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Kurzzusammenfassung

Im IoT sammeln Milliarden von heterogenen Geräten Informationen über ihre Umge-
bung und übertragen sie über lokale Netzwerke und das Internet. Oft sind IoT-Geräte in
Bezug auf Speicher, Batterie und Rechenleistung eingeschränkt. Dies macht es schwierig,
Sicherheitsmaßnahmen wie Datenschutz, Integrität und Authentifizierung zu implemen-
tieren. Hardwaremechanismen wie Arm TrustZone und die RISC-V Physical Memory
Protection Unit können verwendet werden, um Trusted Execution Environments (TEE)
in Mikrocontrollern zu implementieren, die es ermöglichen, sensible Daten und Codeaus-
führung von nicht vertrauenswürdigen Systemkomponenten zu isolieren. Ein TEE bietet
auch sichere Dienste, die von Anwendungen und Betriebssystemen über eine dedizierte
Schnittstelle angefordert werden können. Ein IoT-Betriebssystem abstrahiert hardware-
spezifische Details von Anwendungen und bietet eine gemeinsame Schnittstelle zum Zu-
griff auf Hardwarefunktionen. Um sicherzustellen, dass Anwendungen, die auf einem
Betriebssystem laufen, portabel sind, sollte die Verwendung von Speicherisolation und
Codeausführung in geschützten Umgebungen transparent und austauschbar sein. Diese
Masterarbeit befasst sich mit der Integration und Bewertung einer sicheren Firmware
für Arm-Mikrocontroller mit der TrustZone-M-Sicherheitserweiterung in RIOT OS. Es
implementiert eine gemeinsame Schnittstelle für kryptografische Dienste, die von einem
Betriebssystem zur Anforderung von Operationen verwendet werden kann, unabhängig
von der zugrunde liegenden plattformspezifischen Firmware-Implementierung. Diese Ar-
beit stellt das Design und die Implementierungsdetails dieser sicheren Firmware vor und
bewertet deren Speicherplatz- und Verarbeitungszeitverbrauch.
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Abstract

In the IoT, billions of heterogeneous devices collect information about their environment
and transmit it through local networks and the internet. Often, IoT devices are constraint
in memory, battery and processing power. This makes it challenging to implement secu-
rity measures such as privacy, integrity and authentication. Hardware mechanism such
as Arm TrustZone and the RISC-V Physical Memory Protection Unit can be used to
implement Trusted Execution Environments (TEE) in microcontrollers. TEEs allow for
isolating sensitive data and code execution from untrusted system components. A TEE
also provides secure services that can be requested by applications and operating systems
through a dedicated interface. An IoT operating system abstracts hardware specific de-
tails from applications and provides a common interface to access hardware features. To
ensure that applications running on an OS are portable, the use of memory isolation and
code execution in protected environments should be transparent and interchangeable.
This master’s thesis deals with the integration and evaluation of secure firmware for Arm
microcontrollers with the TrustZone-M security extension in RIOT OS. It implements a
common interface for cryptographic services, that can be used by an operating system to
request operations, regardless of the underlying platform-specific firmware implementa-
tion. This thesis presents the design and implementation details of this secure firmware
and evaluates its consumption of memory space and processing time.
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1 Introduction

The Internet of Things comprises a heterogeneous set of devices, that process and trans-
mit sensitive data over the Internet [2]. Their hardware capabilities (memory capacity,
power consumption and processing power) are usually constrained, but can differ widely
between devices [3]. Hardware constraints also lead to differences in the software that
can run on devices. Small sensor nodes with small memory and processing power may
only fit a bare-metal application with a very small, specialized set of functions. Other,
larger devices are equipped with features such as radio antennas and are able to run
an Operating System (OS) with a scheduler, network stack, and complex cryptographic
operations. The number of Internet of Things (IoT) devices has been on the rise in
the past years, with several billions already deployed worldwide in the industry sector,
critical infrastructure, the health and fitness sectors, as well as private homes. Since
IoT devices are mass-produced and deployed in large quantities, it is a requirement for
them to be as cheap as possible. This leads to restriction of resources, such as mem-
ory and processing power. Due to the resource constraints, IoT devices often use weak
encryption algorithms, store sensitive key material in unprotected Read Only Memory
(ROM) and Random Access Memory (RAM) and forgo security mechanisms such as se-
cure boot and secure firmware updates. Often there is no long term support for devices,
with companies deprecating products to replace them with newer ones, or even going
bankrupt [2]. This results in large numbers of potentially vulnerable, unpatched devices,
which transmit private or sensitive data, and provide entry points to larger company or
home networks.

