlike the sender, the receiver has no information about the transmission time for the packets of
a frame. Receiver-based approaches are slower and introduce overhead.

For a fast video adaptation, the sender should control the video coding directly, because the
media source transmits the data to the receiver and thus defines the required bandwidth. This is
an advantage over a receiver-side adaptation as it does not need an additional response channel
to inform the sender about the measured network conditions.

3.1.2 Observation 2—Which measurement indicates congestion?

Congestion is indicated by queuing delays at routers. Measuring the delay should not introduce
additional signaling but use data already available in the network stack. The network metrics
visible at the application layer depend on the protocol to transmit the video stream. Typically,
stateful transport protocols like TCP, RUDP, or RTP/RTCP provide inherent information about the
transmission time, usually in terms of the RTT. Thus, gathering RTT is light-weight. However, a
high RTT does not necessarily indicate a high congestion. The RTT sums the one-way delay from
the sender to the receiver as well as from the receiver to the sender. A congestion on the return
path influences the RTT even if it does not influence the video stream. This leads to incorrect
reasoning of the delay in particular in case of highly asymmetric delays, which are visible in the
Internet [37].

For video stream transmission, only the one-way delay from the source to the destination is impor-
tant. The one-way delay is not easy to measure, though. It requires synchronized clocks [12]—a
complex task. It also produces overhead, especially in large-scale multimedia applications with
multiple participants.

3.1.3 Combining both observations

The solution space to adapt the video codec with respect to the network conditions is influenced
by several requirements. Based on our observations there are the following design principles:

• The sender controls the video encoding, but the sender lacks precise information about the
path to the receiver.

• The receiver can derive detailed insights into the path conditions between sender and
receiver by directly analyzing the time variation and the size of subsequent arriving frames.

• Round-trip time measurements are directly provided by the network stack, but single RTT
values do not reflect congestion on the path from the sender to the receiver.



3 Video Codec Adaptation 23

Application requirements
Involved Party

Sender Receiver

Very fast adaption, very low overhead 3 8

Very precise adaption 8 3

Very precise and fast adaption 3 3

Table 3.2: Overview of application requirements and involved parties

Depending on the video scenario a sender-based, a receiver-based, or combining both might be
appropriate. We summarize our findings in Table 3.2.

3.1.4 Identification of a Congested Path

A network link congests when its traffic demands exceed the effective bandwidth µ(t). In this
work, we assume µ(t) as effective remaining bandwidth after all side traffic has been subtracted,
and consider the traffic stream of a controllable video of bitrate β(t), only. Thus a path congests
when β(t) > µ(t) and the goal is to find a scaling factor k(t) for the video stream so that the
bitrate matches the effective bandwidth: β(t) ∗ k(t) = µ(t).

For scaling, it is not necessary to measure the available bandwidth µ(t) directly, nor to know the
current video bit rate, but it suffices to estimate the bandwidth ratio k(t).

k(t) =
µ(t)
β(t)

(3.1)

The challenge is to detect a congestion based on the given network metrics and to simultaneously
extract a scaling factor k(t) that steers the adaption of the video codec accordingly.

3.2 A Sender-sided Algorithm

The idea for a fast sender-sided video adaptation is to detect increasing queuing delays in the
jitter variation of the RTT. A basic implementation of this sender-sided congestion detection was
presented in our previous work [33]. We assume a near packet-wise feedback from the receiver
that can be harvested from stateful transport. It is worth noting that RTP/RTCP feedback ac-
cording to RFC 3550 is too slow, but rapid feedback mechanisms have been standardised in
[44].



3 Video Codec Adaptation 24

The RTT consists of the physical transmission delay y, which is approximately constant, and the
queuing delays of the on-path routers q(t)

RTT(t) = y + q(t) (3.2)

As long as the path is congestion-free, queuing delays remain stable and of little variation

RTT′(t) = q′(t) ≈ 0 (3.3)

While the RTT commonly rises and falls on a limited scale, its (signed) jitter alternates around zero
with a small jitter variation close to zero. Every congestion, though, adds a significant queuing
delay to the on-path delay that differs from regular RTT fluctuations. The jitter turns positive,
causing a significant jump in its derivative. We use this jump in the jitter variation as a trigger for
a video adaptation

RTT′′(t) = q′′(t)� 0 (3.4)

In detail with every feedback from packet transmission, we monitor the second derivative of the
RTT and interpret irregular (positive) jumps as early congestion indicators. The effects of a
congestion to the RTT can be shown with a small sample stream. Figure 3.1 shows the size of
the sent frames, the RTT, and the jitter variation of the RTT. The video stream is a square shaped
stream that reaches from 4k byte frames to a burst of 10k byte frames. The packets are sent with
a 66 ms gap between them, which is on par with a 15 fps video stream. The available bandwidth
is set to 1 Mbit/s, which is exceeded by frames greater than 8250 bytes

8250bytes
66ms

≈ 1Mbit/s (3.5)

Whenever the video stream exceeds the available bandwidth, the RTT rises and the jitter variation
makes a significant jump.

After a congestion is detected at a time tc, the scaling factor k(tc) needs to be extracted for the
codec adaptation. Consider the time interval [tc,t f ] between the transmission of two frames. The
queuing occurs at routers that have an egress to a congested link and the queue process follows
the rate equation

L(t f )− L(tc) =

t f∫
tc

β(τ)− µ(τ) dτ (3.6)

where L(t) is the filling level of the queue, tc is the timestamp of the detected congestion, and t f
is the time when the next frame needs to be encoded.

The expected queuing delay q(t) of a packet traversing at time t can be calculated as the ratio
of the filling level and the departure rate from the queue µ(t), which we assume to be constant



3 Video Codec Adaptation 25

0
2
4
6
8

10
12

Fr
am

es
iz

e 
[b

yt
e]

0
10
20
30
40
50
60

RT
T 

[m
s]

0 2 4 6 8 10
Playout-time [s]

10
5
0
5

10

Jit
te

r v
ar

. [
m

s]

Figure 3.1: Analysis of the sender-sided congestion indication



3 Video Codec Adaptation 26

in short time intervals. Correspondingly, we can approximate the additional queuing delay ∆q
generated during our inter-frame transmission time interval as

∆q(tc, t f ) ≈
1

µ(t f )

t f∫
tc

(β(τ)− µ(τ)) dτ (3.7)

As shown in (3.3), the queuing delay variations are also visible in the RTT jitter

∆RTT(tc, t f ) ≡ RTT(t f )− RTT(tc) ≈ ∆q(tc, t f ) (3.8)

For a small interval, we assume the bit rate and the available bandwidth constant µ(t) =
µ, β(t) = β, which resolves (3.7) combined with (3.8) to

∆RTT(tc, t f ) ≈
1
µ
(β− µ) ∗ (t f − tc) (3.9)

This expression can be solved for k

k =
µ

β
=

(t f − tc)

∆RTT(tc, t f ) + (t f − tc)
(3.10)

and remains with simple, measurable quantities known at the sender side. Still it remains un-
known to the sender, whether the forward or the return path caused the congestion with addi-
tional queuing delay. However, assuming queuing delays always on the transmission path is a
conservative approach and will never lead to a delay in adaptive scaling.

The sender-sided approach allows a very fast and light-weight codec scaling, which predicts
impending congestions. It enables an immediate downscaling to assure a fluent video stream.
On the downside, we only react to the jitter changes of the RTT, which do not provide information
whether a link is currently free or congested. A decreasing RTT does imply that the video stream
bit rate β(t) is below the effective bandwidth µ(t), but we have no knowledge about the state of
queues which still could be filled.

3.3 A Receiver-sided Algorithm

The sender-sided approach operates fast and provides a scaled video stream that stays below
the available bandwidth. However, it has difficulties to identify a free link and optimize scaling for
it. In case of a partially congested path, a receiver-sided adaptation can predict feasible video
streams more reliably, as we will derive in the following.

On the receiver-side, several approaches are available to detect a congested path. In general,
queuing delays influence the frame transmission time. Figure 3.2(a) shows such a scenario. A



3 Video Codec Adaptation 27

1
2

3

q

(a) Packets of a video frame (red) are seperated by
side-traffic packets (grey) in a router queue

1
2
3

q

(b) Packets of a video frame (red)are delayed by side-
traffic packets (grey) in a router queue

Figure 3.2: Queuing scenarios for a frame that consists of three packets



3 Video Codec Adaptation 28

frame, which consists of three packets (red) is queued in at a router and some side-traffic packets
are also in the router queue (grey). They are located between the video packets and stretch the
transmission time for the frame. This lowers the effective incoming throughput and we can detect
queuing delay q if we measure this metric.

Measuring the incoming throughput for each frame, however, only detects queuing delays if the
side-traffic stretches the transmission time for the frames. Figure 3.2(b) shows a scenario where
the path is congested and queuing delays occur, but the transmission time of the frame does not
change. In this scenario, no packets of the side-traffic are located between the packets of the
frame in the router queue. To detect a congestion in this situation, the receiver can observe the
time of reception for the whole frame. If it does not arrive in due time, delays occurred and the
path might be congested.

In this application, both metrics are used to detect a congested link. They are also used to allow
a safe upscaling if the path is userused. In the following, both approaches are described and
compared to each other.

3.3.1 Measuring the Incoming Throughput

Detecting a congestion at the receiver-side can be done by comparing the incoming bit rate with
the current bit rate of the video stream. If the incoming bit rate at the receiver-side stays below
the bit rate of the video stream, a link is considered to be congested. Otherwise, whenever the
incoming bit rate is higher than the origin bit rate of the video stream, the path is underused and
video stream can be upscaled. Similar to the sender-sided approach, the factor k is used to scale
the video codec, which represents the ratio of the available bandwidth µ to the video bit rate β.

The smallest and fastest accessible time interval to measure the sustained video bit rate is given
by the inter-frame gap defined by the frame rate ω(t). The frame rate is known by the receiver
and it can be used to calculate the current bit rate for a frame received with length l

β(t) = l ∗ω(t). (3.11)

For an approximation of the available bandwidth, the receiver continuously measures the incom-
ing bit rate of the video stream, including the reception-time of the first and the last bit of a frame
with n bits

µ =
l

rn(x)− r1(x)
(3.12)

where ri(x) is the reception-time for the i-th bit of frame x.



3 Video Codec Adaptation 29

t

Sender

t

Router

s-
ga
p

t

Receiver

F1

F2

r-
ga
p

q1

q2

s-
ga
p

q2-q1

Figure 3.3: Concept of detecting queuing delays in the inter-arrival jitter

Combining equations (3.11) and (3.12) yields the scaling factor k as predicted from the receiver
side

k =
µ

β
=

ω

rn(x)− r1(x)
(3.13)

The presented receiver-sided approach differs from the sender-sided approach by making use of
complete frames for the measurement. Therefore, it is slower, but it is capable to recognize an
underused link and can suggest an accurate upscaling.

3.3.2 Detecting a Queuing Delay in the Inter-arrival Jitter of Frames

Another approach to detect a congestion at the receiver-side is to measure the variation of the
frame inter-arrival gap. If the inter-arrival gap between two frames at the receiver-side differs
from the origin gap they had at the sender-side, queuing occurred that stretched the inter-arrival
gap.

The goal is to extract the scaling factor k from the increased receiver-sided gap r. The general



3 Video Codec Adaptation 30

concept of inter-arrival gap measurement at the receiver-side is shown in Figure 3.3. It shows
two frames F1 and F2 that delayed by the router. At the sender-side, they have a gap s between
them that usually depends on the frame rate. Both frames get queued at the router and arrive
at the receiver-side with a delay. The queuing delay of the second frame, however, is longer and
stretches the inter-arrival gap at the receiver-side by q2− q1. We want to detect these delay
variations ∆q is in the variation of the inter-arrival gap ∆r that includes the gap variation from the
sender-side ∆s. If the frame rate is constant, ∆s does not vary and is 0. Unfortunately, ∆s also
includes the encoding time variations. To extract ∆q from ∆r, ∆s is required parameter at the
receiver-side before the scaling factor k can be calculated.

At the sender-side, the gap s between the frames is measured when the frames are sent and is
ideally given by the frame rate (s = 1

ω ). In this application, s is not constant, but is influenced by
variations of the encoding time

si =
1
ω

+ ∆ei (3.14)

where ∆e is the variation of the encoding time. With equation (3.14), the jitter of the sender-sided
gap is

∆s = si+1 − si (3.15)

where i is the frame number. If the encoding variation is negligible, the receiver only needs to
know the frame rate of the video.

The inter-frame gap r at the receiver-side is measured with the time of reception of the frames

r = r(x)− rx(x− 1) (3.16)

where r(x) is the time of receiving the last bit of the x-th frame. With equation (3.16), the variation
of the receiver-sided gap is

∆r = ri+1 − ri (3.17)

where i is the frame number.

In addition to the queuing delay variation ∆q and the sender-sided gap variation ∆s, ∆r is also
influenced variations of the frame sizes ∆l. With equation (3.17) and (3.15), the inter-arrival gap
∆r can be calculated with equation 3.18,

∆r = ∆s + ∆q +
∆l
c

(3.18)

where c is the capacity of the path. The frame size variations need to be eliminated to extract ∆q.
The receiver has several options to eliminate the influence of the frame size variation.



3 Video Codec Adaptation 31

1. Encoded video frames have often approximately equally sized frames as their neighbors,
because they only transmit the changes to the frames they depend on. The inflects of the
frame size variation can be reduced with observing an average ∆r over a few frames. With
the average ∆r, we can react to the general trend of the inter-arrival jitter. This is a simple
approach with a slow reaction time and a low accuracy.

2. The receiver can constantly measure the incoming bit rate of the video stream. It can be
measured with the reception-time of the first bit and last bit of a frame (cf., equation (3.12)).
It is not easy to determine the reception-time of the first bit. Operating system specific
system-calls are necessary, which is possible, but a more portable and simple solution is
to use the reception-time of the last bit of the first packet and the reception-time of the last
bit of the last packet. With equation (3.19), the incoming rate µ can be calculated,

µ =
l − p1

rxn − rx1
(3.19)

where l is the size of the frame, p1 is the size of the first packet, and rxi is time of reception
for a packet. This is an accurate approach, but also requires access to the reception time
of the packets on the transport-layer.

