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Kurzzusammenfassung

Mit dem Authentication and Authorization for Constrained Environments (ACE) (dt.
Authentifizierung und Autorisierung für eingeschränkte Umgebungen) Grundgerüst wird
ein System definiert, dass es eingeschränkten IoT Geräten ermöglicht einen Protokollfluss
durchzuführen, der Teilnehmer authentifiziert und kontrollierten, autorisierten Zugang
zu gesicherten Ressourcen gewährt. Mit einem zusätzlichen Profil wird beschrieben, wie
DTLS zur Absicherung der Kommunikation genutzt werden kann. Diese Arbeit imple-
mentiert das ACE-Grundgerüst zusammen mit dem genannten Profil für RIOT, einem
Betriebssystem spezialisiert auf dieselbe Art von Geräten wie ACE. Diese Implementation
besteht zum einen aus einem Modul, dass Funktionalitäten von ACE abstrahiert und es
somit Entwicklern zukünftig vereinfacht ihre eigene Implementation von ACE mit RIOT
zu produzieren. Zum anderen werden Anwendungen entwickelt, die verbleibende Funk-
tionalitäten, welche nicht abstrahiert werden konnten, beispielhaft darstellen. Außerdem
wird die Verwendung des genannten Moduls ebenfalls in diesen Anwendungen dargestellt.
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Abstract

The Authentication and Authorization for Constrained Environments (ACE) framework
defines a protocol flow that is aimed to enable constrained IoT devices to authenticate
participants and authorize controlled access to restricted resources. For this framework a
profile is defined that describes the utilization of DTLS to secure the exchanged messages.
This work integrates the main protocol interactions of the framework with the mentioned
profile into RIOT, an operating system aimed for the same kind of devices as the ACE
framework. This integration consists of two parts. The first part is a module that offers
functionalities to alleviate work from future developers that want to create their own
deployments of the framework with RIOT. The second part is about applications that
directly showcase the use of the module, as well as ACE concepts that could not be
abstracted into the module.
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1 Introduction

1.1 Motivation

Restricting access to resources for specific individuals can have many reasons. Often it
is a matter of security or privacy. In a physical way, this restriction could be enforced by
a lockable door. Behind that door could be a room that contains appliances to control
important infrastructure of the building. Only someone who got the permission to do so
should be able to enter.
The same is true for digital devices, with the noteworthy difference that controlling
them is not necessarily bound to physical access. These appliances can be embedded
systems that are connected to a network and be controlled from anywhere. This makes it
important that it is ensured that only the permitted individuals can execute this control.
Individuals in this sense can be either people that access the appliances, or it can be
other embedded devices such as sensors that regulate the appliances autonomously.
A problem here is that embedded devices are often constrained regarding their hardware.
The mechanisms that are needed to fulfill the desire for restricted access are putting
additional demand on the available hardware [2].

RFCs 9200 [1] and 9201 [3] describe the Authentication and Authorization for Con-
strained Environments (ACE) framework. This framework enables constrained devices
to conduct a protocol flow which allows the conditional access to resources. Participating
entities are identified (authentication) and can act within their approved access rights
(authorization).

1.2 Aim of the Thesis

This thesis aims for an implementation of the ACE framework with RIOT OS. Func-
tionalities that can be abstracted for future deployments will form the RACED module.

1



1 Introduction

The remaining mandatory concepts are provided with example applications that guide
developers in the creation of their own deployments. The applications developed for this
thesis incorporate functionalities provided by the RACED module.

1.3 Thesis Structure

In Chapter 2 background knowledge about security concepts and connected network
technologies are explained. Chapter 3 is about the ACE framework, which is implemented
in this work.

The next two chapters are about implementation work that was conducted for this thesis.
Chapter 4 contains information about work on RIOT modules. This includes additions
to existing modules for necessary functionalities, and the creation of a completely new
module: RACED. Following that, the implementation of applications for different ACE
entities is showcased in Chapter 5.

In Chapter 6 the conducted testing procedure for the implemented work is shown. Fol-
lowed by evaluations in Chapter 7. The last chapter is about conclusions and an outlook
to future work.
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2 Background

2.1 Network Security

In this section concepts of network security that play a major role in this thesis are
explained.

2.1.1 Confidentiality

Only intended participants should be able to understand a message with contents that
are not supposed to be known publicly. If someone else manages to get access to the
message it must not be possible to retrieve any critical information from it.
To achieve this, messages can be made unreadable for someone who is not part of the
intended audience. With a cryptographic key and an encryption algorithm the sender of
a message can create an encrypted message — the ciphertext — out of the unencrypted
message — the plaintext. Only someone who is in possession of the corresponding key
and algorithm is able to retrieve the plaintext [4, 5].

Symmetric cryptography

In symmetric cryptography, the sender and receiver of a message share a key that is
kept secret between the two entities. This key is used by both sides to either encrypt or
decrypt messages [4, 5].

While cryptography is a computationally expensive operation, this method has the ad-
vantage that it is comparably fast. This holds for the creation of the ciphertext, as well
as regaining the plaintext [5].
However, the problem is the distribution of the key among all participants, which needs
to be protected from any intruder. [4, 5].

3



2 Background

Asymmetric cryptography

For asymmetric cryptography a pair of keys is used. One key is kept private by the
owner. The other key is known publicly and can be used by the sender of a message to
encrypt it. The receiver, who owns the key pair, can subsequently decrypt the message
with the private key [4, 5].
This is possible due to a mathematical relationship between the two keys. However, the
relationship is constructed in such a way that it is not feasible to try to derive one key
from the other [5].

The asymmetric form of cryptography is slower compared to its symmetric counterpart.
But the distribution is no problem since the public key can simply be shared over any
unsecured channel. A common method to establish an efficient, secure connection is
therefore to utilize asymmetric encryption and share a symmetric key through it. This
shared key is applied afterwards for further communication [5].

2.1.2 Integrity

The integrity of a message attests that it was not manipulated on the way to the receiver.
In order to prove the integrity, a hash value of the message may be calculated, whereby
a hash algorithm turns a variable length message into a fixed length value. This hash
value is then appended to the message.

If an intruder intercepts the message in transit, manipulates and then forwards it to the
actual receiver, the resulting hash changes. After reception, the receiver calculates the
hash as well and compares the value to the one that was sent with the message. In
case they are not equal a manipulation is detected. This requires that the hash itself
is protected against manipulation. Otherwise, the intruder would be able to simply
recalculate the hash and exchange the value. There are two different methods to achieve
this protection, the Message Authentication Code and digital signatures. [4, 5].

Message Authentication Code

The Message Authentication Code (MAC) uses a shared key to protect the hash. Now
the hash gets calculated with the message itself and the key appended to it. Since only

4



2 Background

the sender and receiver know the key, an intruder is not able to calculate the correct
hash for a manipulated message [4].

Digital signatures

With digital signatures, the integrity of a message can be proven with asymmetric keys.
Again, the hash of the message is needed. Except this time there is no shared secret
that can be appended for the calculation of the hash. Therefore, the hash needs to be
encrypted.
In Section 2.1.1 it was shown that a message can be encrypted with the public key of
the receiver. After reception, it is decrypted with the private key. This concept also
works the other way around. The sender encrypts the hash with its own private key and
appends it to the message. The receiver decrypts the hash with the senders public key
and compares the value with the self calculated one [4, 5].
Encrypting the signature with the private key means that everyone, including an intruder,
can decrypt and read the signature. But securing the confidentiality of the signature is
not the goal of encryption in this case. It is only supposed to prove that the signature,
and therefore the contained hash value, originated from the expected sender. Getting
the right hash value after decrypting the signature with the public key means that only
the owner of the according private key can be the one who encrypted the signature.
Even if an intruder tries to exchange the signature, it would not be possible to generate
it in the right way without knowledge of the private key. An attempt to use the public
key of the sender for this encryption would mean that the actual receiver is not able to
decrypt the signature with the same public key. The key parts of an asymmetric key
cannot be used symmetrically. They need the proper counterpart [4].