A common vulnerability of systems are keys that are hard-coded in flash or stored in
unprotected RAM at runtime, and can be extracted with firmware dumps or read by
Buffer Overflow (BOF) attacks. BOF attacks enable attackers to change the program
flow and execute an arbitrary function, as well as inject and execute malicious code.
Such an attack could be used to extract delicate information from memory, such as
cryptographic keys, or interrupt the program flow to circumvent security checks. One
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1 Introduction

way to prevent unauthorized data extraction, is to store sensitive data and perform
security critical operations in a Trusted Execution Environment (TEE). A TEE is an
isolated environment within a System on a Chip (SoC), in which Trusted Applications
can execute security critical operations, such as secure storage of data or cryptographic
key material. A TEE can also be used to authenticate with other devices or attest
to the integrity and trustworthiness of the firmware running on a device. Often, TEE
implementations are combinations of software and hardware mechanisms for memory
isolation and protection.

Today, many IoT devices run special operating systems, such as Zephyr OS, FreeRTOS
and RIOT [4, 5, 6]. The benefit of an operating system is that it can provide a wide range
of features and services, such as a network stack, a file system, and a scheduler, which
can be used to implement complex applications. Thanks to hardware abstraction layers,
an operating system can be ported to a wide range of platforms, which makes it easier
to develop applications for different devices. E.g. instead of developing a bare-metal
application with platform specific code for several devices, an application developer can
use an operating system that abstracts the hardware and provides a common interface
to the application. This way an application can easily run on different platforms and
architectures without requiring modifications.
Those operating systems usually consist of a patchwork of modules, third party libraries
and vendor drivers, which are developed and updated continuously. This complex and
dynamic environment introduces vulnerabilities and bugs, and cannot be trusted at all
times. Due to the constraints and simple memory layout of IoT devices, OS services,
drivers and libraries often run in the same memory space. This is a security risk, especially
when applications use cryptographic services with keys that are stored in unprotected
memory, such as flash or RAM. The lack of isolation and protection makes operating
systems susceptible to attacks, such as the aforementioned BOF attacks [7].
It is therefore beneficial to move security critical operations from an OS to an isolated
environment. A TEE provides only a small set of features to execute security related
tasks. It runs in protected memory regions, which require privileged access to read and
write data or execute code. An operating system, on the other hand, has a large attack
surface, due it’s Internet connection via its network stack, serial interfaces, unrestricted
access to peripherals and memory, as well as numerous features and services, whose
implementations can introduce bugs and vulnerabilities. If the OS is compromised by an
attacker exploiting such a vulnerability, a TEE provides an additional layer of protection
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1 Introduction

to make it harder for the attacker to extract keys or take over control of the whole
device.

Some types of IoT devices are equipped with hardware mechanisms to support the im-
plementation of TEEs based on memory protection and isolation. Examples of this are
Arm Cortex-M and RISC-V, which are also two of the most common platforms for IoT
systems. Both platforms have very different architectures and implement memory protec-
tion in different ways. Therefore, they require different approaches to implement TEEs
based on their features. A non-secure operating system running side by side with such
TEEs must be able to communicate with both of them. Abstracting platform specific
secure firmware implementations with a common interface makes it easier for an oper-
ating system to use the secure services provided by the firmware, without knowing the
specifics of the underlying hardware.

The vendor-independent IoT operating system RIOT [6] already runs on Arm and RISC-
V platforms and provides a wide range of features and services. At the time of writing,
it lacks support for privilege management and memory protection. As part of a separate
thesis, the CryptoService API was developed. The CryptoService API can be imple-
mented by platform-specific secure firmware implementations to provide cryptographic
services to RIOT below a common, platform-agnostic interface. This way the portability
of the operating system and applications running on top of it can be guaranteed.

This thesis provides two major contributions: It integrates the CryptoService API as a
backend to the existing cryptographic submodule in RIOT, enabling applications and the
operating system to request services from a secure firmware without requiring platform-
specific code. The second contribution is a secure firmware implementation based on
the TrustZone technology on Arm Cortex-M microcontrollers. This secure firmware
implements the CryptoService API and can be used as a cryptographic backend by the
crypto module in RIOT.