3. The receiver ignores all significantly bigger or smaller frames to reduce the influences of the
frame size variations. Only frames with similar sizes are considered for the measurement.
This is a very simple solution, but also reduces the amount of frames, which are used for
measurement.

The optimal solution depends on the area of application and on the desired accuracy of the
measurement. For our application, the incoming rate at the receiver-side is already measured
and the frame size variation delay can be eliminated. Without the frame size variation delay, ∆q
can be calculated with equation (3.20).

∆q = ∆r + ∆s (3.20)

If the queuing delay does not change (∆q = 0), the gap at the sender-side and the gap at the
receiver-side ideally do not differ (∆r = ∆s). If ∆q is positive, the queuing delays increased and
if it exceeds a certain threshold, the path is congested.

The approach is tested with a small sample stream that is also used for the sender-sided ap-
proach in Section 3.2. The video stream is a square shaped stream that reaches from 4k byte
frames to a burst of 10k byte frames and is sent with 15 frames per second. Figure 3.4 shows the
size of the sent frames and the inter-arrival jitter variation. Whenever the video stream exceeds
the available bandwidth (1 Mbit/s), the inter-arrival jitter shows a clear peak that differs from the nor-
mal inter-arrival jitter. In comparison with the sender-sided congestion control (cf., Figure 3.1), the
receiver-sided approach detects the congestion a bit slower. The sender-sided approach shows



3 Video Codec Adaptation 32

0
2
4
6
8

10
12
14

Fr
am

es
iz

e 
[b

yt
e]

0 2 4 6 8 10
Playout-time [s]

60
40
20
0

20
40
60

In
te

r-a
rr

iv
al

 Ji
tte

r [
m

s]

Figure 3.4: Analysis of the receiver-sided congestion indication



3 Video Codec Adaptation 33

a significant peak in the jitter variation after 6 seconds, while the receiver-sided approach shows
a significant peak in the inter-arrival after 6.4 seconds.

For the video adaptation, we need to determine the ratio of the available bit rate to the bit rate of
the video stream with the measured ∆q. Consider the measurement interval [t,t+ s] between two
frames, which correspond with ∆s. With (2.9), we approximate the queue filling level variation

∆q(t, t + s) ≈ 1
µ(ti)

t+s∫
t

(β(τ)− µ(τ)) dτ (3.21)

For a small interval [t,t + s], we assume the bit rate and the available bandwidth constant µ(t) =
µ, β(t) = β, which leads to

∆q(t, t + s) ≈ 1
µ
(β− µ) ∗ (t + s)− t) (3.22)

With the approximation of equation (3.21) in equation (3.22), the ratio k of the available bandwidth
µ and the bit rate of the video stream β can also be determined by the ratio of ∆r and ∆s.

∆r = ∆s + (
β

µ
− 1) ∗ ∆s (3.23)

k =
µ

β
=

∆s
∆r

(3.24)

The advantage of this approach is that it detects all queuing delays and it works even if no access
to the time of reception of packets is granted. On the downside, it is not able to detect a free link. If
both approaches are combined, the latter detects more impending congestions, while the former
is able to suggest reasonable upscaling settings.

3.3.3 Effects of Retransmission Delays

In this work, a reliable transmission protocol is used and dropped packets are retransmitted,
which increases the transmission time and the receiver-sided gap on packet loss. Therefore, both
receiver-sided measurements suffer from imprecise measurement results if packet loss occurs. It
is hard to predict, which packets are dropped and how long the retransmission will take (eg., they
could be dropped again). The receiver can take that into account if it is possible for the receiver
to determine the frames that experienced packet dropping.



3 Video Codec Adaptation 34

The receiver has several options to handle frames, which experienced packet dropping. The re-
ceiver could take the delay from the retransmission into account for the calculation of the receiver-
sided gap

d =
n

∑
i=0

Ri ∗ µ ∗ pi (3.25)

where n is the number of retransmitted packets, R is the amount of retransmissions and p is
the size of the packet. Considering the retransmission timeout (RTO) delay before a packet is
retransmitted, the equation (3.25) extends to

d =
n

∑
i=0

Ri ∗ µ ∗ pi + Ri ∗ RTOi (3.26)

The receiver must know the RTO for each packet and also the number of retransmissions. Also
the effective bandwidth µ is necessary to calculate d with equation (3.26). A much simpler so-
lution to this issue is to ignore all frames, which experienced packet dropping (if this information
is available on the receiver side). This simplifies the calculation, but also reduces the amount of
measurement frames on a lossy network path. The enet protocol does not provide this informa-
tion at the receiver-side and therefore, we do not know how many packets of a frames experi-
enced packet loss, nor do we know if a frame experienced packet loss at all. Without any further
modifications, the receiver does not notice packet loss and we have to ignore delays caused by
retransmissions. As a result, we expect inaccurate scaling suggestions on lossy paths.

3.4 Comparison between Sender and Receiver Congestion
Indication

The congestion indication at the sender-side predicts a possible congestion and scales the quality
of the video stream down to resolve the congestion. The sender uses the jitter variation of the
RTT as indicator for the congestion indication, which is a very fast and light-weight approach, but
it has also disadvantages. If a link starts to congest, and we do not react appropriately, the path
congests and the RTT starts to vary depending on the queuing delays at the router. The sender
is only able to detect a increasing RTT and predict a congestion, but on a congested path, the
sender loses the reference to the regular RTT fluctuations and cannot differentiate between a free
and a congested path. The sender still scales the quality of the video stream in both directions
according to the jitter variation, even though the path is congested. If the video stream is scaled
with the jitter variation as indicator, it is necessary that it operates on a free path at the beginning
and prevent every congestion. The advantage of this approach is, that we are able to indicate a
possible congestion very fast and can react to it before the path congests.



3 Video Codec Adaptation 35

At the receiver-side, the inter-arrival gap between incoming frames is compared to the gap they
are supposed to have. If they differ, the receiver sends a scaling request. In addition to that, the
incoming throughput is compared to the supposed bit rate of the video stream. This metric is
mostly used for upscaling suggestions, because the inter-arrival jitter congestion control reacts
faster. In comparison with the packet based sender-sided congestion control, the measuring
period is a whole frame, which is longer and allows a better approximation of the conditions on the
link. Therefore, the receiver-sided congestion control is slower, but more accurate. In comparison
to the sender-sided approach, the receiver is also able to detect an underused link.

In an application with both approaches collaborating, a balance of the sender-side and the
receiver-side congestion control is necessary to gain the advantages of both.

3.5 Parametrizing the Video Codec

The adaptation algorithms for video streams derived in the previous section lead to the scaling
factor k(t) that describes the ratio between the available bandwidth and a compliant video bit
rate. Video codecs are not parametrized according to bitrate, but scale in the dimensions of
quality, time and space. For our experimental evaluations in Section 5, but also for an application
of the scheme in real-world applications, we need to translate scaling requirements into suitable
codec parameters.

The codec also scales only in a certain bit range depending on the level of quantization (0-20)
and temporal layer (1-3). An example is shown in Figure 3.5. The graph shows the measured
bit rate range for one of our test video with the highest quality (max. bit rate) and with the lowest
quality (min. bit rate). The video source can only scale the video stream between these two
extremes.

In this application, a high amount of temporal layer (higher frame rate) is preferred over a high
quantization factor, because it leads to more measurement points for the congestion control.
Therefore, we exchange a high quality, low frame rate video stream with a low quality, high frame
rate video stream that uses more temporal layer, but try to keep the resulting bit rate the same.
The challenge is to find the right exchange point. For multiple video sequences, the average bit
rate for all possible encoding combinations are measured to find these exchange points. Figure
3.6 shows the average bit rate for every combination of the level of quantization and temporal
layer. The resulting bit rate shows an exponential growth for an increasing quality, while each ad-
ditional temporal layer shows a more linear increasing of the bit rate. All analyzed test sequences
and show a similar behavior.

An additional layer is added, whenever an equal bit rate can be produced with more temporal
layers but higher quantization factor. With the video analysis, the quantization factor 35 is deter-
mined as suitable exchange point. Figure 3.7 and Table 3.3 shows the full range of the level of



3 Video Codec Adaptation 36

0 5 10 15 20 25 30
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

Minimum quality
Maximum quality

Figure 3.5: Bit rate variation of a video stream

Quality [%]
Codec Settings

Layer Quantization

0-15 1 35...40
15-30 2 35...40
30-100 3 20...40

Table 3.3: Quality and correspondent codec settings



3 Video Codec Adaptation 37

2022242628303234363840
Quantization [#]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Bi
t r

at
e 

[M
bi

t/s
]

3 Layers
2 Layers
1 Layer

Figure 3.6: Average bit rate for each encoding setting



3 Video Codec Adaptation 38

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Bi
t r

at
e 

[M
bi

t/s
]

0 10 20 30 40 50 60 70 80 90 100

1 
La

ye
r

2 
La

ye
rs

3 
La

ye
rs

Relative Quality [%]
Figure 3.7: Average bit rate of the testsequence "TW" for each quality setting



3 Video Codec Adaptation 39

quality settings in percent that can be used.

The congestion control provides a scaling factor k and the challenge is to feedback it into the
codec adaptation. The measurements from the congestion control k needs to be mapped to
the parameters the codec provides for scaling. Since the codec can only scale the bit rate β(t)
between the extremes βmin and βmax, it can be determined with equation (3.27),

β(t) = βmin(t) +
Q(t)
100%

∗ (βmax(t)− βmin(t)) (3.27)

where Q(t) is the current encoding quality (0%− 100%). Correspondingly, the level of quality
Q(t) for a certain bit rate β(t) is

Q(t) =
(β(t)− βmin(t)) ∗ 100%

βmax(t)− βmin(t))
(3.28)

Based on the observed network condition, the congestion control suggests a relative scaling k
for the current video stream. Suppose our video at time t− δ runs at bit rate β(t− δ) and gets
rescaled such that β(t) = β(t − δ) ∗ k(t). The old bit rate of the video stream β(t − δ) can
either be measured or approximated with the old level of quality. The new quality of quantization
can then be calculated for the current video stream bit rate as follows

Q(t) =
(β(t− δ) ∗ k(t)− βmin(t)) ∗ 100%

βmax(t)− βmin(t))
(3.29)

With equation (3.29) and the mapping Table 3.3, the codec settings can be determined from the
measured scaling factor k.

For example, let βmax=10 Mbit/s, βmin=5 Mbit/s and only the quantization factor is used for scaling.
In this example, the mapping between the bit rate and the quality of quantization is linear for
simplification and is shown in Table 3.4.

If the available bandwidth drops from 10 Mbit/s to9 Mbit/s, the congestion control will suggest a 10%
bit rate reduction.

k =
9Mbit/s

10Mbit/s
= 0.9 (3.30)

With the requested bit rate β(t − δ) ∗ 0.9 from equation (3.30)and equation (3.29), the new
quality Q(t) can be calculated

Q(t) = 80% (3.31)

The 10% bit rate reduction is archived with a 20% quality reduction. The new quality level is 80%,
which produces a 9 Mbit/s video stream and matches the available bandwidth.



3 Video Codec Adaptation 40

Quality [%] Bit rate of the video [Mbit/s]

100 10
80 9
60 8
40 7
20 6
0 5
- 4
- 3
- 2
- 1
- 0

Table 3.4: Quality mapped to the bit rate of a video stream

Unfortunately, βmin and βmax are unknown, because they depend on the individual video stream.
In order to scale the codec, we need at least a rough estimation of the data demands for the
different quality settings of the video stream. Several precise approaches exist to estimate the bit
rate of a video stream [53], but for our purpose, it is sufficient to use a simple exponential moving
average for every frame with the highest or lowest encoding quality.

3.6 Scaling Timeouts and Quality Upscaling

The previous described approaches are responsible for the downscaling of the video stream, but
we also face the following problems

• The video stream needs also to be upscaled

• We have competing scaling suggestions from the sender and from the receiver

• The effect of the scaling is not immediately visible, but takes some time until the measure-
ment results arrive

In a measurement-interval [t− δ,t], the sender will provide downscaling suggestions, while the
receiver provides downscaling and upscaling suggestions. Therefore, multiple scaling sugges-
tions might arrive and we need some rules to prioritize them.

Downscaling request are always prioritized over upscaling request. If multiple downscaling re-
quests are available, the lowest will be chosen. If only the sender-sided scaling is used, the
upscaling is complicated, because we do not know the available bandwidth nor do we have a



3 Video Codec Adaptation 41

Sender

P1

P2

P3

Enc F1

Enc F2

Receiver

P1

P2

P3 Dec F1
ack

ack

ack

R
e
co

m
m

e
n
d
e
d

m
e
a
su

re
m

e
n
t-

in
te

rv
a
l

Figure 3.8: Measurement results for one Frame F1, which is sent over the network via three
packets P1,P2, and P3

reliable indicator when more bandwidth gets available. The simplest approach is to increase the
quality reservedly after some time without detected congestions and wait for the results of the
congestion detection. If no congestion is detected, the new quality settings are suitable. If the
receiver-sided approach is used for scaling, it is possible to detect an underused link if the in-
coming throughput is higher than the bit rate of the video stream. In this case, the receiver can
suggest a video upscaling factor k. The sender collects all scaling suggestion in the measure-
ment interval [t− δ,t]. The recommended measurement interval is the inter-frame gap, because
it is the longest period we can wait before the next frame needs to be encoded, for which the mea-
surement results are needed. This is shown in Figure 3.8, where a frame F1 is encoded and sent
over the network to the receiver. The frame F1 is split into 3 packets and the RTT is measured.
Two of the three ack-packets are received before the next frame F2 needs to be encoded.