2.1.3 End-point Authentication

During communication, especially in a secured context, it is often of importance to certify
who is on the other end. An intruding entity could just pretend to be someone else. By
authenticating the entity it is proven that the claimed identity is legitimate [6, 4, 5].

Information that can be used to authenticate an entity can be divided into different cat-
egories. The most important one for this work is the authentication with cryptographic
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2 Background

keys, which is something the entity possesses. Besides that, there is also the authen-
tication with something the entity knows, or with biometrics. Examples for these are
passwords and fingerprints respectively [6, 5].

Authentication with cryptographic keys is realized by making sure that the other entity
is able to use the key that is associated with it. Means to achieve this were specified in
Section 2.1.2 in the form of MACs and signatures. For this reason, the message integrity
is also known as message authentication.
Using only the integrity mechanisms for authentication can be problematic though. It
only proves that the messages were sent at some point by the owner of the keys. An
attacker could use old messages, even without knowledge of any key, and replay them.
The receiver would get valid messages in the wrong assumption that they originated again
from the key owner. To prevent this, a random element, a so-called nonce, is brought
in. This nonce, e.g. a random number, differs every time and therefore makes each
communication unique. For example, the nonce changes the resulting hash of exchanged
messages or other security mechanisms as can be seen later in Section 2.2.2. With this,
not only the message but also the end-point can be authenticated [4].

2.1.4 Authorization

In many cases not everyone should have access to everything. Authorization is the process
of controlling access requests and deciding who gets access to which resources. For this,
specific information about the requesting entity is used to evaluate the rights it contains
[5, 6, 1].
In the case of this work, this information is either already known by the evaluating
entity or provided through the means of a token. This token is constructed by a third
party and secured to make sure the token cannot be manipulated, and the issuer can
be authenticated. In case it contains secret information the confidentiality needs to be
protected as well [1, 7].

2.2 Related Network Technologies

This work makes use of several technologies. These will be explored in this section.

6
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2.2.1 User Datagram Protocol (UDP)

The User Datagram Protocol is a lightweight transport protocol. It sends the data
without establishing a connection beforehand and has only a small header [4] which is
defined in the UDP RFC [8].

2.2.2 Datagram Transport Layer Security (DTLS)

UDP is a favorable choice as transport protocol for constrained applications due to its
characteristics. But it is missing a way to secure the data transfer.
The Transport Layer Security (TLS) is a well known way to provide authentication
between peers as well as confidentiality and integrity for transferred messages [4]. The
problem is that TLS needs a reliable connection where message loss and reordering are
taken into account.
DTLS [9] builds upon TLS to add security measurements for the unreliable transfer of
datagrams. It is designed to be as similar to TLS as possible. However, changes are
introduced where necessary to adapt for the use with datagrams.

Before data is exchanged, a handshake is conducted. During this handshake the necessary
parameters for an encrypted communication are negotiated. Examples are the algorithm
for the encryption or information about keys. This could be an identifier for a shared
symmetric key or the public keys of each side. Another important part of the handshake
is to exchange nonces.
The keying material together with the nonces are further processed to generate a set
of symmetric keys that are unique for one session. Each key has a special purpose and
secures either the confidentiality, by encrypting the message, or the integrity, by including
it with a MAC. Whereas the keys also differ depending on who is sender and who is
receiver of the message [4, 10]. Authentication is achieved by proving the communicated
keying material can be used as seen in Section 2.1.2 and 2.1.3. In the case of a symmetric
key this is done automatically [4] at the end of the handshake when the first encrypted
messages are exchanged. For asymmetric keys the use of a signature is needed which is
done at an earlier point of the handshake [10].

7
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2.2.3 Constrained Application Protocol (CoAP)

CoAP is a transfer protocol operating on the application layer of the IoT network stack.
It uses a design in which each message is either a request, sent by a client, or a response,
sent by a server. A server offers resources that are identified with an Uniform Resource
Identifier (URI). These resources can be retrieved, created or changed with specified
method codes.
CoAP is specialized for the use with constrained environments and usually relies on data-
gram transfer like UDP provides it. This helps keeping messages compact and enables
asynchronous message exchanges. To secure CoAP on the transport layer, DTLS is the
default choice [11].

2.2.4 Concise Binary Object Representation (CBOR)

CBOR serializes data in a binary way. This allows for a compact data representation
and makes it suitable for efficient data transfer in constrained applications.
Data is encoded as items that have initial bytes to indicate the type and size of the fol-
lowing bytes which represent the data itself. To group data items CBOR offers encoding
for maps and arrays. Additionally, CBOR encoders and decoders are expected to be
small in code size which is another advantage for constrained devices [12].

2.2.5 CBOR Object Signing and Encryption (COSE)

COSE utilizes CBOR’s compact data format to enable IoT devices to use secure messages
with signatures, MACs and encryption. The secured message is hereby serialized with
CBOR to provide the payload as well as the metadata that is added by the security
mechanism.
Next to that, COSE describes how to encode key objects with CBOR [13].

2.2.6 CBOR Web Token (CWT)

CWTs are used to transport specific security related information called claims between
different entities. The claims can be used by the receiving entity to make authorization
decisions according to the content of the CWT. Accordingly, a CWT should be secured
using COSE to provide authentication and to protect the integrity as well as possibly

8
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the confidentiality. CBOR is used for data serialization, whereas the data is encoded
within a map. The map keys are pre-defined values so that the receiver can understand
the context of the information [14].

2.3 RIOT OS

RIOT is an open source Operating System (OS) with the goal of providing a uniform
platform for a variety of constrained devices. As Operating System for the Internet
of Things (IoT) it provides the expected features, such as hardware abstraction, and
requirements of an OS for constrained devices. The latter include a low memory footprint,
energy efficiency, and a network stack fitting for the use cases of such devices [15].

Some of the aforementioned technologies have implementations provided by RIOT. CoAP
(GCoaP) and the underlying UDP socket come as internal modules, while implementa-
tions for DTLS (TinyDTLS ), CBOR (NanoCBOR) and COSE (libcose) are imported as
packages. This makes it possible to easily incorporate these technologies into the work of
this thesis. A socket wrapper for TinyDTLS, to offer a RIOT specific API, is integrated
as another internal module in the form of sock_dtls.

2.3.1 Credman and DSM

The (D)TLS Credential Manager (credman) and DTLS Session Management (DSM)
are two further modules provided in RIOT that are used in this work. Credman holds
information about the credentials of an application that can be used for a DTLS session.
Whereby credentials consist of the cryptographic key — or key pair — and possibly
additional data, such as a key identifier. Both symmetric and asymmetric keys can be
used. The credentials are registered to credman with the type of the credential as well as
an integer tag. The tag together with the type form a unique identifier for a credential.
Credentials registered to credman are used by sock_dtls to conduct the DTLS handshake
at the beginning of a connection [16].

DSM saves information about a session, which include the IP address of an endpoint
and the state of the session. This module is usually abstracted by GCoaP. But RACED
introduces a use case which made it necessary to expand DSM and retrieve information
from it. This is further explained in Section ??.
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3 The ACE Framework

To apply security concepts as they were inspected in Section 2.1, additional resources are
needed by an application. This can become a challenge for IoT devices and their often
constrained nature. In Section 2.2, technologies that tackle this problem were explained.
The ACE framework describes a way to combine these technologies to achieve a packet
that fulfills the security concepts.
ACE builds upon OAuth [17], an existing framework for third party authentication and
authorization in the web. But in comparison, it tweaks some details and uses technologies
to include devices that are limited in their capabilities. Therefore, ACE encourages
the use of the technologies mentioned in Section 2.2 instead of the alternatives that
are typically used for OAuth. The use of other technologies is not forbidden by the
framework, but the technologies mentioned in this work will be the default case [1].

Messages in the protocol flow of this framework are exchanged via CoAP and formatted
with CBOR. For formatting, the map functionality is used to encode data with fixed
integer keys and connected data types. These key-value-pairs are called claims and are
defined in different RFCs. Most of them are defined in the two base RFCs 9200 [1] and
9201 [3]. For the access token, which will be described further in Section 3.2, a CWT
formatting is used. Hence, CWT specific map keys are applied in this case. These are
defined in RFCs 8392 [14], 8747 [18] and 9200 [1].