In Chapter 2, we provide background information and an overview of related work on
security in the IoT, and existing hardware mechanisms that can support TEE, with a
focus on TrustZone on Arm Cortex-M devices. In this chapter, we will also provide
an introduction to the RIOT operating system and existing security features. We will
describe previous work on improving cryptographic capabilities in RIOT, as well as the
integration and evaluation of an existing reference implementation of a secure firmware
for Arm TrustZone in RIOT.
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In Chapter 3 we compile a list of requirements for a secure firmware in RIOT. We describe
the design of the hardware-agnostic CryptoService API, and how it can be integrated with
the existing cryptographic module in RIOT. We will also describe the design of a secure
firmware for Arm TrustZone-M, which implements the CryptoService API.

Chapter 4 we present implementation details of the firmware and how it provides the
services that are supported by the CryptoService API. The section futher describes the
core contributions to the cryptographic module in RIOT, introducing a new method of
securely storing cryptographic keys and using a secure firmware for cryptographic oper-
ations. Furthermore, it explains how the secure firmware complies with Arm guidelines
for developing a secure firmware.

In Chapter 5 we will measure the processing time overhead of cryptographic operations
with and without the secure firmware, as well as the introduced overhead in memory
usage.

Finally, in Chapter 6, we will summarize the results and present directions for future
work and improvement.
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2 Background and Related Work

This chapter provides an overview of the concepts and technologies that are relevant for
this work. It starts with an introduction to security and trust establishment in the IoT.
The chapter continues with a section on Trusted Execution Environments in general and
more specifically in constrained devices. We describe the existing hardware protection
mechanisms in RISC-V and Arm Cortex platforms, that can be used to implement a
TEE. The chapter closes with a description of the target operating system RIOT and its
cryptographic submodule, as well as previous work on secure computing in RIOT.

2.1 Security in the IoT

The IoT comprises heterogeneous, typically constrained devices, that can form networks
with other IoT devices. They can also connect to the Internet through gateways. These
devices often collect data about their environment through sensors, process this data
and can act on that information, by performing some physical action that has an impact
on their environment [3, 2]. Typically they transmit the data they collect to a backend
system for further processing and storage [3].

Constrained Device Classes. RFC 7228 [3] provides an overview of the types of
constraints devices can have. The authors list constraints in maximum code complexity
(impacted by available ROM and flash), size of state and buffers (impacted by RAM size),
battery power, processing power, user interface and accessibility in deployment. Based
on memory constraints, the authors distinguish between three classes of devices:

• Class 0: Devices with less than 10 KB of RAM and less than 100 KB of flash.

• Class 1: Devices with ≈ 10 KB of RAM and ≈ 100 KB of flash.

• Class 2: Devices with ≈ 50 KB of RAM and ≈ 250 KB of flash.

5



2 Background and Related Work

Bellman and van Oorshot [8] extend these classes with Class 2+ devices, which have
more resources than Class 2 devices, but are still constrained compared to traditional
computers.

Lifecycle of an IoT Device. According to RFC 8576 [2], IoT devices differ from
traditional, larger computer systems not only in resource constraints, but also in terms
of their requirements, lifecycle and application areas. Those devices are usually tailored
to specific tasks and consist of specialized hardware components, which are provided by
multiple manufacturers and need to be interoperable.
The authors of RFC 8576 [2] outline a schematic lifecycle for IoT devices consisting
of four phases: Bootstrapping, Operation, Maintenance and Decommissioning. During
the bootstrapping phase devices are installed and commissioned in a network. In that
phase they are also provisioned with secret keys they will use during normal operation for
identification. During the operation phase devices are used in their intended environment
and communicate with other devices and servers. In this phase they are controlled by
the owner of the system they are installed in. Often they are deployed in public areas
and are easily accessible to authorized and potentially unauthorized users. During their
lifespans of several years, devices need to be maintained and upgraded. Also, running
applications may need to be updated and reconfigured. These maintenance tasks can be
performed either locally or remotely from a backend system. It may also be necessary
to rebootstrap a device after an upgrade. After their lifespan has expired, devices are
removed from the system and replaced by a different one. A decommissioned device may
not necessarily be defective. It may be recommissioned in a different context or sold to
a different owner. It is also possible that a device is deprecated by the manufacturer and
will no longer obtain updates, leaving the device owner responsible for its functionality
and security.