It is not beneficial to use a shorter measurement interval and therefore tmin in equation (3.32) is
the minimum period of time, the sender should wait for scaling suggestions before he applies any
scaling suggestions

tmin =
1

ω(t)
(3.32)

On network paths with a high latency, not all measurement results arrive in time before the next
frame needs to be encoded (eg., P3 in Figure 3.8). In these situations, it is necessary to wait
until the measurement for the current quality setting arrived before any new quality settings are
applied. It takes at least the RTT to receive any measurement results of the currently applied



3 Video Codec Adaptation 42

encoding settings. Since the RTT is not a constant value, the jitter should also be taken into
account.

tmin = max(
1

ω(t)
, RTT + |RTT′|) (3.33)

To avoid too aggressive upscalings, an optional user timeout is respected in the upscaling timeout
tu and the equation (3.33) extends to

tmin = max(
1

ω(t)
, RTT + |RTT′|, tu) (3.34)



4 Implementation of the Approach in a
Multimedia Application

Video streaming in heterogenous network conditions is a complex task with high demands on
the video streaming applications. To show that the presented approaches meet the previously
discussed demands, the presented approach is implemented in a real-time video streaming ap-
plication. Every instance can operate as receiver or sender that serves a video stream to multiple
receivers. Table 4.1 lists the features the application provides. We focus on the measurement
and analysis of the network metrics and is not meant as a productive video streaming software
for end-user.

4.1 Video Streaming Application

The software is written in C/C++ and runs on Linux, Windows, and MacOS. The sender loads
a video file or take a video stream from the webcam and send it encoded to the receivers. The
open-source libav library1 is used to load the video files, which allows a wide variety of multimedia
formats and protocols. The default codec in the application is the DSVC codec [10], which is an
extension of a very efficient H.264/AVC implementation. Optionally, the ffmpeg2 library can also
be used for enconding. The software provides a detailed and extendable graphical analysis of a
wide set of network metrics. The measurement results are also written to log files in a csv-format
for further analysis with extern tools.

The measurement settings can be loaded from configuration files and contain setting for the video
files, the network conditions, and the scaling behavior. To change the network conditions on a
path, a small additional application is implemented that runs on a router on the path. It receives
the required network conditions and is able to manipulate the link conditions. Access to at least
one of the router on the path is required to change the network conditions.

Instead of video files, it is also possible to generate video streams which do not contain a real
video sequence, but produces certain video patterns. The generated video stream can be used to
examine the reaction to specific combinations of network condition and video characteristics.

1http://libav.org/
2http://www.ffmpeg.org



4 Implementation of the Approach in a Multimedia Application 44

Feature Supported

Bandwidth adaptation of the video stream 3

Graphical analyses of various network metrics 3

Graphical analyses of video stream metrics 3

Webcam support 3

Various video formats and protocols 3

Automated test scenario 3

Various encoding codecs 3

Network condition manipulation 3

Easy exchange of the underlaying network. 3

Generating automated testvideos 3

Audio streaming 8

Common MOS ratings 8

Table 4.1: Overview of the supported features

The software is designed to independent of specific network protocols. For the sender-sided
video adaptation, only a RTT measurement is required, while the receiver-sided approach only
requires a response channel to inform the sender about the measured network conditions and
the scaling suggestions.

4.2 Architecture of the Streaming Application

The streaming application consists of a sender and a receiver. Figure 4.1 shows the compo-
nents of the application and their interaction. At the sender-side, a video stream is encoded via
SVC and sent over the network. The source can be a webcam, a video file, or a generated test
sequence. While the encoded video is transmitted, the RTT measurement is used by the con-
gestion control algorithm at the sender-side to determine if the path is congested. The receiver
also measures the network conditions, but instead of the RTT, it uses the inter-arrival gap of the
frames and the incoming throughput to determine the network conditions. The measured network
conditions and a scaling suggestion are sent back to the sender. With his own measurements
and the measurement results from the receiver, the sender scaling component sets new parame-
ters for the encoding in order to change the bit rate of the video stream accordingly to the network
conditions.

Figure 4.2 shows sequence diagram of the application. The points in time when a new frame
needs to be encoded and sent depends on the inter-frame gap (s-gap), which is given by the
frame rate of the video source ( 1

ω(t) ). In a video conferencing software, the video source is



4 Implementation of the Approach in a Multimedia Application 45

Congestion
Control

Scaling

Codec Sending Receiving

Congestion
Control

RTT
Inter-frame
Gap

k

k

Quatization
and
Temp. Layer

SENDER RECEIVER

Figure 4.1: Architecture of the application

t

Sender

s-
ga
p

t

Receiver

F1

F2

C
C

E
N
C

C
C

E
N
C

M
E
A
S
U
R
IN
G

Figure 4.2: Sequence diagram of the application



4 Implementation of the Approach in a Multimedia Application 46

usually a webcam with a constant frame rate. After a new picture is available, the frame needs
to be encoded, which takes a certain amount of time that depends on the type of frame, the
quality, and the processing power of the device. Thus, the encoding time can vary. The encoding
quality and the resulting bit rate is determined by the congestion control (CC). At the beginning
of a video stream, the encoding quality is usually low to prevent a congestion. Each sent frame
is used for the measurement and the sender and the receiver provide a scaling suggestion. They
are collected by the scaling algorithm at the sender-side and new codec settings are provided.
The next frame is encoded with the new encoding settings.

In this scenario (cf., Figure 4.2), the measurement results arrive before the next frame needs to
be encoded, which is not always the case. On a network path with a high RTT or if the encoding
time is very high, the measurement results do not arrive in time an can only be considered for the
following frame.

4.3 Parametrizing the Streaming Application

The application provides several parameters to set-up the adaptive video streaming. Depending
on the network connection, the device, and the requirements for the video adaptation, the applica-
tion can be parametrized with network specific settings, encoding settings and video adaptation
behavior.

The network protocol in use (enet protocol) provides several settings that can be used to adapt
the application to the network connection. Notable parameters are:

• Connection Timeout

• Reliably or unreliably transmission

• Maximum packet size

• Min./max. outgoing bandwidth

• Min./max. incoming bandwidth

In most scenarios, the network settings do not need to be changed.

Notable parameters that can be used to steer the codec are:

• The used codec

• Min./max. quantization factor

• Min./max. temporal layers



4 Implementation of the Approach in a Multimedia Application 47

The parametrization of the codec influences the required processing power. For example, these
settings can be used to optimize the software for mobile devices. In most scenarios, it is not
necessary to change the encoding settings .

The parameters that are used to steer the video adaptation are:

• The upscaling timeout

• The downscaling timeout

• The threshold for the sender-sided congestion detection

• The threshold for the receiver-sided congestion detection

Theses parameters steer our video adaptation. The upscaling timeout is the time after an upscal-
ing until a new upscaling is allowed. A high upscaling timeout out increases the time until a video
stream reaches a high quality, but also decreases the likelihood to congest the link. The down-
scaling timeout does the same for downscaling suggestions. This can be usefull to prevent multi-
ple downscaling suggestion in a short period of time. This avoids very aggressive downscalings
and provides a more stable video stream, but increases the likelihood of a network congestion.
The threshold for the sender-sided congestion detection is the RTT jitter variation that indicates
a congested link. By default, this is set to a very fine-granular value of 5 ms. The threshold
for the receiver-sided congestion detection is the value for the inter-arrival jitter that indicates a
congestion. By default, this is set to a very fine-granular value of 5 ms. With the parameters of
the video adaptation, the application can be optimized for different network conditions.



5 Performance Evaluation

The presented application is tested in multiple different network conditions. In this chapter, we
will discuss the testbed that is used and analyze the measurement results.

5.1 Measurement Setup

The Internet consists of many heterogeneous links that transmits multiple competing traffic
streams from different applications with different protocols. Thus, the network conditions are
hard to predict and a lot of parameters are unknown. For testing purposes, a testbed with con-
trolled network conditions is needed to examine the scaling approaches. For a detailed analysis,
we need

• Controlled network conditions

• Sender with enough CPU power to encode a video stream in real-time

• Multiple clients

• Access to the router on the path

It is worth mentioning that the experiments cannot be conducted in the PlanetLab testbed [45]
for two reasons. First, PlanetLab nodes provide too much bandwidth. Even though network links
between PlanetLab nodes are very heterogeneous [39], our tests showed that capacities are still
sufficient for typical video test sequences. Second, PlanetLab nodes do not provide sufficient
CPU resources. To increase the required bandwidth, we could deploy HD video sequences.
However, CPU resources of PlanetLab nodes are too low for appropriate encoding.

5.1.1 Emulation environment

For most measurements, we use Mininet3. Mininet is an open source network emulator, which
can be used to create virtual networks with controlled network conditions. With mininet, we are
able to emulate various scenarios, but it also has some downsides. The purpose of the testbed is

3http://mininet.org



5 Performance Evaluation 49

Sender Receiver
s1 s2 s3 s4 s5

2
m

s

1 Mbps

2
m

s

2
m

s

2
m

s

2
m

s

2
m

s

Figure 5.1: Daisy-chain topology

8ms

1 Mbit/s

2ms

2ms2ms

2ms

500 kbit/

Sender Receiver

Competing traffic 
Source

Competing traffic 
Receiver

Figure 5.2: Dumbbell topology

to simulate a bottleneck on a link, but the conditions on the testbed differ from real networks like
the Internet. It is difficult to emulate a ’normal’ Internet link, because they are very multifaceted.
The available bandwidth depends on the amount of UDP connections, TCP connections, and
traffic characteristics of the competing applications. For example, a HTTP application such as
a browser has short TCP peaks when a new site is requested, while a streaming application
exhibits a relatively constant UDP stream. The applications might also react to a congested
path and adapt its traffic stream to the available bandwidth. Emulating this variety on a very
fine-grained level is difficult and usually does not help to highlight specific protocol effects. This
variety is complex to emulate and in this work, we will focus on basic parameters such as the
available bandwidth and the delay of a path in a representative emulation environment. To gain
ground truth in our results, we also verified the measurements by running selected experiments
in a real network.



5 Performance Evaluation 50

5.1.2 Topologies

We used two basic network topologies in our performance evaluation, a daisy-chain topology (cf.,
Figure 5.1) and a dumbbell topology (cf., Figure 5.2). The daisy-chain topology consists of one
sender, one receiver, and five interconnecting switches. The dumbbell topology consists of one
sender, one receiver, two switches, and two hosts that produce a competing traffic stream. The
competing traffic is emulated by iperf4.

In both topologies, the bandwidth is by default limited to 1 Mbit/s, and the RTT between sender and
receiver is set to 24 ms. This is considered to be a short RTT network [22]. The one-way delay
for all (full-duplex) links has been adjusted accordingly, i.e., either 2 ms or 8 ms (cf., Figure 5.2).
These are very friendly network conditions, because the fastest possible response time for the
congestion detection is defined by the RTT (i.e., 24 ms). The gap between arriving frames is
66 ms for a video with 15 fps. This means that the signaling between sender and receiver can be
completed before the next frame is encoded.

It is necessary to emulate a bottleneck on the path to limit the available bandwidth on the path.
In real networks, the Linux program "tc" can be used to add traffic shaping rules.

When the bottleneck is set to a low available bandwidth, the test results showed huge variations
in the transmission time for the incoming video frames. These are artifacts of the traffic shaping
algorithm, which shapes the traffic by delaying Ethernet frames. The transmission time for the
video frames vary a lot, because after every Ethernet-frame (which are considered to be full-sized
Ethernet-frames), a 12.14 ms gap is inserted to archive the limit of 1 Mbit/s (cf. equation (5.1)).

1518Byte ∗ 12ms ≈ 1Mbit/s (5.1)

This leads to very rough shaping artifacts in the incoming traffic streams. To minimize these
influences, we set the bottleneck always to 10 Mbit/s and use a 9 Mbit/s UDP side-traffic stream to
limit the available bandwidth to 1 Mbit/s. In some cases, the network settings are slightly changed to
examine the adaptation in different network conditions. In the following, we will discusses several
typical network conditions that needs to be examined:

Short-RTT paths The software is tested in a friendly network conditions with a low RTT and
a very low loss rate. The used topology is the daisy-chain topology, which is shown in
Figure 5.1. We are especially interested in how the sender alone, the receiver alone, and
a combined approach react to different bandwidth limitations. A detailed analysis is given
in Section 5.5.

Lossy path The loss rate of a path influences the transmission time for the frames and influ-
ences the bandwidth adaptation algorithm at the receiver-side. The sender-sided algorithm

4http://iperf.sourceforge.net



5 Performance Evaluation 51

is not inflicted, because it uses only the RTT from successfully transmitted packages for
the congestion detection. A detailed analysis is given in Section 5.7.

Long-RTT paths The effectiveness of the codec adaptation depends on the response time of the
measurement. Therefore, a high RTT slows down the reaction time of the video adaptation
and needs to be examined. This is tested on the daisy-chain topology, but the RTT between
the switches is set to 192 ms and the RTT of the path is 200 ms. This is considered to be
a long RTT network [22]. A detailed analysis is given in Section 5.8.

Effects of side-traffic The previous tests emulate a congested link by reducing the available
bandwidth. To examine the effects of changing bandwidth limitations, the available band-
width will be altered by side-traffic. For this scenario a dumbbell topology is used, which is
shown in Figure 5.2. It consists of 4 hosts and 2 switches and the bandwidth is set to 1 Mbit/s
by default. In comparison to the daisy-chain topology, an additional side-traffic stream is
sent across the path. A detailed analysis is given in Section 5.9.

Video Adaptation in a network with a congested return path The sender-sided approach
uses the RTT for the congestion detection, which also includes the return path. If the
return path is congested, the unidirectional video stream is not influenced, but the RTT
increases. Section 5.10 examines this effect.

Video adaptation in a network with a constant increasing congestion The sender-sided
approach uses a significant jump in the variation of the RTT jitter as indicator for a con-
gestion. If the RTT increases slowly and with a constant rate, the sender-sided approach
is not able to detect the congestion. This problem will be discussed in Section 5.11.

RTT variations A common characteristic of wireless network is a fluctuating RTT. This influences
the sender-sided approach directly, but also influence the the receiver-sided approach due
to the increased transmission time for frames. The effects are examined in Section 5.12.