3.1 The ACE Entities

There are four different entities that participate in the flow of the ACE framework. As the
framework is about restricting access to resources, an entity that offers those resources is
needed in the first place. This entity is the Resource Server (RS). Next to that, another
role is played by the Resource Owner (RO). The RO decides who is authorized to access
the resources. This entity can be either directly involved in the flow or indirectly by

10



3 The ACE Framework

setting up the authorization rules beforehand. Whether the RO is participating directly
or not depends on the used grant type, which will be further explored in Section 3.4.
Whereas all the other entities are applications running on a device, the RO is an actual
person.
An entity that wants to request access to a resource is called the client. For clients,
authorization rules are specified that regulate which resources they are allowed to access.
The last entity is the Authorization Server (AS). This server holds information that is
needed to authenticate a client, capabilities of the client, and possibly the corresponding
authorization rules. Whether the authorization rules of a client are deposited within the
AS depends on the used grant type. Beyond that, the AS acts as intermediate between
the client and the RS for granting the authorization of the resource access. Any RS
that this AS is responsible for, is registered with information needed to achieve this role.
This information contains details about the offered resources, the capabilities of the RS,
and keying material [1]. The interactions between the different entities are shown in
Figure 3.1.

Figure 3.1: Protocol interactions between the different ACE entities without the RO.
Source: RFC 9200 [1]

3.2 Protocol Flow

Before a client gets access to a resource, it has to request a token from the Authorization
Server (Figure 3.2 step 1). During this step the client and AS authenticate mutually.
Further, the request is evaluated according to the authorization rules. In case the client
is authorized to access the desired resource, the AS creates an access token and sends it
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to the client (Figure 3.2 step 2). Along the token, the response can contain access infor-
mation that the client needs for setting up a secure communication with the Resource
Server.
The token itself is of no use for the client and protected against any manipulation by the
client, as it is meant to be forwarded to the RS (Figure 3.2 step 3). An access token is
recommended to be a CBOR Web Token, which is one of the security technologies ex-
plored in Section 2.2. A CWT is secured with COSE and has therefore a protection for
at least the integrity and possibly also for the confidentiality. The necessary protection
depends on the keying material that is contained in the token. This can be the public
key of the client, a shared symmetric key or even just an identifier if the key itself is
known otherwise.
With the token, the RS receives information, such as the keying material, that it needs
to set up the secure communication with the client. When the key is used, the client
proves that it is in possession of either the same symmetric key or of the private key that
is connected to the expected public key. This concept is called Proof-of-Possession (PoP)
token and helps to verify that the client has indeed the identity that is connected to the
token. Other conveyed information can for example be about the scope of the resources
that the token grants access to, for how long the token is valid or with which ACE profile
the token can be used.
The client can retrieve all necessary information directly from the access information and
does not need the token for it.
Which claims are exactly present in the access token and access information depends
on the individual application. Depending on the context and configurations, some infor-
mation can be known implicitly or are not needed by any of the participating entities.
Other parameters such as the used grant type also have an impact on the contents of the
exchanged messages [1].

Another important aspect of the COSE security wrapper is that it is used to authenticate
the AS and ensure that the token came from a source that is authorized itself to create
access tokens for this Resource Server. For this, the RS has to be provided with either a
key that it shares with the AS, or with the public key of it. These credentials are used for
the CWT protection and therefore validate the security wrapper, i.e. signature, MAC,
or encryption [1].

After the RS validated the uploaded token it sends a confirmation back to the client
(Figure 3.2 step 4). It is to note that step 3 and 4 can potentially be already part of the
setup for a secured channel and are not necessarily separated messages.
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Now the client can access resources that it was authorized for (Figure 3.2 step 5 and
6). If any of the requests from a client fails there are specific error responses specified
in RFC 9200 [1]. These are illustrated in step 7 and 8 of Figure 3.2 and include cases
like a malformed CBOR structure, requesting access to a resource that the client is not
authorized for or requesting unsupported parameters [1].

Figure 3.2: ACE protocol flow with error cases

3.3 Profiles

The base ACE RFCs leave some aspects open with regard to securing the communication.
Profiles are defined in separate RFCs and are meant to clarify these aspects and expand
RFC 9200 with specific transport and communication security protocols [1].
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3.3.1 DTLS Profile

RFC 9202 [7] describes a profile that uses the DTLS protocol over CoAP to secure the
resource access. The keying material that the AS provides in the access information and
access token is therefore applied to set up the corresponding DTLS connection.
A big advantage of DTLS is that it can be used to provide all the security concepts
described in Section 2.1 at once. Section 2.2.2 established that protection for the con-
fidentiality, integrity and authentication are naturally incorporated by DTLS. Beyond
that, the credentials that were used in the handshake for authentication can also be used
for authorization. An access token that the RS receives is bound to the key contained
by it. With the DTLS handshake the client fulfills the PoP concept and can therefore be
connected to the credentials of the token. Therefore, the authorization that was granted
with the token can be applied to the requesting client [7].

One part of the client to RS communication cannot be secured with DTLS, though.
Before the RS has knowledge of the necessary keying material to set up the secured
channel, it has to receive the access token. This transfer is done over plain, unsecured
CoAP. As mentioned before, the access token is a CWT and therefore protected with
COSE for this transfer [7].

There are two different modes for this profile that describe if the DTLS connection is set
up with either symmetric or asymmetric keys. In Pre-shared Key (PSK) mode the AS
provides both the client and the RS with the same symmetric key. As it was explained
before, the access token is sent without any transport security to the RS. Since the access
token contains a symmetric key, and therefore confidential information, it is mandatory
that the token is encrypted.
The second mode uses asymmetric keys in the form of Raw Public Key (RPK). With the
access information the client receives the public key of the RS. Further, the RS gets the
public key of the client with the access token. This time the token does not need to be
encrypted since the public key is no confidential data. However, the token still needs to
be integrity protected by a signature or a MAC [7].

How the communication with the AS has to be secured is not predetermined by the
RFC, but it is recommended to use DTLS in this case as well. The credentials for this
connection have to be distributed in a way that is not further specified [7].
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3.3.2 Other Profiles

As this work is focused on the DTLS profile other profiles will only be mentioned briefly.

• RFC 9203 [19] describes a profile that uses application layer security based on
COSE for the communication.

• RFC 9430 [20] extends the DTLS profile with the use of TLS.

3.4 Authorization Grant Types

Grant types describe the flow of the communication between the client and the Autho-
rization Server to achieve authentication and granting authorization. ACE uses grant
types that were originally defined by OAuth [17]. The default grant type for ACE is the
client credentials grant, which can be used for pure machine to machine communication.
The AS is provided with all the authorization rules and credential information that it
needs to make decisions about the authorization without any user interaction. An ex-
ample for the credentials can be the key that is used for a DTLS connection. Since the
client is authenticated with the credentials through the DTLS handshake, the client can
be linked to the saved authorization rules. Therefore, the request can be evaluated and
authorization can be granted or denied. The implementation of this work will focus on
using this grant type.
Other grant types such as the authorization code grant directly include the resource owner
that can grant authorization through interaction with a device such as a smartphone.
RFC 9200 states that most of the use cases of ACE can be accomplished with these two
grant types [17, 1].
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4 Additions to, and creation of RIOT
modules

4.1 Determining Credentials to Authenticate Clients

To implement the ACE framework for RIOT an important aspect needed to be added to
the OS. This required changes on the modules for the DTLS socket wrapper and DSM.