Long-time test The previous tests use short test sequences and short measurement periods.
This allows an accurate analysis of the measurement results. The software is also tested
in a long-time test to the effectivity and reliability of the used approach over a long period
of time. A detailed analysis is given in Section 5.13.

Real network The software is also tested in real networks to verify the effectiveness in uncon-
trolled network conditions. In this test, the exact available bandwidth, the RTT, and the loss
rate are unknown and needs to be measured. A detailed analysis is given in Section 5.14.

5.1.3 Video sequences and video codec

For the measurement, we use the TW, UH, G4, SM, TC, and KO test sequences from the
Heinrich-Hertz Institute (HHI). The resolution is 768x576 pixel and the frame rate is 15 fps. The



5 Performance Evaluation 52

videos are too short for longer measurements. To achieve a total playout time of 60 s, we looped
each test video. In general, the improvements based on the adaptive video coding were qualita-
tively very similar. For visibility reasons, most measurements uses the video sequence "TW". In
Section 5.6 we show a comparison of all test sequences.

All measurements are conducted using the DSVC codec [10], which supports up to three tempo-
ral layers. It is an extension of a very efficient H.264/AVC implementation. The codec is used in
commercial products and thus complies with real-world requirements.

The "TW" video sequence (cf., Figure 5.3) and its bandwidth characteristic are shown in Fig-
ure 5.4. The x-axis represents the time in units of seconds, while the y-axis pictures the approxi-
mated average bitrate over time for a video stream with highest quality. As we can see, the video
bitrate varies between 0.5 Mbit/s and 1.7 Mbit/s and it is feasible to transmit the video on a path with
1.7 Mbit/s available bandwidth without congesting the link.

5.1.4 Rating Metric

For our video conferencing application, a suitable QoE metric is needed, to make the measure-
ments for the different network scenarios comparable to each other. In a multimedia application,
the video stream impairments are usually caused by packet loss on the network layer, which
leads to poor QoE ratings and the common QoE metrics focus on this problem. In our video
conferencing software, a reliable transport protocol is used and the packet loss does not cause
decoding artifacts. Instead, lost packets are retransmitted and the additional delay can lower the
QoE [58]. Therefore, the most common QoE metrics are not suitable for our application, because
they do focus too heavy on packet loss.

The best fitting rating metric for our purpose is the DF rating from the MDI. The MDI has the
downside that it calculates the DF with the filling level of the buffer. In this work, a buffer is
unwanted to fulfill the real-time requirements. Instead, the DF is calculated with the inter-arrival
frame variation. The inter-frame gap from the sender-side is compared to the inter-frame gap
from the receiver side for each frame of the video stream (cf., equation (5.2)).

j(i) = ∆r(i− 1, i)− ∆s(i− 1, i) (5.2)

When a frame is heavily delayed and the following frame already arrived, ∆r(i − 1, i) is zero.
Therefore, the maximum negative inter-arrival jitter is determined by the sender-gap. The sender-
gap is not constant and experience variations due to the encoding delays, but it jitters around the
inter-frame gap given by the source of the video ( 1

ω ). The gap at the receiver-side ∆r(i − 1, i)
cannot be below zero, because the frames are reordered at the receiver-side. If one frame is
delayed and the following frame arrives at the same time or even earlier, it gets queued at the
receiver-side and the gap between the frames will be zero. Thus, the minimum jitter j(i) is
∆s(i− 1, i).



5 Performance Evaluation 53

Figure 5.3: One picture of the testsequence TW



5 Performance Evaluation 54

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

Figure 5.4: Bit rate of the video stream



5 Performance Evaluation 55

The lower the jitter j(i) is, the lower is the frame rate variation and the higher is the QoE. For
example, on a ideal network with no influences on the video stream, the inter-frame gap on the
sender-side and on the receiver-side would be equal and the jitter would be zero.

MDI defines a jitter below 9 ms as a perfect video stream and a jitter above 50 ms as unaccept-
able. To rate the video stream, the average over the playout-time could be calculated. The upside
of this rating metric for the QoE is, that it is hard to classify videos from a human perspective.
Instead, we count the ’good’ frames that arrive with an inter-arrival jitter below 9 ms and use the
ratio to the remaining ’bad’ frames as a rating metric.

Another problem with this metric for our purpose is the assumption of a buffer at the receiver-
side. It rates a high positive jitter as problematic, because it drains the buffer and the resulting
underflow causes a stuttering video stream. A high negative jitter is rated as ’bad’, because it
indicates an impending overflow of the buffer. In our case, a negative jitter is not necessarily ’bad’,
because it usually is a counterpart to a previous delayed frame. It is a side-effect if a delayed
video stream normalizes and evens out the delayed frames. Nevertheless, it decreases the QoE
for the user when multiple frames are played out faster and with a wrong frame rate.

We evaluate the performance of the adaptation approaches based on the distribution of inter-
arrival jitter. To allow for comparisons between the different experiments, the binning of the
inter-arrival jitter is constant. We choose a width of two. Figure 5.5(a) shows the distribution of
the incoming frame times on a free network path. Almost all frames arrive in due time and the
gap between two frames on the receiver-side does not differ from the gap they had when sent.
This is the result we are aiming for.

Figure 5.5(b), 5.5(c), and 5.5(d) shows the distribution of the inter-arrival variations on a path
with 1.3 Mbit/s, 1 Mbit/s, and 0.7 Mbit/s. For the bottlenecks with 1 Mbit/s and 1.3 Mbit/s, the negative inter-
arrival jitter shows a concentration point around -66 ms, which is the minimum jitter and depends
on the inter-frame gap on the sender-side ∆s(i− 1, i). For the positive inter-arrival jitter, no clear
point of concentration exist and they are distributed over a wide range.

A comparison of the unscaled video stream for various bottleneck settings is shown in Figure 5.6.
With less available bandwidth, the amount of frames that arrive with a inter-arrival jitter below
9 ms shrinks and the QoE gets worse. In this work, we only differ between frames that arrives
’perfect’ (with a jitter below 9 ms) and frames that do not arrive in time. The higher the amount of
frames with a 9 ms inter-arrival jitter or less, the higher the overall video quality.

The 9 ms inter-arrival jitter from the MDI is a fitting metric to rate the applicability in a real-world
deployment. The downside of this rating is that it only takes the inter-frame delays into account
for the QoE rating. A video with a good rating does not necessarily have a high overall MOS
rating. In our area of application, a delay-based rating is a suitable rating, because our focus
lies on video conferencing, where an in due time arrival has a higher priority than a high video
quality.



5 Performance Evaluation 56

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

100%

(a) Inter-arrival jitter measured on a 100 Mbit/s
path

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

92.2%

(b) Inter-arrival jitter measured on a 1.3 Mbit/s
path

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

26.3%

(c) Inter-arrival jitter measured on a 1 Mbit/s path

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

24.2%

(d) Inter-arrival jitter measured on a 0.7 Mbit/s
path

Figure 5.5: Inter-arrival jitter distribution measured for different bandwidth limitations



5 Performance Evaluation 57

200 150 100 50 0 50 100 150 200
Inter-arrival jitter distribution [ms]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

0.5  Mbps
0.75 Mbps
1    Mbps
1.25 Mbps
1.5  Mbps

Figure 5.6: CDF comparison for several bottleneck settings



5 Performance Evaluation 58

0 10 20 30 40 50 60
Playout-time [s]

0

100

200

300

400

500

RT
T 

[m
s]

(a) RTT measured at the sender

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

(b) Bit rate of the video stream

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

22.4%

(c) Inter-arrival jitter measured at
the receiver

Figure 5.7: Unscaled video stream with a maximum bandwidth of 1 Mbit/s

5.2 Unscaled Video Stream

The video source sends an unscaled version of the TW test sequence with the highest quality,
i.e., a minimum quantization factor is configured and all three temporal layers are enabled. The
bit rate of the unscaled video stream varies between 0.5 Mbit/s and 1.5 Mbit/s (cf., Figure 5.7(b)). The
available bandwidth of 1 Mbit/s is clearly exceeded. The resulting congestion influences the RTT
significantly (cf., Figure 5.7(a)). In the best case, the RTT should fluctuate around 24 ms, but
the overused link causes RTT variations between 24 ms and 500 ms. In a video conferencing
application, the maximal one-way delay should be around 100 ms to not distract end users [28].

As a consequence of the congestion, frames do not arrive in due time. Figure 5.7(c) shows the
distribution of the inter-arrival jitter per frame at the receiver-side. The huge variations in the
inter-arrival jitter are perceived by the user as a stuttering video stream. The Media Delivery
Index (MDI) [60] suggests an inter-arrival jitter below 50 ms for an acceptable video stream and
an inter-arrival jitter below 9 ms for a high quality video streaming. Only 22.4 % of the frames
fulfill these requirements; appropriate video conferencing is not possible.

We encoded the video stream with all variations of encoding settings to get a general idea of
the optimal encoding settings for this scenario. The optimal encoding quality for this scenario is
shown in Figure 5.8. It shows the bitrate for the video sequence "TW" if every frame is encoded
with setting that provides the closest bit rate to 1 Mbit/s. The encoding settings vary between 70%
and 100% and the resulting bit rate never exceeds the 1 Mbit/s available bandwidth. The goal is to
match the pattern of this graph with the presented video adaptation algorithm.

In the next sections, we show how an adaptive video codec can cope with congestions. Our
objective is to provide a fluent video stream.



5 Performance Evaluation 59

0 10 20 30 40 50 60
Playout-time [s]

0

20

40

60

80

100

Qu
al

ity
 [%

]

Figure 5.8: Encoding quality for an optimal bandwidth utilization on a 1 Mbit/s path



5 Performance Evaluation 60

0

50

100

150

200

RT
T 

[m
s]

0 10 20 30 40 50 60
Playout-time [s]

20
10
0

10
20

Jit
te

r V
ar

ia
tio

n 
[m

s]

(a) RTT and jitter measured at the sender

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

95.1%

(b) Inter-arrival jitter measured at the receiver

Figure 5.9: RTT and inter-arrival jitter distribution of a sender-sided video adaptation

5.3 Sender-sided Video Adaptation

In this scenario, only the sender is used to scale the video stream without support from the
receiver. The sender itself is not capable to detect a priori an uncongested path and therefore
has to increase the video quality after some time when no congestion is detected. Until the sender
explores congestion, we use a very aggressive upscaling strategy and continously increase the
quality after a frame was sent.

Figure 5.9(a) shows the RTT and the jitter variation of the RTT, which is used to indicate a con-
gested link. Every increasing of the RTT goes along with a significant jump in the jitter variation,
which triggers a downscaling. Figure 5.9(b) shows the inter-arrival jitter distribution of the frame
reception at the receiver-side. Compared to the unscaled video stream, 95.1% of the frames
arrive in due time and stay below a 9 ms inter-arrival jitter.

Figure 5.10(a) shows the resulting bit rate of the video stream and the codec quality adaptation.
At the beginning, the video stream starts with the lowest quality settings, but increases rapidly.
Every detected congestion that increases the RTT is followed by an adaptation to the estimated
available bandwidth. The encoding quality varies between 75% and 100%, which is still a high
quality. The resulting bit rate of the video stream stays below the available bandwidth and does
not congest the link.

The encoding quality is also compared to the optimal encoding settings and is shown in Fig-
ure 5.10(b). The optimal encoding settings starts with 100%, while our approach starts a the
lowest quality settings and increases until the operating point is reached. Besides the faster up
and downscaling of the optimal encoding settings, the two graphs show similar characteristics.



5 Performance Evaluation 61

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

0 10 20 30 40 50 60
Playout-time [s]

50
60
70
80
90

100

Qu
al

ity
 [%

]

(a) Bitrate and codec adaptation of the video

50
60
70
80
90

100

Qu
al

ity
 [%

]

0 10 20 30 40 50 60
Playout-time [s]

50
60
70
80
90

100

Op
tim

um
 Q

ua
lit

y 
[%

]

(b) Comparison of the encoding quality suggestion
with the optimal encoding quality

Figure 5.10: Bitrate analysis of a sender-sided video adaptation

5.4 Receiver-sided Video Adaptation

In this scenario, only the receiver scales the video stream. The receiver-sided congestion control
compares the incoming rate with the current bit rate of the video stream (cf., Figure 5.11(a)) to
detect an underused path. The incoming throughput varies around 1 Mbit/s. As soon as the bit rate
of the video stream is lower than the incoming throughput, the receiver signals an upscaling.

The inter-arrival jitter is used as an indicator for a congested link. Figure 5.12 shows the inter-
arrival jitter and the delayed frames clearly exceed the normal jitter variations after the 10 second
mark.

Figure 5.11(b) shows the bit rate and the codec adaptation of the rescaled video stream. Both
measurements exhibit similar behavior compared to the sender-sided codec adaptation ap-
proach.

The distribution of the inter-arrival jitter at the receiver-side is shown in Figure 5.13(a) and indi-
cates a stable video stream transmission. Most of the frames arrive in time and provide a fluent
playout of the video stream. In contrast to an unscaled video stream, the results are significantly
better, but compared to the sender-sided video adaptation only 76.8 % of the frames arrive in
time.

The ideal encoding quality is compared to the receiver-sided encoding suggestion and shown
in Figure 5.13(b). The results of the receiver-sided approach also come close to the optimal
encoding settings, which attests the efficiency of the receiver-sided approach.