4.1.1 The Problem with Determining the Credentials

Prior to this work, it was not possible to determine the credentials that were used in
the DTLS handshake on the level of the application. The handling of the credentials in
the handshake is conducted fully within the TinyDTLS package and its internal socket
wrapper. Even though the credentials were registered to credman on application level and
the underlying DTLS implementation makes use of these registered credentials, there was
no way of knowing which credentials were actually used for the handshake if multiple
credentials are registered. This knowledge is important for the ACE framework. A
requesting client needs to be further identified by the server, even after a successful
handshake. Within the client credentials grant type, the client is identified by these
credentials. Both server entities need to know exactly which client is sending the request.
The authorization server uses this information to connect the request to one of the
registered clients and therefore to the rights that were granted to it. Accordingly, the
request is evaluated. A similar situation happens within the resource server. It has to
connect the request for a resource access to a previously uploaded access token, to know
if the access is to be allowed or not.
If a PSK is used by the requesting client, the server knows that the client has at least some
form of authorization to request a token or the resource access. Otherwise, the client
would not even get past the handshake. If, for example, a resource server only saves one
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access token at a time, this might even be enough to properly identify the client. This is
an unlikely use case however and would restrict ACE server implementations with RIOT
immensely.
For the use of RPK the knowledge of the credentials is even more drastic. In this case
only the key pair owned by the server is registered to credman, but not the public key
of any client. There is no assurance that the requesting client possesses any authority
even if the DTLS handshake is successful. The client only proves to be the owner of the
public key used in the handshake. But it is unclear if this public key corresponds to any
registered client or access token, until the application has the possibility to check that.

4.1.2 The Implemented Solution

To solve this, the information that DSM holds about a session is expanded with the
credman tag and type of the credentials used. In case of asymmetric credentials, ad-
ditionally the public key of the requesting entity is saved. For this, the DTLS socket
wrapper accesses DSM and stores the session information at the time the credentials
are determined for the handshake. Like this, the information about the credentials are
mapped to the endpoint that is saved in DSM anyway. When a server receives a request
it also has information about the endpoint from which the request was sent. Therefore,
the credential information can be retrieved from DSM and checked against credentials
that are bound to an access token in case of the resource server, or to a registered client
in case of the authorization server.

This functionality is separated and not only meant for the RACED implementation, as
it can potentially also be used for other use cases. At the moment it is a pending pull
request1 for the RIOT repository to provide it also for any other development that can
make use of it.

4.2 The RACED Module

In Section 2.2.4 it was mentioned that CBOR is a good way to serialize data in a compact
way that is suitable for constrained environments. The ACE framework makes use of
this attribute by defining map constructs to transfer messages of the protocol efficiently.
Setting up these maps or extracting the wanted data from it can be a hassle, though.

1https://github.com/RIOT-OS/RIOT/pull/19838
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As specific map keys have to be inserted, data types have to be taken into account and
maps can be nested within other maps.
The RACED module that is implemented for this work achieved to completely abstract
any use of CBOR from developers that are implementing their own deployment of ACE
with RIOT.
For this, the module offers several data structures as well as functions that take in these
structures to en- or decode CBOR data streams. Developers can fill these structures with
the data they want encoded or work with already encoded data in an easier way.
Further, the module provides enumeration types of integer abbreviations that are defined
by the ACE framework [1]. These help to shorten the messages, for example by providing
the used grant type with a single digit. The enumeration on the other hand helps the
developer with a written name for the abbreviation.

Even though the thesis focuses on the DTLS profile and the client credentials grant type,
the module is valid for other profiles and grant types as well. Solely if new definitions
are added by RFCs that describe profiles or grant types these might be missing. But all
definitions originating from RFC 9200 [1], 9201 [3] and 9202 [7] are included in the module
even if they are not further used in this thesis. Examples for this are the abbreviation for
the authorization code grant type and inclusion of claims like username and password in
the provided data structures.
This allows for easy extensions of the module as well as serving use cases that go beyond
the example implemented for this work.

4.2.1 RACED Data Structures

Data structures are provided for all the different message types within the protocol flow.
Therefore, the main structures of the module are for the token request, the token response
and the access token. The members of these structure contain all possible claims that
can be included in the according CBOR serialization of the message. Since for every
claim a member is provided it is important that it is noticeable when a claim is unused.
Therefore, the structures should be properly initialized to zero values. For encoding,
developers only fill the members that they want to use. Members that have a zero value
will be ignored for the encoding. The decoding functions will fill the members that were
present in the message. Hence, a member that is still zero after decoding means that
the claim was not included. There is one exception to this, the grant_type claim. RFC
9200 [1] defines integer abbreviations for the grant_type claim and zero is a valid value
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in this case as it stands for the password grant type. Instead, the default value that ACE
defines for this claim is two — the abbreviation for the client credentials grant type.

Other data structures implemented in the module are helping structures that are used
within the main structures. raced_buffer_t is used to include strings, which can be
either a byte string or a text string depending on the claim. The scope claim can in fact
even be any of those. Therefore, it has its own helping structure called raced_scope_t
which includes the aforementioned buffer structure as well as a flag that indicates which
of the string types it is. This information is important because it changes the type in
the resulting data serialization. And the receiving side needs to know which type it is
because it can change how the claim is further processed. Mainly it comes down to the
fact that the scope claim can contain multiple scopes. With a text string it is defined
that these are delimited by a space character, whereas this is fully undefined for the byte
string version [1].
Other helping structures are about the cnf claim. This claim can have multiple other
claims included and is therefore a map inside the main map. The cnf claim is an addition
to the CWT and is defined in RFC 8747 [18]. It is used to contain the keying material
and has internal claims like a key identifier, an actual symmetric key or information
about an asymmetric key.

4.2.2 Structure of the Module

The module is divided into multiple files. Whereby one file is defined here as a .c file
together with the corresponding .h file. Figure 4.1 shows an overview of the different
parts that the module is composed of.

The Base: RACED

The base file is implemented in raced.c and raced.h and provides the already mentioned
data structures and enumerations. Whereby there are also additional enumerations that
are specific to the module and not defined in any RFC. These are raced_returns_t for
return values of the RACED functions and raced_cnf_key_type_t, which is used to
indicate what type of key the cnf claim holds.
Further, some general help functions are implemented. The first function is raced_init_-
token_request. Token requests need special initialization since they contain the already
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Figure 4.1: Composition of the different parts of the RACED module.

mentioned grant_type claim with a default value that is not zero. Secondly, there is the
function raced_parse_psk_kid. RFC 9202 [7] defines a special structure that the PSK
key identifier (kid) needs to have for the DTLS handshake. This function is used to parse
a kid to the defined structure.

The ACE Entities

The client, AS and RS parts of the module each have their own files and can therefore
be included in a project separately. Each of the files contains functions that are used to
encode or decode CBOR data streams corresponding to the needs of the respective entity.
raced_as for the Authorization Server therefore has the functions raced_encode_access_-
token, raced_encode_token_response and raced_decode_token_request. The Resource
Server has a corresponding raced_rs file with the function raced_decode_access_token.
Lastly the client file raced_client has the functions raced_encode_token_request and
raced_decode_token_response.
Each entity also directly includes the base file, which therefore does not have to be
included separately.

Internal Implementations

The last part of the module is raced_internal. This provides helping functions for the
other RACED files and is not part of the API that is offered to developers. For this
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reason functions do not begin with the usual raced_ prefix.
The functions here avoid code duplication since these routines are used at multiple places,
such as taking care of scope claims with encode_scope and decode_scope, which takes
into account that the scope can be either of the two string types. Next to that, there are
functions offered for the cnf claim with encode_cnf and decode_cnf. These additionally
make use of some other static functions that manage the different key types that can be
included in a cnf claim.
Next to the functions this file also holds the CBOR map keys.

4.2.3 Encoding of Data

The functions that encode the provided data structures into CBOR data streams work
all in the same principle. After initializing the CBOR encoder, a map is opened and the
function goes through all the members of the structure. If a member is present (i.e. not
a zero or other default value) the according map key, followed by the value itself with the
corresponding indicator for the data type, is written into the buffer for the serialized data.
In that regard it is to note that a grant_type claim with the value client_credentials will
not be encoded when using this module. If the claim is missing, the receiving entity has
to assume that this grant type is used anyway. Including this value would not transfer
any useful information. Therefore, the decision was made for this module to completely
leave it out to make messages not bigger than they need to be.
The buffer has to be provided by the application and has to be big enough to hold all
the data that is going to be encoded. In case the buffer happens to be too small, the
encoding functions return an error value that indicates this problem.
A special case for the encoding is the token response, because this message can transport
information about an occurred error. If the error claim is set, only this and the other
two error related claims, error_description and error_uri, will be encoded, while all
other claims are ignored. This design decision was made for implementations that fill the
response structure directly while evaluating the request. In case an error occurred after
some members already have been filled, a developer does not need to delete values that
are not valid anymore so that only the error members are included.
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4.2.4 Decoding of Data Streams

To decode a map encoded CBOR stream of an ACE message, the corresponding functions
iterate over the received message and extract the values concealed behind the map keys.
Single values, like integers, are directly written into the according structure. Strings
on the other hand are only referenced with pointers. This makes it possible to directly
access the strings within the serialized data and avoids the need for copying potentially
large chunks of bytes that are available in the data stream anyway. The downside is
that the developer needs to make sure that the memory that holds the serialized data is
still available if these pointers are going to be used at a later time. This design still has
advantages as it gives the developer the possibility to only copy necessary parts instead
of everything. Further, if the module would copy strings it would be necessary to assign
buffers with fixed sizes for every claim that can hold a string, to avoid dynamic memory
allocation. This again can result in lots of wasted memory, or in unnecessary restrictions
regarding the sizes of those strings.
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The encoding and decoding of the CBOR data streams defined in the ACE framework
can be perfectly abstracted and alleviate the development of ACE deployments with
RIOT. For other parts of the framework this is not the case since these parts are strongly
dependent on the respective application. Therefore, this work implements applications
that include the remaining mandatory concepts to showcase a possible deployment of the
framework with RIOT and the new RACED module.

In total, three example applications are provided to cover each of the ACE entities.

5.1 Resource Server Application

The RS of this example offers a temperature resource that is represented by an integer
value. For this resource the two scopes read and write are offered and it is available with
the URI path /temp-res. Another CoAP URI is available under /authz-info. This is the
authorization endpoint which is offered for the upload of access tokens as it is described
in RFC 9200 [1].
When the RS is being started, the offered CoAP services are registered to the underlying
GCoaP implementation. With this registration, the URI paths are getting connected
to functions that will handle incoming requests. These functions are implemented by
the RS itself. This registration also avoids that the CoAP resources can be called with
unwanted CoAP methods. Therefore, the URI path are only accessible with the specified
methods, which is post for the /authz-info path and get along with post for the /temp-res
path.
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5.1.1 The Token Upload

A token upload to the /authz-info endpoint will call the _token_upload_handler func-
tion. This function verifies the validity of the token by conducting a row of checks.
First, the content type of the CoAP message is inspected. This is a value in the CoAP
header that indicates that a CWT is included in the message. The next step is the
decryption of the token with a symmetric key that the Authorization Server uses to se-
cure the token until its arrival at the RS. Out of simplicity reasons, in the example all
access tokens will be encrypted. Even if they hold a public key, and therefore no data
that necessarily would need a protection for the confidentiality. In this case a signature
could also be used as it was mentioned in 3.3.1. To decrypt the token, functions that are
provided by libcose are used.
After the token gets successfully decrypted, the included claims are checked. For this, the
serialized token is decoded by using the raced_decode_access_token function from the
RACED module. The resulting representation of the token as a raced_access_token_t
structure makes it easier to verify the claims. For some claims RFC 9200 [1] defines a
list about the priority in which these have to be checked. Therefore, the RS checks in
order:

1. The issuer (iss) claim, which identifies the AS that generated the token. This
identity is authenticated by the COSE wrapper that secured the token.

2. The audience (aud) claim, which has to be equal with a value that the RS identifies
with.

3. The scope claim, which needs to equal to a value that the RS recognizes.

4. The ace_profile claim, which needs to be equal to the integer abbreviation of the
DTLS profile.

5. The cnf claim, which needs to include a COSE key with either an asymmetric or
symmetric key.

From this list only the first three are defined with the aforementioned priority. Other
claims have no such definitions and can be evaluated in any order. In general, it is
not described which claims an access token needs to include. This is dependent on the
application, and the claims used in this example were chosen because they are either
necessary (scope and cnf ) or for demonstration purpose (iss, aud and ace_profile).
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After the uploaded token is fully verified, the RS will store parts of the token for future
use. This includes the scope that the token grants access to and the keying material that
was conveyed with the token. The other claims were useful for the verification of the
token but are not needed any further.
If the type of key that was included in the cnf claim was a symmetric key that the RS
shares now with the client, this key is getting registered to credman. Like this, the key
can be used for setting up the DTLS connection when the client wants to access the
resource. The kid that was conveyed with the key needs to be registered to credman in
a specific format, as it was described in Section 4.2.2. Therefore, the function raced_-
parse_psk_kid is used here. In case the cnf claim conveyed the public key of the client,
this step is not necessary. Only the asymmetric key pair of the RS itself is already
registered to credman since the start of the application. The public key of the client is
stored independently and is used for authentication at resource access.

Uploaded tokens in this example are handled in a way that the RS stores one access
token at a time. When a new token is uploaded it overwrites the current one. A DTLS
connection that was set up with the old token is terminated with the acceptance of a
new token.

In the end, the RS will send a response with a CoAP message code back to the client.
The code is part of the CoAP header and helps the client with indicating how to further
process a response. A successful token upload will result in the code for Created. A
problem with the upload would result in an error code. There are several possible error
codes, depending on the occurred problem. Which code is to be used in which case is
defined in the ACE RFC 9200 [1]. Therefore, a problem with the claims of a token would
result in a Bad Request error, a token generated by an AS that is not authorized to
do that will be answered with an Unauthorized error, and a token that is meant for a
different RS results in a Forbidden error. Additionally, the example will send an Internal
Server Error code for problems that are not directly connected to the request of the
client. This is not defined in any of the RFCs. An example for such a case is that
credentials could not be registered to credman.

5.1.2 The Resource Access

When a client accesses the offered temperature resource, the CoAP handler _temp_-
handler is called. Depending on the CoAP method that was used for the access a
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different granted scope is needed. For the get method the scope read is needed, and for
the post method the token needs to grant access for the write scope.
The RS implements an internal function called _guard_resource that takes the needed
scope as an input parameter and conducts checks to verify the validity of the resource
access. The first check is about making sure that the access was requested with DTLS.
Then, the credentials used for the request are compared to the credentials that are bound
to the access token that is currently stored to authenticate the client. For this the newly
implemented function, mentioned in Section 4.1.2 is used to retrieve the credentials that
were used for the connection. Lastly, the scope needed for the access is compared to the
scope granted by the token. When all checks pass, the request continues as a normal
CoAP request.
The response that is sent back to the client contains a CoAP message code. Like with
the token upload, the codes in error cases are defined in the ACE RFC [1]. Hence, a
client that cannot be authenticated or made the request without the use of DTLS will
receive an Unauthorized code. A request for a part of the resource that is not covered by
the granted scope (e.g. requesting to write the temperature resource with only the read
scope is granted) will result in a Method Not Allowed code. Requesting access without the
granted scope covering that access can also result in a Forbidden code. This is the case if
the scope only covers completely different resources (i.e. resources with a different URI).
Since this example only offers the temperature resource this case is not applicable here.
In the same way as mentioned in the token upload, a resource access can also result in an
Internal Server Error code. The message codes beyond guarding the resource within the
protocol flow are entirely specific to the application. This example will answer to a write
access with the code Changed, or with Bad Request if the new temperature has more
than three digits. A read access is answered with the Content code and the temperature
value appended as payload.

5.2 Authorization Server Application

As it was mentioned in Section 3.3.1, RFC 9202 [7] does not define how the communi-
cation between the client and the Authorization Server has to be secured. This example
follows the recommendation and uses DTLS for this part of the protocol flow as well.
The AS example application is provided with registrations for two different clients. For
both clients the AS knows a unique shared symmetric key and also their respective public
key. Therefore, clients can authenticate to the AS with either of the key types. Next
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to the keying material for authentication, the AS is also provided with knowledge about
the scope that each client is able to request. One of the example clients has the right
to access just the read scope, while the other client is able to access both the read and
write scope at the RS.
Besides the registered clients, the RS is also registered with some information to the AS.
This information includes:

• a shared symmetric key for the encryption of access tokens.

• the public key of the RS for inclusion in the access information if a client requests
the use of RPK for the connection with the RS.