5 Performance Evaluation 62

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

Incoming throughput
Video stream

(a) Incoming throughput and bit rate of the incoming
video stream

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

0 10 20 30 40 50 60
Playout-time [s]

50
60
70
80
90

100

Qu
al

ity
 [%

]

(b) Bit rate and codec adaptation of the video

Figure 5.11: Bit rate analysis of a receiver-sided video adaptation

0 10 20 30 40 50 60
Playout-time [s]

40

20

0

20

40

In
te

r-a
rr

iv
al

 g
ap

 [m
s]

Figure 5.12: Inter-arrival gap variation at the receiver-side



5 Performance Evaluation 63

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

76.8%

(a) Inter-arrival jitter distribution

50
60
70
80
90

100

Qu
al

ity
 [%

]

0 10 20 30 40 50 60
Playout-time [s]

50
60
70
80
90

100

Op
tim

um
 Q

ua
lit

y 
[%

]

(b) Comparison of the encoding quality suggestion
with the optimal encoding quality

Figure 5.13: Inter-arrival jitter distribution and encoding quality analysis of a receiver-sided video
adaptation

In comparison with the sender-sided adaptation approach, the receiver-sided approach provides
a more precise bandwidth estimation. Figure 5.14 shows an approximation of available bandwidth
for both approaches, which is calculated with the scaling factor k and an approximated video
stream bit rate. The sender-sided approach fluctuates and the estimated available bandwidth
varies between 0.3 Mbit/s and 1 Mbit/s. The receiver-sided approximation shows a more precise
bandwidth estimation. The estimated bandwidth is around 1 Mbit/s, unless the video stream bit
rate reaches the available bandwidth and congests the path. In this case, the available bandwidth
estimation drops down rapidly. The measurement results show that the sender-sided approach
reacts more often, but the available bandwidth estimations are unprecise, while the receiver-sided
approach reacts less often, but with a more precise bandwidth estimation.

5.5 Sender-sided and Receiver-sided Video Adaptation

In this scenario, the receiver and the sender influence the scaling of the video stream. Both can
initiate a downscaling of the video quality (i.e., reduce the bit rate), while only the receiver is
allowed to increase the video quality. If both sides suggest a downscaling in parallel or when the
quality was already reduced, the lower quality value will be taken.

The sender and the receiver calculate a scaling factor k. Figure 5.15(a) visualizes the evolution of
this value for both parties over time. The sender makes more downscaling requests and they are
less persistent compared to the receiver-sided requests. This complies with our previous obser-
vations, which showed that the sender reacts more sensitive to network changes (cf., Section 5.3



5 Performance Evaluation 64

0.0

0.5

1.0

1.5

2.0

Se
nd

er
 [M

bi
t/s

]

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Re
ce

iv
er

 [M
bi

t/s
]

Figure 5.14: Sender-sided available bandwidth estimation in comparison to the receiver-sided
approach

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

in
g 

fa
ct

or
 k

 [#
]

Sender
Receiver

(a) Scaling suggestions for the codec adaptation

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

0 10 20 30 40 50 60
Playout-time [s]

50
60
70
80
90

100

Qu
al

ity
 [%

]

(b) Video stream bit rate and codec adaptation

Figure 5.15: Sender-sided and receiver-sided video adaptation



5 Performance Evaluation 65

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

99.7%

(a) Inter-arrival jitter measured at the receiver

50
60
70
80
90

100

Qu
al

ity
 [%

]

0 10 20 30 40 50 60
Playout-time [s]

50
60
70
80
90

100

Op
tim

um
 Q

ua
lit

y 
[%

]

(b) Comparison of the encoding quality suggestion
with the optimal encoding quality

Figure 5.16: Bit rate analysis for a sender-sided and receiver-sided video adaptation

and Section 5.4). Most of the time, the sender reacts fast enough to avoid any congestion that
could be detected by the receiver. There are two (rare) cases where the receiver-sided adap-
ataion compensates the sender-sided approach. (a) The measurement period of the sender is
too short and thus lacks in accuracy. (b) The sender overestimates the available bandwidth and
the downscaling is not sufficient to prevent congestion. The receiver detects the underestima-
tion and suggests an additional downscaling. The combined approach is more reliable in these
situations.

Since most of the downscalings are requested by the sender, the codec adaptation looks very
similar to the pure sender-based adaptation (cf., Figure 5.15(b)). Compared to the unscaled
video stream, the scaled video stream exhibit still a high quality and varies between 70% and
100%. The bit rate stays below the available bandwidth and the video stream is adapted reliably.
In general, the results show a fairly stable video stream transmission with just a few disturbances.
Strikingly, 99.7 % of the incoming frames exhibit a jitter below 9 ms (cf., Figure 5.16(a)).

The comparison with the optimal enconding quality is shown in Figure 5.16(b). Like the sender-
sided and receiver-sided approach, the characteristics of the graphs look similar. Both ap-
proaches harmonize with each other and do not inflict the encoding quality negatively.

5.6 Comparison of the Test Sequences

The quality of the sender-sided and receiver-sided approach are compared by deploying multiple
video sequences in the daisy chain topology with the available bandwidth limited to 1 Mbit/s. Table



5 Performance Evaluation 66

Video Resolution
Unscaled Scaled

β̄ [Mbit/s] |I.a.j.| < 9 ms β̄ [Mbit/s] |I.a.j.| < 9 ms

TW 768x576 0.9 22.4% 0.4 99.7%
G4 768x576 1 28.4% 0.5 99.9%
KO 768x576 1.5 14.2% 0.5 99.4%
SM 768x576 0.8 66.8% 0.4 99.6%
TC 768x576 1 23.6% 0.4 99.8%
UH 768x576 4.6 0.6% 0.4 100%

Football 640x480 3.3 6.8% 1 99.8%
Washington DC 640x480 2.2 7.6% 0.8 98.3%

Akiyo 352x288 0.3 100% 0.2 99.9%
Foreman 352x288 1.4 28.2% 1 97.6%
Bus 352x288 4.1 5.4% 0.8 100%

Carphone 176x144 0.4 99.8% 0.4 99.9%

Table 5.1: Comparison of common test sequences with an absolute inter-arrival jitter (I.a.j.) be-
low 9 ms as rating metric

5.1 shows average bitrate and the percentage of frames that have an absolute inter-arrival jitter
(I.a.j.) below 9 ms for an unscaled and a scaled video stream.

The in due time arrival is above 95% for each video sequence. This is a huge improvement in
comparison with results of the unscaled versions. The average bit rate of the video stream is lower
and do not exceed the 1 Mbit/s. Two video sequences reach an average bit rate of 1 Mbit/s (Football
and Foreman), which indicates that they exceed the 1 Mbit/s available bandwidth at some points in
time. A detailed analysis showed, that the aggressive upscaling algorithm is a problem when the
video stream contains a lot of movement. In these scenarios, a more reservative upscaling would
be beneficial. Another video sequence with an interesting result is the video Akiyo. The unscaled
video stream has an average bit rate of 0.3 Mbit/s and no scaling is required, but the scaled video
stream only has 0.2 Mbit/s. This is caused by the low encoding quality at the beginning of the video
transmission. After it reaches the full encoding quality no downscaling occurs.

The results show that the video adaptation works reliable independent of the video resolution or
the type of the video.



5 Performance Evaluation 67

0 10 20 30 40 50 60
Playout-time [s]

0

100

200

300

400

500

RT
T 

[m
s]

Figure 5.17: RTT of a video stream on a path with a high loss rate



5 Performance Evaluation 68

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

24.8%

Figure 5.18: Inter-arrival jitter distribution in a lossy environment

5.7 Lossy paths

A further network metric that needs to be examined is the loss rate of a path. Lost packets do
not influence the sender-sided video scaling approach, because the RTT is measured with ack-
packets of successfully transmitted packets (cf., Figure 5.17). In this software, lost packets are
retransmitted and stretch the transmission time of the frame. This influences the measurement
of the inter-arrival jitter at the receiver-side. The video application is tested on the daisy-chain
topology with a loss rate of 15%. This scenario emulates mobile realms, where packet loss does
not necessarily imply a congested link.

The results of the packet loss and the increasing frame transmission-time are visible in the dis-
tribution of inter-arrival jitter (cf., Figure 5.18). The 15% loss rate causes a very high inter-arrival
jitter at the receiver-side and just a minority of the frames arrive in due time. Every packet that
needs to be retransmitted can once more experience packet loss. If the following frame after a



5 Performance Evaluation 69

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

Scaled video stream
Unscaled video stream

(a) Bitrate of the scaled video stream

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

in
g 

fa
ct

or
 k

 [#
]

Sender
Receiver

(b) Scaling suggestions

Figure 5.19: Bitrate and scaling suggestions in a lossy environment

delayed frame arrives in due time, it usually produce a negative inter-arrival jitter (usually below
-9 ms) and compensate the delay. In combination with a slight congestion, this leads to a wide
distribution of transmission times.

Figure 5.19(a) shows the resulting bit rate of the video stream. It shows a very low bit rate and
never reaches the 1 Mbit/s available bandwidth. In Figure 5.19(b) the scaling suggestions from both
sides are shown. The receiver is responsible for the low scaling suggestions, because it detects
the delayed frames and does not know about the high loss rate.

A solution to this problem is to ignore the receiver-sided scaling suggestions if the loss rate
increases, but the RTT stays stable. Figure 5.20(a) shows the bit rate of the video stream if
only the sender is responsible for the scaling in this scenario. This does not solve the high inter-
arrival jitter variation at the receiver-side (cf., Figure 5.20(b)), but it avoids an unnecessary video
stream scaling to packet loss. The high inter-arrival jitter variation can only be fixed with the
retransmission timeout settings of the transport protocol.

Overall, the sender-sided approach handles packet loss much better than the receiver-sided ap-
proach. It allows a reliable scaling in a lossy environment, which is beneficial for mobile realms.

5.8 Long-RTT paths

On long distance video transmissions, the RTT is usually higher and the video adaptation is
complex. The reaction time is crucial for the video adaptation to react to sudden network condition
changes. Thus, the software is also tested on such a high latency path. The RTT is set to 200 ms



5 Performance Evaluation 70

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

Scaled video stream
Unscaled video stream

(a) Bitrate of the scaled video stream

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

6.8%

(b) Inter-arrival distribution

Figure 5.20: Measurement results for a sender-sided scaled video stream in a lossy environment

0 10 20 30 40 50 60
Playout-time [s]

0

100

200

300

400

500

RT
T 

[m
s]

(a) RTT of the TW video on a path with high delay

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

Scaled video stream
Unscaled video stream

(b) Measurment results for the TW video on a path
with a high RTT

Figure 5.21: Measurement results for a network with high response times



5 Performance Evaluation 71

0 10 20 30 40 50 60
Playout-time [s]

0

20

40

60

80

100

Qu
al

ity
 [%

]

(a) Bitrate of the video stream

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

84.6%

(b) Inter-arrival jitter distribution

Figure 5.22: Measurement results for a network with high response times

(cf. Figure 5.21(a)). In consequence, 2 further frames of a video stream with 66 ms inter-frame
gap are transmitted before the first measurement results arrive (cf., equation (5.3)).

200ms
66ms

> 3 (5.3)

These two frames have the same encoding settings as the previous one. In this situation, 3
frames might be too big if the network is congested. A solution to solve this issue is to send the
following frames without a higher quality setting until the measurement results arrive.

The resulting bit rate is shown in Figure 5.21(b). The low bit rate is the result of the conservative
quality increasing strategy. Due to the high RTT, a high timeout is set until further quality increases
are allowed (cf., Section 3.6). The quality settings for the codec in Figure 5.22(a) show the slower
increasing of the quality. This behavior produces a low bit rate after a congestion is detected for
a longer period of time. Unfortunately, this cannot be avoided and in these scenarios, it takes
longer until a high quality is reached.

Despite the lower bit rate of the video, the QoE for the user is quite good for the given conditions.
All frames arrive the receiver with a 100 ms delay, which lowers the QoE in a video conference,
but is physically given by the topology. Besides that, most of the frames arrive in due time (cf.
Figure 5.22(b)). Altogether, the maximum available bandwidth never exceeds 0.7 Mbit/s, but also,
a congestion is successfully avoided, even with the slow response time.



5 Performance Evaluation 72

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

0 10 20 30 40 50 60
Playout-time [s]

50
60
70
80
90

100

Qu
al

ity
 [%

]

(a) Bit rate and codec adaptation of the video

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

46.1%

(b) Inter-arrival jitter distribution

Figure 5.23: Scaled video deployed in a dumbbell topology with 0.5 Mbit/s competing UDP traffic
after 15 seconds

5.9 Video Adaptation in the Presence of Competing Traffic

In the previous scenarios, the available bandwidth was limited by the hard-setted bottleneck. In
real networks, the available bandwidth is limited by the side-traffic on a path. For the emulation
of side-traffic, another test set-up is needed. The sender-sided and receiver-sided adaptation is
evaluated in a dumbbell topology with competing side traffic. The bandwidth is limited to 1 Mbit/s.
After 15 seconds, a 0.5 Mbit/s UDP side-traffic is initiated in parallel to the video stream. The effects
of the competing side traffic are clearly visible after 15 seconds with respect to the bit rate and
codec adaptation (cf., Figure 5.23(a)). The video quality is temporarily reduced to 50%. This
lowers the bit rate and prevents a congestion. The inter-arrival jitter shows the influences of the
side-traffic and only 46.1% of the frames arrive in due time (cf., Figure 5.23(b)).

Due to the low bit rate, every scaling step has a relative big impact on the video stream and makes
it harder to archive the requested bitrate. In these conditions, a more conservative upscaling
would be beneficial.

The application is also tested with 0.5 Mbit/s TCP side-traffic after the 15 second mark. In this work,
we do not focus on TCP friendliness, but TCP streams are the common competing traffic streams
and thus, they need to be considered. Due to the slow-start of TCP, it takes a while until the TCP
affect the video stream, but after 20 seconds, the side-traffic is clearly visible in the bit rate (cf.,
Figure 5.24(a)). Compared to the previous UDP measurement, the bit rate is lower and the inter-
arrival jitter distribution is worse (cf., Figure 5.24(b)). The congestion avoidance algorithm of
the TCP protocol and the streaming application interfere with each other, which leads to worse
results. The TCP stream reacts to the video stream and changes its sending rate. The resulting
available bandwidth fluctuates and it is complex to scale the video stream accordingly. The quality



5 Performance Evaluation 73

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

Scaled video stream
Unscaled video stream

(a) Comparison of the scaled and unscaled video
stream bit rate

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

46.8%

(b) Inter-arrival jitter distribution

Figure 5.24: Video stream in a dumbbell topology with 0.5 Mbit/s competing TCP traffic

0 10 20 30 40 50 60
Playout-time [s]

0

20

40

60

80

100

Qu
al

ity
 [%

]

Figure 5.25: Quality of the video stream on a path with 0.5 Mbit/s TCP side-traffic



5 Performance Evaluation 74

0 10 20 30 40 50 60
Playout-time [s]

0

100

200

300

400

500

RT
T 

[m
s]

(a) RTT of the TW video on a path with a short peak
of side-traffic after 10 seconds

0 10 20 30 40 50 60
Playout-time [s]

0

20

40

60

80

100

Qu
al

ity
 [%

]

(b) Bitrate and codec adaptation of the video stream

Figure 5.26: Fully congested path

of the video stream (cf., Figure 5.25) shows more drastic downscale. In the current state, we do
not focus on TCP-friendliness, but in the future the effects need to be examined and a better
coexistence with TCP is aspired.