• the audience that the RS identifies with. This is included in the access token so
that the RS has a confirmation that the uploaded token is meant for it.

• the supported ACE profile to confirm compatibility between the client and the RS.

At the start of the AS application, the shared keys with the clients and the asymmetric
key pair owned by the AS are registered to credman. The key that it shares with the RS
is however not registered to credman, as this key is solely used for the COSE protection
wrapper of the access token, and not for a DTLS connection.

5.2.1 Receiving a Token Request

Similar to the RS, the AS registers the CoAP URI for the token endpoint. At this
endpoint a client can request a token. It is available with the path /token and is connected
to an internal function called _token_handler. Before proceeding with the evaluation
of the requests, this function makes sure that the request was received with a secured
DTLS connection. Next, the request, which is serialized in a CBOR stream, is decoded
into a raced_token_request_t structure with the help of the raced_decode_token_request
function.
The evaluation consists of multiple steps, whereby the first step is to authenticate the
client with the credentials that are used in the DTLS connection to send the request.
These credentials are retrieved from DSM with the functionality described in Section
4.1.2 and compared to the credentials that are stored with the registered clients. If they
fit to one of the clients, the client is identified and the registered information can be
used to further evaluate the authorization of this client. After the authentication, the
compatibility of the client and the RS regarding the ACE profile is assured. Then, other
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parameters sent with the request are evaluated. The grant_type claim needs to be set
to client_credentials, or it has to be missing, which results in the same value. If an
audience claim was present in the request, it has to be equal to the one that the example
RS identifies with. In this example this claim is optional, since there is only one RS and
therefore the audience is also known implicitly. Next, the scope claim is verified. The
example uses text string scopes. The string of this claim can contain multiple values,
delimited by a space character. Therefore, the content of this claim can result in "read"
or "read write" for example. The authorization rules for this example are configured in
a way that the client needs to be authorized for every requested scope. If the client that
is only authorized for the read scope requests a "read write" scope the request is fully
denied. But other configurations might be thinkable as well. E.g. only granting the read
part and ignoring the requested write scope. Further, the example also implements the
read scope as a default value if no specific scope was requested. How these configurations
are handled is up to the applications implementing the ACE framework and is not defined
in any RFC. If the client requests a token that is bound to an asymmetric key it includes
the req_cnf claim in the request. This claim contains the public key of the client that it
wants to use for communication with the RS. The key needs to be equal to the one that
is registered with the client to the AS. Due to the previous authentication, the client
proofed the possession of the key.

During the evaluation, the AS fills the structures for the response (raced_token_re-
sponse_t) and the access token (raced_access_token_t) at the same time. Whereby, the
response is addressed to the client and the access token is addressed to the RS. Both is
sent to the client, and it is the clients task to forward the token to the RS. The response
is filled with the following claims:

• ace_profile set to the integer abbreviation of coap_dtls, if the client sent an empty
ace_profile claim in the request.

• scope, containing the scope that the client is granted access to. This is either the
exact scope the client requested or the default value if no scope was specified in
the request.

• rs_cnf, with the public key of the RS. This claim is only included if the client
requested the use of asymmetric keys.
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• cnf, with a symmetric key and kid that the AS generated for the communication
between client and RS. This claim is only included if the client did not explicitly
ask for the use of asymmetric keys.

The access token is filled with the following claims:

• aud, containing the audience that the RS identifies with that this token is created
for.

• scope, with the same value that is also included in the scope claim of the response.

• cnf, with either the public key of the client or the same symmetric key material as
included in the cnf claim of the response. The content depends on the request.

• iss, with the identifier of the AS.

For the generation of the symmetric key the cose_crypto_keygen function from libcose
is used. The kid is generated with the help of another RIOT module called LUID, which
can be used to generate locally unique identifiers for different purposes.

If the evaluation fails, an according error, defined in RFC 9200 [1], is set for the error
claim of the response. This can happen for example because the client requests a scope
it is not authorized for, or the request comes from a client that is not registered at the
AS. In this case only the error claims will be encoded later on, as it was described in
Section 4.2.3.

After successful evaluation of the request, the access token is encoded into a CBOR
serialization with the raced_encode_access_token function and afterwards encrypted
with COSE. The result is then included as a byte string in the response with the access_-
token claim. Now that the response is complete, it can be encoded with the raced_-
encode_token_response.
Finally, the response is sent back to the client via CoAP, along with a CoAP message
code that indicates if the request was successful (Created code), or if there was a problem
with it (Bad Request code). The message codes which are to be used are defined in RFC
9200 [1]. As it was described before for the RS example in Section 5.1 the Internal Server
Error code can be used here too.
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5.3 Client Application

There are two different credential settings which can be used with the client example.
These correspond to the client registrations that were mentioned before with the AS
example in Section 5.2. Hence, one setting represents a client with rights for the read
access, while the other setting is for a more privileged client with access rights for both
the read and write scope. Which credentials are taken can be chosen with the constant
USE_PRIVCLIENT at the beginning of the .c file of the client example. If the constant
equals zero, the client with only read access is taken. Otherwise, the credentials for the
privileged client are used.
During the initialization, the client application registers the symmetric key that it shares
with the AS, as well as its own asymmetric key pair to credman for upcoming DTLS con-
nections. Which credentials are registered depends on the configuration in the Makefile
of the client example. Only the keying material for activated functionalities is registered.
These functionalities are activated by including CFLAGS += -DCONFIG_DTLS_PSK
for symmetric keys or CFLAGS += -DCONFIG_DTLS_ECC for asymmetric keys. It
is to note that the underlying TinyDTLS implementation will favor the choice of the
asymmetric key for the handshake if both options are activated at the same time. The
application cannot influence this choice. Hence, it is necessary to compile the client appli-
cation without DTLS support of asymmetric keys if the authentication with a symmetric
key is wanted. For a mixed authentication that uses RPK with the AS and subsequent
PSK with the RS, this configuration has to be made on the Makefile of the RS. Like this,
the use of a symmetric key with the RS can be enforced, even if both modes are enabled
at the client as the use of asymmetric keys cannot be negotiated during the DTLS hand-
shake. Otherwise, the client will automatically use its public key for the handshake and
the RS will not be able to authenticate the client with the PSK that is bound to the
token. This restriction can be problematic for real deployments of the framework with
RIOT since the different entities can be developed by entirely different organizations and
such configurations are out of reach.

The client offers multiple commands with which requests can be sent to either the AS
or the RS. These commands are about requesting a token, uploading the token, and
accessing a resource.
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5.3.1 Requesting a Token

For the token request a command is implemented with the function token_request_cmd.
This function takes the address of the AS as an input. The CoAP settings are regulated
internally. As such the CoAP header is prepared with the expected method (Post), the
right format (ace_cbor) and the payload. The claims, which are to be included in the
request are set within the function and filled into a raced_token_request_t structure.
Before the actual claims are filled in, the structure is initialized with the raced_init_-
token_request function. This ensures that unused claims will be set to the default value,
especially the grant_type, which has a default value that is not zero. After inserting the
claims, the request structure is encoded into a CBOR stream with the raced_encode_-
token_request function and finally sent via DTLS to the provided address. The transfer
of the request is entirely managed by the underlying CoAP and DTLS implementations
with the gcoap_req_send_tl function.

In addition to handing over the message, this function also registers a callback handler
for the expected response. This handler is implemented by the client application with the
function _token_resp_handler. This function analyzes the CoAP code of the response,
which indicates if the request was a success, or if an error occurred. If the error code
indicates that there was a problem with the request itself (i.e. a Bad Request), an
encoded payload with at least the error claim is expected. For other error codes, the
code is printed to the console and the function finishes. A successful response and a Bad
Request response will continue with the decoding of the serialized response. This is done
with the help of the raced_decode_token_response function. The claims of the response
are processed afterwards with the resulting raced_token_response_t structure.
For a Bad Request, the error claim and, if present, the error_description and error_uri
are printed to the console. This provides the user with the occurred ACE error code and
potential further information.
In case of a successful request, the ace_profile claim is checked, if present. This claim
should contain the integer abbreviation for the DTLS profile. The other two claims in the
response are about the keying material. Either the response contains a cnf claim with
symmetric keying material, or a rs_cnf claim with the public key of the RS. This public
key can be used to authenticate the RS on application level. The symmetric key and
the kid are registered to credman for the future resource access at the RS. Whereby the
kid is parsed into the format as described in Section 4.2.2 with the raced_parse_psk_kid
function.
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5.3.2 Uploading a Token

The access token, which was received and stored with the response from the AS, is
meant to be forwarded to the RS. For this part of the protocol flow, another command
is implemented for the client application. It is available in the console with upload_-
token and implemented with the function upload_token_cmd. As argument, it takes the
address of the RS. The CoAP header settings are handled internally. The message is set
up with the Post method, the /authz-info path and a format type that indicates that
the message contains a CWT. Finally, the access token, which was conveyed with the
access_token claim in the response, is appended as payload to the message.
This message is sent to the RS with plain CoAP. As mentioned before in Section 3.3.1,
this exchange is not secured by DTLS, since the RS is only now receiving the necessary
keying material to authenticate the client. Instead, the access token itself is secured with
a COSE wrapper.
Again, the message is handed over to the underlying CoAP implementation and a handler
for the response is registered. This handler is implemented with the function _rs_-
resp_handler. As there is no payload expected in the response for the token upload, this
handler will simply print out the returned CoAP message code to the console.

5.3.3 Accessing a Resource

The resource access is split into two different commands. The first command for a read
access is available in the console with read_res and is implemented in the example with
the function read_res_cmd. The address of the RS has to be provided as an argument.
The CoAP message is set up automatically with a Get method and the destination URI
/temp-res.
For the write access the command is write_res, which is implemented with the function
write_res_cmd. Like before, this command takes the address of the RS as input and
an additional argument for the temperature value that is going to be written to the
resource. The CoAP method Post, the URI /temp-res and the format type Text are set
automatically.
In both cases the message is handed over to GCoaP and sent to the provided address
with DTLS. The response handler is the same as for the token upload. This handler will
print the message code of the response, and in case of a read access also the received
payload.
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5.4 Peculiarities with the PSK Handshake

The DTLS handshake is entirely taken care of by the underlying TinyDTLS implementa-
tion, which is overall very useful since an ACE application does not need to do implement
DTLS related behavior itself. However, in PSK mode the inability to influence the hand-
shake introduces some restrictions.

5.4.1 Invalid Client

An invalid client without any authorization is supposed to get a serialized response from
the AS with error code invalid_client in the error claim. In PSK mode this is not possible
since the client will use a symmetric key that is not registered to credman. Therefore,
the client will be rejected before the AS application has a chance to check the credentials
itself and construct the according response structure.
In RPK mode this is not a problem since the client will pass the DTLS handshake with
any asymmetric key pair. The server application will then conduct the authorization
check by comparing the stored credentials with the credentials used for the authentication
during the handshake, which are retrieved from DSM. This enables the server to construct
the expected CBOR answer.

5.4.2 Key ID Structure

During the DTLS handshake in PSK mode, the two peers exchange the key identifier
for the key they want to use for the DTLS session. As mentioned in Section 4.2.2, RFC
9202 [7] defines a specific CBOR structure in which the kid needs to be set up for this
exchange. Because of the missing possibility to influence the handshake, the kid cannot
be extracted from the structure. Therefore, the kid needs to be registered to credman
with the whole serialized structure. In that way TinyDTLS can use it as a whole as
identifier to compare it with the incoming kid.
Since the structure is set up with maps there are two options of what the serialization
could look like. One is with map entries that already contain the number of items inside
the map. The other one is with indefinite maps that are terminated with a specific value
at the end. The example in RFC 9202 [7] uses the first option. This option is three bytes
shorter since the terminating values are missing and the structure contains three maps.
The content of the structure is, with exception of the actual key identifier, always build
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up in the same way and the number of map entries is known. For these reasons, the
implementation of this work saves the identifier in the way of the first option.
Because of the missing possibility to evaluate incoming identifiers in the handshake,
any other implementation that this work wants to interoperate with needs to handle
it the same way. Otherwise, the byte representation of the kid in the handshake and
the representation of the saved identifier will not be the equal. That would lead to
an unknown identifier and the connection establishment is rejected, even if the actual
identifier itself would be correct.

5.4.3 Token Inclusion in the Handshake

RFC 9202 [7] describes another method to make the token known to the RS. This method
includes the token directly in the DTLS handshake instead of uploading it beforehand.
For the same reason as before, this method is not possible when using RIOT to deploy
an ACE RS. The application has no access to the token included in the handshake and
can therefore not evaluate it.
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6.1 Unit Tests

RIOT includes a testing framework called embUnit that allows to write unit tests for
modules. This helps to confirm a proper functionality, as well as challenging the robust-
ness of the module. To provide a reliable software, this work also provides unit tests for
the RACED module.
Tests are expected to be written for every .h file that the module exposes, and to have a
specific naming pattern. Therefore, the tests are divided into the files tests-raced-raced.c,
tests-raced-raced_as.c, tests-raced-raced_rs.c, tests-raced-raced_client.c and tests-raced-
raced_internal.c. Additionally there are two files that are needed for the embUnit set
up: tests-raced.c and tests-raced.h.
The unit test cases provided for the RACED module are shown in Table 6.1, 6.2, 6.3,
6.4 and 6.5. Whereby the first column shows the abbreviated name of the respective test
functions without the test_raced_ prefix.
The unit tests provide special value for functionalities that are not used in the example
application, since these are not covered by any manual interoperability testing.

Abbreviated
test function Tested behavior

init_to-
ken_request

This confirms a properly initiated raced_token_request_t struc-
ture with the grant_type claim set to client_credentials and oth-
erwise zero values.

parse_psk_-
kid

This tests the successful parsing of a kid as it was described in
4.2.2.

parse_psk_-
kid_nomem

Here, a buffer that is too small is provided for the parsing of a kid.
This expects an error return.

Table 6.1: Unit tests for raced.h
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Abbreviated
test function Tested behavior

encode_ac-
cess_token

This confirms the successful encoding of an access token. First,
with no value for any claim to test missing claims while encoding.
Second, with a value for every claim.

encode_-
access_to-
ken_nomem

This provides the encoding of an access token with a buffer that is
too small and expects an error return.

encode_-
token_re-
sponse

This confirms the successful encoding of a token response. First,
with no value for any claim, to test missing claims while encoding.
Second, every claim except for the error claim is filled. Like this
all claims except for the three error claims, as described in 4.2.3,
should be encoded. After that, the error claim is filled for the next
test part. Now, only the three error claims should be encoded.

encode_-
token_re-
sponse_-
nomem

This tests the encoding of a token response with a provided buffer
that is too small. An error return is expected.

decode_to-
ken_request

Here, the successful decoding of a token request is confirmed. First
with a request that contains no claims. The corresponding raced_-
token_request_t structure should be set to zero values with excep-
tion of the grant_type claim, which should contain the client_-
credentials grant type. The second test part is about decoding a
token request with every claim filled.

decode_-
token_re-
quest_mal-
formed

This tests the decoding of a token request with different errors.
The error cases are: an unknown map key, a malformed claim, the
request is not formatted as a CBOR map, and the map key has a
wrong datatype. This expects error returns for all cases.

Table 6.2: Unit tests for raced_as.h
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Abbreviated
test function Tested behavior

decode_ac-
cess_token

This confirms the successful decoding of an access token. First,
with an empty access token to confirm proper behavior with miss-
ing claims. The second test part has every claim filled with a
value. This confirms that every member of the raced_access_to-
ken_t structure is getting filled as expected.

decode_-
access_to-
ken_mal-
formed

This decodes access tokens with different errors included. The error
cases are the same as for the decode_token_request_malformed
test.