Another common side-traffic effects are side-traffic bursts. We emulate a short congestion with
a short 1 Mbit/s UDP side-traffic stream at the 10 second mark. The side-traffic congests the path
completely and the effects are visible in the RTT (cf., Figure 5.26(a)). The application reacts
with a drastic reduction of the quality, which is shown in Figure 5.26(b). The congestion control
reacts to the challenging network condtions and is also able to detect the disappearance of the
congestion very fast. This allows a quick quality increasing if the path is free. The resulting
bandwidth and the inter-arrival jitter distribution is show in Figure 5.27(a) and Figure 5.27(b). The
congestion has a clear influence on the bit rate of the video stream, but the inter-arrival jitter does
show an eligible behavior, where most of the frames arrive in due time.

5.10 Video Adaptation in a Network with a Congested Return Path

A known problem of the sender-sided video adaptation algorithm is a congested return path.
A congested return path does not impair the video stream transmission, but it influences the
RTT measurements. The sender-sided approach detects the RTT variations and interprets it as
congestion. In this specific scenario, a downscaling of the video stream in unnecessary.

The sender-sided and receiver-sided adaptation are evaluated in a dumbbell topology with a
congested return path. The bandwidth is limited to 10 Mbit/s, which is enough to send the video



5 Performance Evaluation 75

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

Scaled video stream
Unscaled video stream

(a) Bit rate of the TW video on a path with a short
peak of side-traffic after 10 seconds

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

97.0%

(b) Inter-arrival jitter distribution

Figure 5.27: Fully congested path

stream with the highest quality settings. The return path is limited to 1 Mbit/s. Instead of one long-
lasting congestion that only cause a short sender-sided congestion detection, we sent multiple
random packet bursts over the return path to produce multiple short-lasting congestion. The
resulting RTT fluctuations (cf., Figure 5.28) are recognized by the sender-sided approach and it
scales the video stream down.

Figure 5.29(a) shows the sender-sided scaling suggestions and Figure 5.29(b) shows the result-
ing quality. The receiver does not detect any congestion and no scaling suggestions are made
(cf., Figure 5.29(a)). Even with the very low encoding quality, the sender-sided approach detects
a congested path and constantly suggests a downscaling of the video stream. The resulting bit
rate in Figure 5.30(a) is very low due to sender-sided scaling suggestions. This measurement
shows an important downside of the sender-sided approach: It is unknown for the sender, if the
increasing RTT is caused by the forward or the return path. Thus, a congested return path can
cause a downscaling, even if it does not inflict the video stream. A measurement of the one-way
delay, can avoid this behavior, but it requires synchronized clocks. The receiver-sided approach
works reliable in these situations.

5.11 Video Adaptation in a Network with a Constant Increasing
Congestion

The sender-sided algorithm indicates a congestion with a signficant jump in the jitter variation
of the RTT. If a congestion is caused by a side-traffic stream that slightly exceeds the available
bandwidth, the filling rate of the router queues is low. If the side-traffic stream has a constant



5 Performance Evaluation 76

0

50

100

150

200

RT
T 

[m
s]

0 10 20 30 40 50 60
Playout-time [s]

20
10
0

10
20

Jit
te

r V
ar

ia
tio

n 
[m

s]

Figure 5.28: RTT and RTT jitter variation

0 10 20 30 40 50 60
Playout-time [s]

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

Sc
al

in
g 

fa
ct

or
 k

 [#
]

(a) Scaling suggestions

0 10 20 30 40 50 60
Playout-time [s]

0

20

40

60

80

100

Qu
al

ity
 [%

]

(b) Scaling suggestions

Figure 5.29: RTT measurement and sender-sided scaling suggestions



5 Performance Evaluation 77

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

Scaled video stream
Unscaled video stream

(a) Bit rate and codec adaptation of the video

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

100%

(b) Inter-arrival jitter distribution

Figure 5.30: Analysis of the video stream in a network with a congested return path

rate, the filling rate is also constant. The RTT constantly increases and the RTT jitter variation
does not show any significant jumps. As a result, the sender-sided approach has no indicator for
a congested link.

The streaming application is deployed with the previously described network conditions to verify
this assumption. As expected, the RTT (cf., Figure 5.31) increases with a constant rate. The jitter
variation of the RTT fluctuates, but stays below the threshold of 5 ms most of the time. The result-
ing scaling suggestions in Figure 5.32(a) shows that the sender is not aware of the congestion
and only the receiver provides reliable scaling suggestions. The resulting video stream bit rate
is very low (cf., Figure 5.32(b)). In this scenario, it is impossible to prevent the congestion, be-
cause no bandwidth is available. The test results show that the sender-sided approach does not
provide reliable scaling suggestions in this network conditions and the receiver-sided approach
is necessary for a reliable video adaptation.

5.12 RTT Delay Variation

In wireless networks, the RTT shows usually significant variations, which influences both conges-
tion detection approaches. On the sender-side, a congestion is identified by a significant jump
in the jitter variation of the RTT. On a network with a fluctuating RTT, the sender detects many
’congestions’ and may downscale the video stream. At the receiver-side, the variations of the
RTT influence the arrival time of the frames. If a few packets of a frame are delayed, the whole
frame does not arrive in time and the delay is visible in the inter-arrival jitter. Like the sender, the
receiver will detect a ’congested’ link, even if enough bandwidth is available.



5 Performance Evaluation 78

0
100
200
300
400
500
600

RT
T 

[m
s]

0 10 20 30 40 50 60
Playout-time [s]

20
10
0

10
20

Jit
te

r V
ar

ia
tio

n 
[m

s]

Figure 5.31: RTT and RTT jitter variation

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

in
g 

fa
ct

or
 k

 [#
]

Sender
Receiver

(a) Scaling suggestions

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

Scaled video stream
Unscaled video stream

(b) Bit rate of the video stream

Figure 5.32: Analysis of the scaling suggestions



5 Performance Evaluation 79

0

50

100

150

200

RT
T 

[m
s]

0 10 20 30 40 50 60
Playout-time [s]

20
10
0

10
20

Jit
te

r V
ar

ia
tio

n 
[m

s]

(a) RTT and RTT jitter variation of the video stream

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

24.7%

(b) Inter-arrival distribution

Figure 5.33: Measurement results for a scaled video stream in a network with a volatile RTT

The software is tested on a network with an average RTT around 100 ms that varies between
25 ms and 170 ms. The loss rate is set to 0%. These values are close to realistic values, which
are experimentally determined with a mobile network (UMTS). The settings are set with the Linux
traffic shaping program "tc", which allows the generation of correlating delay and pure random
delays. With correlating delays, each delay relies to a certain percentage on the previous delay
to emulate smoother RTT fluctuations. This is a realistic scenario in a wired network, where the
delays usually depend on router queuing variations. In wireless networks, the RTT shows a more
random fluctuation and we choose random delay variations to emulate this behavior. The RTT of
the network is measured over 100 packets and shown in Listing 5.1.

Listing 5.1: Ping result for the test network

100 packets t ransmi t ted , 100 received , 0\% packet loss , t ime 99120ms
r t t min / avg /max / mdev = 29.005/100.674/166.379/32.669 ms

A scaled video stream is sent over the network. The RTT fluctuates in this scenario and thus, the
RTT jitter variation is volatile (cf., Figure 5.33(a)). The inter-arrival jitter shows a wide distribution
(cf., Figure 5.33(b)). Only 24.7% of the frames arrive in due time, but the scaling algorithm cannot
prevent this behavior since it is a given limitation of the network. The bit rate and the quality
setting for the codecs are shown in Figure 5.34(a) and 5.34(b); Both are very low. The scaling
suggestions and the resulting encoding settings produce a very low bit rate and the path is heavily
underused. An analysis of the scaling factor (cf., Figure 5.35(a)) shows that the receiver-side is
responsible for the low quality. The inter-arrival jitter in Figure 5.35(b), which is used as indicator
for a congested link at the receiver-side, confirms this result. The inter-arrival jitter shows a
wide distribution, which is caused by the delay variations for incoming frames. The sender-sided
congestion control has less problems with the fluctuating RTT, even though, it uses it as indicator



5 Performance Evaluation 80

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

(a) Bit rate of the video stream

0 10 20 30 40 50 60
Playout-time [s]

0

20

40

60

80

100

Qu
al

ity
 [%

]
(b) Encoding quality

Figure 5.34: Analysis of the encoding quality

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

in
g 

fa
ct

or
 k

 [#
]

Sender
Receiver

(a) Scaling suggestion from both adaptation algo-
rithms

0 10 20 30 40 50 60
Playout-time [s]

40

20

0

20

40

In
te

r-a
rr

iv
al

 g
ap

 [m
s]

(b) Inter-arrival jitter

Figure 5.35: Analysis of the scaling suggestions



5 Performance Evaluation 81

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

(a) Bit rate of the scaled video stream

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

31.9%

(b) Inter-arrival distribution

Figure 5.36: Sender-sided scaling

for a congested link. In comparison to the receiver-sided approach, it measures the further trend
of the RTT after a congestion is detected. Since the RTT does not show an increasing trend, the
downscaling suggestions are rather small. To verify the theory, we only used the sender-sided
approach to scale the video stream. The bit rate is shown in Figure 5.36(a) and the inter-arrival
jitter distribution is shown in Figure 5.36(b). The results show a very robust scaling of the sender-
sided approach, even with a fluctuating RTT. Due to the smoother scaling, the frame sizes varies
less and the inter-arrival jitter is better (cf., Figure 5.36(b)). As a result, the transmission time of
the video frames are more stable and the inter-arrival jitter distribution improves from 24% in due
time arriving frames (cf., Figure 5.33(b)) to 31% (cf., Figure 5.36(b)).

The receiver-sided congestion control reacts too sensitive to spikes in the inter-arrival jitter. A
solution to improve the receiver-sided approach in these scenarios is the usage of an average
instead of a direct scaling to the inter-arrival jitter. This would make the reaction time slower, but
more reliable and prevent such drastic downscaling suggestions.

5.13 Long Time Test

The previous test scenarios uses short video sequences and thus, the measurement time was
very short. It allows a more clear analysis of certain effects. For a deployment in a real world
application, the presented approach must work reliable over a long period of time. Thus, the soft-
ware is with longer video sequences. 15 minutes of the filmlet Elephants Dream5 is used in this
measurement and the available bandwidth is set to 1.5 Mbit/s. Without scaling, the path congests

5http://www.elephantsdream.org



5 Performance Evaluation 82

0 100 200 300 400 500 600 700 800 900
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Bi
t r

at
e 

[M
bi

t/s
]

Figure 5.37: Bit rate of the video stream ’Elephants Dream’

within the first minute and never recovers. After a few minutes the connection disconnects. Thus,
there is no point to discuss the measurement results for an unscaled video stream.

Figure 5.37 shows the bit rate of the video stream. At some points, the scaled video stream
exceeds the available bandwidth (at 300s and at the 550s mark), but overall, the scaling is reliable
and the provided video stream has a high quality considering the network conditions. This is a
also confirmed by the inter-arrival gap of the frames (cf., Figure 5.38(b)). Almost all frames arrive
in time and the user perceive only minor impairments.

5.14 Measurement in a Real Network

We have shown in the previous chapters that the scaling and adaptation approaches operate
reliable in small test networks under controlled conditions. We also deployed software in a real



5 Performance Evaluation 83

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

in
g 

fa
ct

or
 k

 [#
]

Sender
Receiver

(a) Bitrate of the video stream ’Elephants Dream’

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

92.0%

(b) QoE of the video stream ’Elephants Dream’

Figure 5.38: Test results for the testsequence ’Elephants Dream’ over 15 minutes

network to evalute the approaches. Since we focus on the mobile realm, we deployed the applica-
tion on a network that contains an UMTS6 connection. The upload link is used to send the video
stream, because it has a lower availbable bandwidth and the video stream needs to be scaled.
The maximum upload rate is 5.76 Mbit/s with HSUPA, but the measured effective throughput varies
between 1 Mbit/s and 1.7 Mbit/s.

The RTT of the path is shown in Listing 5.2 and varies around an average of 97 ms.

Listing 5.2: RTT measurement over 300 seconds

300 packets t ransmi t ted , 300 received , 0\% packet loss , t ime 299152ms
r t t min / avg /max / mdev = 60.076/96.885/1022.387/59.121 ms, pipe 2

The minimum RTT is 60 ms and the maximum peak is above 1 s. The average jitter of the RTT
is 59.121 ms, which indicates a fluctuating RTT even when the path is free. In these network
conditions, a video adaptation is difficult and the 9 ms inter-arrival jitter as quality rating is a
challenging requirement to fullfill.