Table 6.3: Unit tests for raced_rs.h

Abbreviated
test function Tested behavior

encode_to-
ken_request

First, a token request with grant_type claim set to client_creden-
tials and the rest of the claims set to a zero value is encoded. This
confirms proper behavior with the default values since this should
result in an empty CBOR map. The second part of the test fills a
raced_token_request_t structure with all members set to a value
that is supposed to show up in the serialized data.

encode_-
token_-
request_-
nomem

This test tries to encode a token request with a buffer that is too
small and expects an error return.

decode_-
token_re-
sponse

Here, the successful decoding of a token response is confirmed.
First, with all claims missing, and second, with all claims set.

decode_-
token_re-
sponse_mal-
formed

This tests the decoding of a token response with different errors
that are equal to decode_token_request_malformed.

Table 6.4: Unit tests for raced_client.h
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Abbreviated
test function Tested behavior

encode_cnf

This tests the successful encoding of a cnf claim with multiple
settings. First, with an empty COSE key, where only the key type
claim is set, as this is a mandatory claim. The second part fills
the empty members with information for an asymmetric key. As
third part, a COSE key with a symmetric key is tested. Two more
test parts are conducted for the remaining types of a cnf claim.
Therefore, the claim gets filled with an encrypted key and with
only a key identifier respectively.

encode_-
cnf_errors

Here, the encoding of a cnf claim is used with different errors in-
cluded. The first test part has no type for the raced_cnf_t struc-
ture set, which is needed for the function to determine if a COSE
key structure, an encrypted key or just a key identifier is to be en-
coded. The second test part tries to encode a COSE key without
having the key type claim set. And the last part provides a buffer
that is too small.

decode_cnf The test parts for successful decoding of a serialized cnf claim are
similar to the ones of the encode_cnf test.

decode_-
cnf_mal-
formed

For this test, the decoding of a serialized cnf claim is called with
different errors. These errors are: the claim is not formatted as a
CBOR map, the map key has a wrong datatype or an unknown
value, a malformed claim, the map does not contain any informa-
tion, and a COSE key is included without a specified key type.
This test expects error returns for the different issues.

encode_-
scope

As the scope claim can be either a text string or a byte string, this
tests the encoding with both possibilities.

encode_-
scope_-
nomem

This test tries to encode a scope claim with a buffer that is too
small and expects the appropriate error as return.

decode_-
scope

Here, the decoding of a scope claim with both possible string types
is tested.

decode_-
scope_mal-
formed

This tests the scope claim decoding with malformed data.

Table 6.5: Unit tests for raced_internal.h
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6.2 Functionality Test

The implemented example applications are able to communicate with each other. With
the command ifconfig, which is provided by RIOT, the network address can be retrieved
and used for the commands implemented by the applications.

Figure 6.1 shows a token request to get a token bound to a PSK with some other parame-
ters as test. The resulting token response can be seen in Figure 6.2. To get this response,
the client authenticated with a PSK that it shares with the AS. With the response, the
AS authorizes the client to access the requested read scope at the desired audience. The
response includes the generated keying material, information about the granted access
and an encrypted token.

Figure 6.1: A token request with the provided parameters on the right side and the
resulting message captured with Wireshark.

Next, the client uploads the token that it received from the AS to the RS. The RS
evaluates the token and sends an acknowledgment back to the client to confirm the
upload (see Figure 6.3).

After the upload, the client can request access to the desired resource. With the keying
material and the information about the authorization of the client, the RS can evaluate
and grant the requested access as shown in Figure 6.4.

A test to request a token bound to a RPK is not shown as it is very similar. In this case
the token request contains an additional req_cnf claim with the public key of the client.
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Figure 6.2: Response to the token request with the message captured with Wireshark
and the encoded claims below.

In the response, the same public key is included in the cnf claim of the access token.
Further, the cnf claim of the authorization information is exchanged with a rs_cnf claim
that includes the public key of the RS. The proper functionality with asymmetric keys
is proven in Section 7.1.

During development, the implementations of this work were continuously manually tested
with each other for their proper functionality. These tests included different settings but
were conducted without a reproducible and documented testing plan. Proper test cases
would further ensure the robustness of the implementation, especially if they include
error cases. Ideally, these tests could be run in an automated way. Additionally, these
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Figure 6.3: Upload of the Access Token that the client received with the response from
the AS and the subsequent acknowledgment to the upload.

applications, which are implemented according to a standard, should also be able to
interoperate with other implementations of the same standard. Such tests are to be
conducted yet.
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Figure 6.4: Requesting access to the resource within the read scope and the subsequent
answer.
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To evaluate the integration of the ACE framework into RIOT, the FIT IoT-LAB [21]
testbed was used. The evaluations were run on IoT-LAB M3 boards. The settings used
for the requests in this chapter are equal to the ones used in Section 6.2.

7.1 Protocol Flow Times

Figure 7.1 and 7.2 show the cumulative distribution of times that different kinds of re-
quests take to complete. These time measures were started at the beginning of the client
functions that prepare the requests and include everything until the end of the function
that handles the incoming response from the server. As it can be observed, requests that
include a DTLS handshake with asymmetric RPKs take up to 23 seconds until comple-
tion. Handshakes with a symmetric PSK take significantly less time. Requesting a token
that is bound to a PSK takes on average 22.381 seconds when the client authenticates
with a RPK. The same request, but authenticated with a PSK takes 89 milliseconds on
average and therefore only about 0.4% of the time. A similar behavior can be observed
for the resource access requests. With a RPK handshake this takes 22.526 seconds and
with a PSK handshake only 73 milliseconds. For a resource access that is requested after
the DTLS session was established, both methods take about the same time. This can
be traced back to the procedure that during the RPK handshake symmetric session keys
are calculated. Hence, the exchanged messages after the handshake are encrypted with
symmetric keys, independent of the key type that was used for authentication.

Figure 7.3 shows how much time the program spends within the code that was imple-
mented for this work. The difference to the completion times from Figure 7.1 and 7.2
consists of the time that is needed by the underlying protocols like DTLS and CoAP,
as well as the transfer of the messages. This shows that the overhead introduced by the
implementation is relatively small.
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Figure 7.1: Completion times of full requests together with the respective evaluations
and responses.

Figure 7.2: Completion times of full requests that need a bigger axis scale, i.e. requests
that include a RPK DTLS handshake.

44



7 Evaluation

Figure 7.3: Average times that different parts of a token request, a token upload and
a resource access take to complete. Only parts of the program that are
implemented by this work are taken into account.
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7.2 Firmware Size

Figure 7.4 shows the total required memory size of the firmware for the three different
applications. In Figure 7.5 it is seen how much memory the RACED specific parts, as
well as the necessary technologies for ACE need.

Figure 7.4: Total firmware size of the different entity applications.

Figure 7.5: Required memory size for relevant parts.
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Developing an implementation of the ACE framework with RIOT profits from existing
modules and packages of different standards that are used within the protocol flow of
ACE. These can easily be incorporated into the implementation and alleviate the neces-
sary work for a deployment. The RACED module further helps with the development
as it fully abstracts the need to work with CBOR. Abstracting more parts of the frame-
work into the RACED module turned out to be a difficult task since many aspects are
highly dependent on the needs of the actual application. Therefore, this thesis imple-
ments applications for each of the ACE entities. These applications serve as examples
that developers can use as guideline and build up on for their own deployment.

Even though the incorporation of modules is in general a major help for the development,
it can also introduce restrictions in rare cases. For this work this especially comes up
during the DTLS handshake. The inability to choose the key type within the application
can become problematic for developers that want to program a real deployment of the
ACE framework with RIOT (see Section 5.3). Further problems due to the inability to
intervene with the handshake were shown in Section 5.4.

This work does not include some optional parts of the framework. Future work could
therefore be conducted to implement the following concepts:

• Introspection

• Key and token expiration

• AS Request Creation Hint

• Key derivation

• Refresh tokens
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Further, the support for other grant types, token types and profiles can be added. The
RACED module offers a base for such extensions as it already implements CBOR encod-
ing for all claims defined by RFC 9200 [1], 9201 [3] and 9202 [7].

As mentioned in Section 6.2, the functionality tests can also be expanded in future work.
Another test scenario is the interoperability test with entirely different implementations
of the ACE framework with the DTLS profile. One such implementation was developed
by Marco Tiloca and Ludwig Seitz for Java. This implementation can be found at
https://bitbucket.org/marco-tiloca-sics/ace-java/src/master/.
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