The video sequence "TW" is used for measurement. The inter-arrival jitter distribution of the in-
coming unscaled video stream shows huge variations (cf., Figure 5.39(a)) and only 12 % of the
frames arrive in due time. The RTT shows a volatile behavior (cf., Figure 5.39(b)). The RTT
variations are challenging for the sender-sided approach, because they can be interpreted as
congestion. We also expected the receiver-sided approach to suggest very drastic downscaling
suggestions based on the test results in Section 5.12. The measurement results confirm this
assumption. Figure 5.40(a) shows the scaling suggestions. The resulting encoding quality is
shown in Figure 5.40(b). Even on very low encoding settings, the receiver suggests downscaling

6Model: XS Stick W14



5 Performance Evaluation 84

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

12.0%

(a) Inter-arrival jitter distribution

0 10 20 30 40 50 60
Playout-time [s]

0

100

200

300

400

500

RT
T 

[m
s]

(b) RTT

Figure 5.39: Unscaled video stream via UMTS

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

in
g 

fa
ct

or
 k

 [#
]

Sender
Receiver

(a) Scaling suggestions

0 10 20 30 40 50 60
Playout-time [s]

0

20

40

60

80

100

Qu
al

ity
 [%

]

(b) Encoding quality of the video stream

Figure 5.40: Sender-sided and receiver-sided scaling



5 Performance Evaluation 85

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

17.1%

(a) Inter-arrival jitter distribution

0 10 20 30 40 50 60
Playout-time [s]

0

20

40

60

80

100

Qu
al

ity
 [%

]

(b) Encoding quality of the video stream

Figure 5.41: Sender-sided scaled video stream via UMTS

factors around 0.5. The application is never able to reach a high quality stream. The resulting
bit rate of the video stream never exceeds the available bandwidth, but the receiver-sided video
adaptation also heavily underuses the link. The network is tested with different adaptation param-
eters, but the receiver-sided scaling reacts too drastic to spikes in the inter-arrival variations. For
further test, only the sender-sided scaling approach is used and only the upscaling suggestions
are considered from the receiver-side.

If only the sender-sided congestion control is used, the distribution of the inter-arrival jitter is
slightly better (cf., Figure 5.41(a)), but still not the desired result. The problem is the aggressive
upscaling (cf., Figure 5.41(b)), which cannot be countersteered by the congestion control. In
these scenarios, the application needs to be parametrized with a more conservative upscaling.
We set the upscaling timeout to 1 second, which means that after every upscaling, at least 1 sec-
ond passes until the video stream can be upscaled again. The inter-arrival jitter distribution shows
a huge improvement (cf., Figure 5.42(a)) and 48.6% of the frames arrive in due time. Also, the
RTT, shown in Figure 5.42(b), is stable. The downside of this adaptation setting is visible in the
quality (cf., Figure 5.43(a)) and the resulting bit rate (cf., Figure 5.43(b)). The good inter-arrival
jitter distribution are the result of an underused path. The quality varies between 30% and 40%
and never produces a high bit rate.

The low bit rate of the video stream is caused by the low RTT jitter variation thresholds for the
sender-sided congestion detection. The sender-side identifies a congestion, when the RTT jitter
variation exceeds 5 ms. It is used as indicator for a possible congestion and the quality is not
always downscaled, but it sets an upscaling timeout that prevent an upscaling. The application
never considers the path to be free and avoids upscaling most of the time. Several parameter
combination are tested and a good tradeoff between a high bit rate and a good inter-arrival jitter
distribution are 20 ms as RTT jitter variation to identify a congested path.



5 Performance Evaluation 86

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

46.8%

(a) Inter-arrival jitter distribution

0 10 20 30 40 50 60
Playout-time [s]

0

100

200

300

400

500

RT
T 

[m
s]

(b) RTT

Figure 5.42: Inter-arrival jitter distribution and RTT of a sender-sided scaled video stream with a
1s upscaling timeout

0 10 20 30 40 50 60
Playout-time [s]

0

20

40

60

80

100

Qu
al

ity
 [%

]

(a) Encoding quality of the video stream

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

(b) Bitrate of the video stream

Figure 5.43: Encoding quality and resulting bitrate of a sender-sided scaled video stream with a
1s upscaling timeout



5 Performance Evaluation 87

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

44.1%

(a) Inter-arrival jitter distribution

0 10 20 30 40 50 60
Playout-time [s]

0

20

40

60

80

100

Qu
al

ity
 [%

]

(b) Encoding quality of the video stream

Figure 5.44: Sender-sided video adaptation with a 1s upscaling timeout and 20ms threshold for
the congestion indication

The inter-arrival jitter distribution shows with 44.1% a good result (cf., Figure 5.44(a)). Keep in
mind that the variations of the RTT also influences the inter-arrival jitter at the receiver-side and
a very low bitrate video stream only archives 46.8% frames below 9 ms inter-arrival jitter (cf.,
Figure 5.42(a)). Compared to the unscaled video stream with 12% in due time arriving frames
(cf., Figure 5.39(a)), it is a significant improvement. The quality settings vary between 70% and
100% (cf., Figure 5.44(b)). The resulting bit rate is shown in Figure 5.45. The measurement
results show that the presented video stream adaptation approaches provide a video stream with
a high QoE, if it is well parametrized.

A longer sequence of the video sequence "Elephants Dream" is used to test the adaptation ap-
proach over a longer period of time in a real network. The receiver of the video stream is a
mobile device. To emulate a real world scenario, the device is not stationary, but changes its
location. The movement changes the QoS of the UMTS connection. The previous experimentally
determined parameters are used in this scenario (20 ms as threshold for the RTT jitter variation
and a 1 s upscaling timeout). Also, the receiver-sided approach is enabled, but with a 200 ms
inter-arrival jitter threshold to detect a congestion. We expect a low video stream bit rate due
to radical downscaling suggestions from the receiver-side when some frames arrive experience
extraordinary delays. The bit rate in Figure 5.46(a) shows a stable video stream that varies be-
tween 0.3 Mbit/s and 0.5 Mbit/s. The distribution of the inter-arrival jitter in Figure 5.46(b) is smooth
and 38.2% of the frames arrive in due time. An analysis of the encoding quality (cf., Figure
5.47(a)) shows that the sender-sided approach is responsible for most of the scaling decision,
while the receiver-sided provides less, but more radical suggestions (cf., Figure 5.47(b)). The
results show that the video adaptation ensures a reliable video stream adaptation without con-
gesting the path.



5 Performance Evaluation 88

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

Figure 5.45: Bit rate of the sender-sided scaled video stream with 1s upscaling timeout and 20ms
RTT jitter variation threshold for the sender-sided congestion indication

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.5

1.0

1.5

2.0

Bi
t r

at
e 

[M
bi

t/s
]

(a) Bit rate of the video stream

60 40 20 0 20 40 60
Inter-arrival jitter [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

38.2%

(b) Inter-arrival jitter distribution

Figure 5.46: Video sequence ’Elephants Dream’ in a real world deployment



5 Performance Evaluation 89

0 10 20 30 40 50 60
Playout-time [s]

0

20

40

60

80

100

Qu
al

ity
 [%

]

(a) Encoding quality of the video stream

0 10 20 30 40 50 60
Playout-time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

in
g 

fa
ct

or
 k

 [#
]

Sender
Receiver

(b) Scaling suggestions

Figure 5.47: Encoding quality analysis of the video sequence ’Elephants Dream’ in a real world
deployment

5.15 Analysis and Comparison of the Measurement Results

The video adaptation approaches are tested in different controlled topologies with different net-
work settings. Additionally, the application is tested in a real world deployment. This wide variety
of different network condtions is used to examine the robustness and reliability of the scaling ap-
proaches in networks with different QoS impairments. Both approaches are analyzed seperately
and show different problems.

The sender-sided approach uses variations in the jitter of the RTT to detect a congested path.
Thus, the sender reacts very fast to changing network conditions and provide a suitable approach
for real-time multimedia applications. The sender-sided approach shows reliable measurement
results as long as the return path is not congested (cf., Section 5.10) or the RTT shows a slow and
constant increasing without a significant jump in the jitter variation (cf., Section 5.11). A congested
return path interfere the RTT measurement, even if the video stream is not disturbed and causes
unnecessary downscaling. A slowly congesting path causes only slight variations in the RTT
jitter and the sender-sided approach is not able to detect the congestion. In this case, the path
congests without any reactions from the sender-side. Besides that, the sender-sided approach
shows reliable results, even in networks with packet loss or in presence of side-traffic.

The receiver-sided approach uses significant inter-arrival jitter variations to detect a congested
path. It uses whole frames instead of packets for the measurement, which provides a slower, but
more accurate congestion detection (cf., Section 5.4). The measurement results also show that
the receiver-sided approach reacts too sensitive to RTT variation (cf., Section 5.12) and suggests
a too drastic downscaling of the video stream. If one packet of a frame experience packet loss or a



5 Performance Evaluation 90

huge delay, the whole frame is delayed and causes a drastic downscaling suggestion. The usage
of a mean inter-arrival jitter could improve the scaling suggestions by avoiding too radical down
scaling suggestions. Additionally, the incoming throughput is measured to identify an underused
path, which allows a safe upscaling. In comparison with the sender-sided approach, the receiver-
sided congestion control operates reliable on a congested path and is resistant to a congested
return path.

Both approaches complement each other and the coexistence does not lower their effectiveness.
A combination of both adaptation approaches ensures a reliable video stream adaptation in a
real world network with a low QoS (compared to wired networks). The analysis of the measure-
ments show that a coexistence of both approaches improve the performance in difficult network
conditions, while neglecting their disadvantages. The sender-sided approach reacts faster than
the receiver-sided approach, who only reacts if the sender is not able to prevent a congestion,
but the receiver provides safe upscaling suggestions, which is not provided by the sender-sided
approach.

The measurement results also show that the video application needs to be well parametrized to
provide a reliable video adaptation. The experimentally determined parameters are used in a real
world deployment that contains a UMTS link as limiting factor for the bit rate of the video stream.
The resulting video adaptation provide a fluent video stream over a long period of time without
congesting the path.



6 Conclusion and Outlook

Multimedia applications with high quality video streams are likely to cause network congestions
and thus need to be aware of the network conditions to sustain fluency. Particularly on access
links or in the presence of heavily changing traffic, a quick reaction is crucial for real-time multi-
media applications more beneficial than a slow but more accurate video adaptation. In this work,
a combination of a receiver-sided and a sender-sided congestion detection approach combined
with scalable video adaptation is presented to address this problem.

Our algorithms are simple, non-intrusive and easy to implement. For a proof-of-concept and for
detailed experimental evaluations, we developed a scalable conferencing application based on
the DSVC codec and previous work. The application encodes a raw video, sends it over the
network and detects impending congestions at both ends. Our test results give evidence that our
approaches ensure a fast and reliable video stream adaptation and are capable of detecting a
link congestion early enough to avoid it so that it remains unnoticeable to users. In particular,
our sender-sided approach is capable of reacting to changing network conditions very fast, while
the receiver-sided approach is more precise and is able to detect an underused link. In a real
network, the measurement results shows that a careful parametrizing can improve the video
adaptation and provide optimal results even in challenging network conditions.

The measurement results show that the adaptation approaches leaves room for improvement.
The receiver-sided approach overreacts to extraordinary delayed frames, which results in extreme
downscaling suggestions. A filtered measurement, which detects and dismiss extraordinary de-
layed frames would provide a more stable video bit rate. The sender-sided video adaptation does
not work on a congested path. An additional observation of the loss rate and the sending queue
could solve this issue. Another area that can be improved is the upscaling of the video bit rate.
In the current state, only the receiver-sided measurements are used to decide if an unscaling is
safe. To improve the upscaling, the sending queue and the loss rate could also be considered for
a safe upscaling.

In the future, the software will be tested on various real networks to estimate the effects of different
network conditions. Analyzing various video samples and different network conditions will help to
improve the software and ensure reliable video adaptation in different environments. Important
factors in this regard are the different types of side-traffic that influence the video stream. In
the Internet, various applications with different traffic characteristics and protocols compete with
each other. The presented video streaming application also influences competing traffic streams



6 Conclusion and Outlook 92

and could harm other applications. These effects needs to be analyzed. Especially, the effects
in a co-existence with TCP streams is important since it is the most common protocol in the
Internet. TCP also uses a congestion avoidance mechanism and will reduce its sending rate if
a path impend to congest. Thus, it is possible to push TCP streams aside with a UDP based
streaming application. For a co-existence with other applications and protocols, these aspects
require further research.

The most common protocol to transmit multimedia data is RTP. In our video streaming software,
RTP is not used and instead an own implementation on top of the enet protocol is used. The
reliable packet transmission improves the QoE in a video conferencing software. However, the
presented algorithm do not depend on a specific protocol and only require a response channel.
Thus, it is possible to use the algorithms on top of a RTP/RTCP implementation. In the future, we
will present such an application.

Adapting the video bit rate to the available bandwidth in general is a wide area of research and
several approaches exists how to scale multimedia streams to network conditions. We will com-
pare the presented approach to other adaptation approaches and analyze the results.



Bibliography

[1] Advanced Video Coding for Generic Audiovisual Services. Technical Report Recommen-
dation H.264 & ISO/IEC 14496-10 AVC, v3, ITU-T, 2005.

[2] Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis. An experimental evaluation of
rate-adaptation algorithms in adaptive streaming over http. In Proceedings of the second
annual ACM conference on Multimedia systems, MMSys ’11, pages 157–168, New York,
NY, USA, 2011. ACM.

[3] Sanjeewa Athuraliya, S.H. Low, V.H. Li, and Qinghe Yin. Rem: active queue management.
IEEE Network, 15(3):48–53, 2001.

[4] T. Barzuza, S. Ben Zedeff, O. Modai, L. Vainbrand, Y. Wiener, and E. Yellin. Trend: A
dynamic bandwidth estimation and adaptation algorithm for real-time video calling. In Packet
Video Workshop (PV), 2010 18th International, pages 126–133, 2010.

[5] Wu chang Feng, K.G. Shin, D.D. Kandlur, and D. Saha. The blue active queue management
algorithms. IEEE/ACM Transactions on Networking, 10(4):513–528, 2002.

[6] Kuan-Ta Chen, Cheng-Chun Tu, and Wei-Cheng Xiao. Oneclick: A framework for measuring
network quality of experience. In IEEE INFOCOM 2009, pages 702–710, 2009.

[7] Ni Chen, Xiuhua Jiang, and Caihong Wang. Impact of packet loss distribution on the per-
ceived iptv video quality. In 2012 5th International Congress on Image and Signal Processing
(CISP), pages 38–42, 2012.

[8] Ni Chen, Xiuhua Jiang, Caihong Wang, and Jia Su. Study on relationship between network
video packet loss and video quality. In 2011 4th International Congress on Image and Signal
Processing (CISP), volume 1, pages 282–286, 2011.

[9] Hans L. Cycon, Thomas C. Schmidt, Gabriel Hege, Matthias Wählisch, Detlev Marpe, and
Mark Palkow. Peer-to-Peer Videoconferencing with H.264 Software Codec for Mobiles. In
Ramesh Jain and Mohan Kumar, editors, WoWMoM08 – The 9th IEEE International Sympo-
sium on a World of Wireless, Mobile and Multimedia Networks – Workshop on Mobile Video
Delivery (MoViD), pages 1–6, Piscataway, NJ, USA, June 2008. IEEE, IEEE Press.



Bibliography 94

[10] Hans L. Cycon, Thomas C. Schmidt, Matthias Wählisch, Detlev Marpe, and Martin Winken.
A Temporally Scalable Video Codec and its Applications to a Video Conferencing System
with Dynamic Network Adaption for Mobiles. IEEE Transactions on Consumer Electronics,
57(3):1408–1415, August 2011. First place in 2012 Annual IEEE Consumer Electronics
Society Chester Sall Memorial Award.

[11] Qin Dai and R. Lehnert. Prediction of video perceptual quality in the presence of packet
loss. In Proceedings of the 2011 11th International Conference on Telecommunications
(ConTEL), pages 495–502, 2011.

[12] L. De Vito, S. Rapuano, and L. Tomaciello. One-way delay measurement: State of the art.
Instrumentation and Measurement, IEEE Transactions on, 57(12):2742–2750, December
2008.

[13] Xunli Fan, Jie Zhang, Lin Guan, and Xingang Wang. Qblue: A new congestion control
algorithm based on queuing theory. In 2012 IEEE 14th International Conference on High
Performance Computing and Communication 2012 IEEE 9th International Conference on
Embedded Software and Systems (HPCC-ICESS), pages 1253–1257, 2012.

[14] Xunli Fan, Feng Zheng, Lin Guan, Jie Wang, Li Gao, and Xingang Wang. Study of ared
algorithm based on the 2nd order difference equation. In Proceedings of the 5th International
Conference on Queueing Theory and Network Applications, QTNA ’10, pages 110–117,
New York, NY, USA, 2010. ACM.

[15] Ivan Fernandez, Christophe De Vleeschouwer, George Toma, and Laurent Schumacher. An
Interactive Video Streaming Architecture Featuring Bitrate Adaptation. Journal of Commu-
nications, 7(4), April 2012.

[16] M. Fiedler, T. Hossfeld, and P. Tran-Gia. A generic quantitative relationship between quality
of experience and quality of service. IEEE Network, 24(2):36–41, 2010.

[17] Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking, 1(4):397–413, August 1993.

[18] Open Source Media Framework. 25.03.2013. http://www.osmf.org.

[19] Cheng Peng Fu and S.C. Liew. Tcp veno: Tcp enhancement for transmission over wireless
access networks. IEEE Journal on Selected Areas in Communications, 21(2):216–228,
2003.

[20] Emanuele Goldoni and Marco Schivi. End-to-end available bandwidth estimation tools, an
experimental comparison. In Proceedings of the Second international conference on Traf-
fic Monitoring and Analysis, TMA’10, pages 171–182, Berlin, Heidelberg, 2010. Springer-
Verlag.

http://www.osmf.org


Bibliography 95

[21] Cesar D. Guerrero and Miguel A. Labrador. On the applicability of available bandwidth
estimation techniques and tools. Comput. Commun., 33(1):11–22, 2010.

[22] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: a new TCP-friendly high-speed TCP
variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July 2008.

[23] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP Friendly Rate Control (TFRC): Protocol
Specification. RFC 3448, IETF, January 2003.

[24] T. Hendrawan and I. Mahadhika. Video quality assessment of h.264 spatial scalable video
coder. In 2012 7th International Conference on Telecommunication Systems, Services, and
Applications (TSSA), pages 306–313, 2012.

[25] Ningning Hu and Peter Steenkiste. Evaluation and Characterization of Available Bandwidth
Probing Techniques. IEEE Journal on Selected Areas in Communications, 21:879–894,
2003.

[26] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh Johari. Con-
fused, Timid, and Unstable: Picking a Video Streaming Rate is Hard. In Proceedings of
the 2012 ACM Conference on Internet Measurement Conference, IMC ’12, pages 225–238,
New York, NY, USA, 2012. ACM.

[27] M. Imai, Y. Sugizaki, and K. Asatani. A new estimation method using RTT for available band-
width of a bottleneck link. In Information Networking (ICOIN), 2013 International Conference
on, pages 529–534, 2013.

[28] ITU. G.114 - One-way transmission time. Recommendation - telecommunication union
standardization sector, ITU, 05 2003.

[29] Mapping function for transforming P.862 raw result scores to MOS-LQO. ITU-T Recommen-
dation P.862.1, November 2003.

[30] ITU-T Recommendation P.910. Subjective video quality assessment methods for multime-
dia applications. Technical report, International Telecommunication Union, Geneva, Switzer-
land, April 2008.

[31] V. Jacobson. Congestion Avoidance and Control. SIGCOMM Comput. Commun. Rev.,
18(4):314–329, August 1988.

[32] Van Jacobson, Bob Braden, and Dave Borman. TCP Extensions for High Performance. RFC
1323, IETF, May 1992.

[33] Fabian Jäger, Thomas C. Schmidt, and Matthias Wählisch. Predictive Video Scaling - Adapt-
ing Source Coding to Early Network Congestion Indicators. In 2nd IEEE International Con-
ference on Consumer Electronics - Berlin (ICCE-Berlin 2012), Piscataway, NJ, USA, Sep.
2012. IEEE Press.



Bibliography 96

[34] Euy-Doc Jang, Jae-Gon Kim, Truong Cong Thang, and Jung-Won Kang. Adaptation of
Scalable Video Coding to packet loss and its performance analysis. In Advanced Commu-
nication Technology (ICACT), 2010 The 12th International Conference on, volume 1, pages
696–700, 2010.

[35] JPEG committee. JPEG 2000. http://www.jpeg.org/jpeg2000/, 2009.

[36] S.H. Kamali, M. Hedayati, A.S. Izadi, and H.R. Hoseiny. The monitoring of the network traffic
based on queuing theory and simulation in heterogeneous network environment. In ICCTD
’09. International Conference on Computer Technology and Development, volume 1, pages
322–326, 2009.

[37] Sebastain Kaune, Matthias Wählisch, and Konstantin Pussep. Modeling the Internet Delay
Space and its Application in Large Scale P2P Simulation. In Klaus Wehrle, Mesut Günes,
and James Gross, editors, Modeling and Tools for Network Simulation, pages 427–446.
Springer, Heidelberg, 2010.

[38] J. Krejci. Mdi measurement in the iptv. In IWSSIP 2008. 15th International Conference on
Systems, Signals and Image Processing, pages 49–52, 2008.

[39] Sung-Ju Lee, Puneet Sharma, Sujata Banerjee, Sujoy Basu, and Rodrigo Fonseca. Mea-
suring Bandwidth Between PlanetLab Nodes. In Constantinos Dovrolis, editor, 6th Intern.
Workshop on Passive and Active Network Measurements (PAM’05), volume 3431 of LNCS,
pages 292–305, 2005.

[40] Dieu Thanh Nguyen and J. Ostermann. Congestion Control for Scalable Video Streaming
Using the Scalability Extension of H.264/AVC. Selected Topics in Signal Processing, IEEE
Journal of, 1(2):246 –253, August 2007.

[41] Qixiang Pang, S.C. Liew, Cheng Peng Fu, Wei Wang, and V.O.K. Li. Performance study of
tcp veno over wlan and red router. In GLOBECOM ’03 Global Telecommunications Confer-
ence, volume 6, pages 3237–3241 vol.6, 2003.

[42] Roger Pantos. HTTP Live Streaming. Internet-Draft – work in progress 12, IETF, October
2013.

[43] V. Paxson and M. Allman. Computing TCP’s Retransmission Timer. RFC 2988, IETF,
November 2000.

[44] C. Perkins and T. Schierl. Rapid Synchronisation of RTP Flows. RFC 6051, IETF, November
2010.

[45] The Planet-Lab Central homepage. http://www.planet-lab.org, 2010.

[46] Open Video Player. 25.03.2013. http://openvideoplayer.sourceforge.net.

http://openvideoplayer.sourceforge.net


Bibliography 97

[47] ITU-T Recommendation J. 144. Objective perceptual video quality measurement techniques
for digital cable television in the presence of a full reference, March 2001.

[48] ITU-T Recommendation J. 247. Objective perceptual multimedia video quality measurement
in the presence of a full reference, August 2008.

[49] ITU-T Recommendation J. 340. Reference algorithm for computing peak signal to noise
ratio of a processed video sequence with compensation for constant spatial shifts, constant
temporal shift, and constant luminance gain and offset , June 2010.

[50] Thomas Schierl, Thomas Stockhammer, and Thomas Wiegand. Mobile Video Transmis-
sion Using Scalable Video Coding. IEEE Transactions on Circuits and Systems for Video
Technology, 17(9):1204–1217, September 2007.

[51] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol for
Real-Time Applications. RFC 3550, IETF, July 2003.

[52] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. Overview of the Scalable Video
Coding Extension of the H.264/AVC Standard. IEEE Transactions on Circuits and Systems
for Video Technology, 17(9):1103–1120, September 2007.

[53] Patrick Seeling and Martin Reisslein. Video transport evaluation with h.264 video traces.
Communications Surveys Tutorials, IEEE, 14(4):1142 –1165, quarter 2012.

[54] G.J. Sullivan, J. Ohm, Woo-Jin Han, and T. Wiegand. Overview of the high efficiency video
coding (hevc) standard. IEEE Transactions on Circuits and Systems for Video Technology,
22(12):1649 –1668, December 2012.

[55] G. Toma, L. Schumacher, and C. De Vleeschouwer. Offering streaming rate adaptation to
common media players. In Multimedia and Expo (ICME), 2011 IEEE International Confer-
ence on, pages 1–7, July 2011.

[56] Guillaume Urvoy-Keller, Taoufik En-Najjary, and Alessandro Sorniotti. Operational compari-
son of available bandwidth estimation tools. SIGCOMM Comput. Commun. Rev., 38(1):39–
42, January 2008.

[57] Christian J. van den Branden Lambrecht and Olivier Verscheure. Perceptual quality measure
using a spatio-temporal model of the human visual system. In Proc. SPIE Internat. Conf. on
Digital Video Compression: Algorithms and Technologies, volume 2668, 1996.

[58] M. Venkataraman and M. Chatterjee. Inferring video qoe in real time. Network, IEEE,
25(1):4–13, 2011.

[59] J. Vieron and C. Guillemot. Real-time constrained TCP-compatible rate control for video
over the Internet. Multimedia, IEEE Transactions on, 6(4):634–646, August 2004.

[60] J. Welch and J. Clark. A Proposed Media Delivery Index (MDI). RFC 4445, IETF, April 2006.



Bibliography 98

[61] H.R. Wu, T. Ferguson, and B. Qiu. Digital video quality evaluation using quantitative quality
metrics. In Fourth International Conference on Signal Processing Proceedings, 1998. ICSP
’98., volume 2, pages 1013–1016 vol.2, 1998.



Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung nach §22(4)
bzw.§24(4) ohne fremde Hilfe selbständig verfasst und nur die angegebenen Hilfsmittel benutzt
habe.

Hamburg, 26.03.2014 Fabian Jäger


	1 Introduction
	2 Adaptive Video Scaling and Related Work
	2.1 Video Codecs and Video Rating Metrics
	2.1.1 Video Codec and their Scalability
	2.1.2 Rating Metrics for Video Streams

	2.2 Estimating Network Conditions and Available Bandwidth
	2.2.1 Router Queues, Packet Loss, and Available Bandwidth
	2.2.2 Estimating the Available Bandwidth

	2.3 Interaction of Video Streams and Network Protocols
	2.3.1 Network Protocols in Multimedia Applications
	2.3.2 Affects of Packet Loss

	2.4 Adapting a Video Stream to the Network Conditions
	2.4.1 Receiver-sided approaches
	2.4.2 Sender-sided approaches
	2.4.3 Hybrid approaches
	2.4.4 HTTP Based Adaptation


	3 Video Codec Adaptation
	3.1 Problem Description of Bandwidth Adaptation
	3.1.1 Observation 1—Who should control?
	3.1.2 Observation 2—Which measurement indicates congestion?
	3.1.3 Combining both observations
	3.1.4 Identification of a Congested Path

	3.2 A Sender-sided Algorithm
	3.3 A Receiver-sided Algorithm
	3.3.1 Measuring the Incoming Throughput
	3.3.2 Detecting a Queuing Delay in the Inter-arrival Jitter of Frames
	3.3.3 Effects of Retransmission Delays

	3.4 Comparison between Sender and Receiver Congestion Indication
	3.5 Parametrizing the Video Codec
	3.6 Scaling Timeouts and Quality Upscaling

	4 Implementation of the Approach in a Multimedia Application
	4.1 Video Streaming Application
	4.2 Architecture of the Streaming Application
	4.3 Parametrizing the Streaming Application

	5 Performance Evaluation
	5.1 Measurement Setup
	5.1.1 Emulation environment
	5.1.2 Topologies
	5.1.3 Video sequences and video codec
	5.1.4 Rating Metric

	5.2 Unscaled Video Stream
	5.3 Sender-sided Video Adaptation
	5.4 Receiver-sided Video Adaptation
	5.5 Sender-sided and Receiver-sided Video Adaptation
	5.6 Comparison of the Test Sequences
	5.7 Lossy paths
	5.8 Long-RTT paths
	5.9 Video Adaptation in the Presence of Competing Traffic
	5.10 Video Adaptation in a Network with a Congested Return Path
	5.11 Video Adaptation in a Network with a Constant Increasing Congestion
	5.12 RTT Delay Variation
	5.13 Long Time Test
	5.14 Measurement in a Real Network
	5.15 Analysis and Comparison of the Measurement Results

	6 Conclusion and Outlook
	Bibliography