Security Requirements. RFC 8576 [2] also provides an overview of the state of the
art of IoT security and the challenges introduced by constraints and heterogeneity. The
authors describe a number of risks introduced by insecure IoT devices. Since they often
can impact their environment though actors, they not only pose a threat to user privacy
and data security, but also to physical safety. Cyberphysical systems with constrained
sensor and actor nodes can be manipulated in order to cause them to malfunction, which
can lead to environmental damage or injury. Additionally, compromised devices can
be misused for scaled attacks such as Distributed Denial of Service (DDoS) attacks, or
serve as entry points to larger networks, allowing attackers to move laterally and also
compromise critical system components and infrastructure. As one of the most important
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2 Background and Related Work

security threats the authors of RFC 8576 [2] name software bugs and bad software design
choices. These can lead to attacks such as buffer overflow attacks and weak or missing
authentication mechanisms. The importance of buffer overflow attacks is also shown by
Mullen and Meany [7], who analyzed the susceptibility of an IoT operating system to
them.
Other threats listed in RFC 8576 are privacy violations due to device location and usage
tracking, cloning or substitution of devices to infiltrate a network, replacing firmware
with malicious versions and privilege elevation.

Countermeasures need to be taken on different levels to ensure security of the whole sys-
tem. The Internet draft A summary of security-enabling technologies for IoT devices [9]
compiles a list of security measures and technologies based on security requirements spec-
ified by the National Institute of Standards and Technology (NIST), European Union
Agency for Cybersecurity (ENISA) and European Telecommunications Standards Insti-
tute (ETSI). The draft overview spans multiple levels, from the hardware itself up to
the management level. Listed countermeasures that are relevant for this work include
establishing a Root of Trust, secure boot mechanisms, secure storage and handling of
key material, state-of-the-art cryptography, data protection through Trusted Execution
Environments and software isolation. These measures will be described in more detail in
the following sections.

2.2 Establishing Trust in IoT Systems

When IoT devices communicate with each other, it is important to ensure the trustwor-
thiness of all the devices involved. A secure boot chain (see Figure 2.1) ensures that a
device was not compromised by an attacker, e.g., through a malicious firmware update.
To perform a secure boot, all software components must be signed with a private key
by the vendor. The components are started one after another and each one verifies the
integrity of the following one, before it is started.

The chain starts with an immutable first stage bootloader, which is stored in read-only
memory. It is responsible for initializing the hardware and loading a signed second stage
bootloader. The immutable bootloader is the first component that is executed after
power-on. It is also responsible to write a device root key into a secure storage area.
This key can either be provided by the manufacturer during production, or generated
on the device with a mechanism such as SRAM PUF [10]. The key storage area can be
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First Stage Bootloader
(Immutable)

Second Stage Bootloader
(Upgradeable)

RoT

Application

Secure Firmware/TEE

Non-secure OS/RTOS

Loads

Loads

LoadsCalls

Uses

Figure 2.1: Example for a secure boot chain
with a secure firmware and a non-secure OS.

a designated area in flash memory, which is locked afterwards, a secure element, or a
protected key slot on some platforms. This key can later be used by a secure firmware
for encryption and authentication of data, or for deriving new keys.

The second stage bootloader is responsible for verifying the integrity of the secure firmware
and operating system images and loading the secure firmware. This bootloader is optional
and only necessary if the bootloader itself should be upgradeable.
The second stage bootloader then loads the application, which can be either a simple
bare-metal application or an operating system. In our example, it is a combination of a
secure firmware and an operating system. The secure firmware runs prior to the OS and
configures secure and non-secure memory, memory protection and GPIO access. It can
access the device root key written by the first stage bootloader and use it to encrypt and
authenticate data. Depending on its implementation it can also provide secure services
to the OS through an API. After setting up the system it loads the non-secure operating
system, which provides services to the user. If the secure firmware provides an API for
secure services, the OS can call it to perform security critical operations.

Measured Boot and Remote Attestation. A different way to check for system
integrity is measured boot. Instead of checking image signatures before starting them,
the currently running software computes a hash (also called measurement) of the next
component in the chain and stores it in a Trusted Platform Module (TPM). Other than
secure boot, measured boot does not stop the system from booting when a component
is compromised. Instead, it makes it possible to analyze the running parts of a system
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later. To perform remote attestation, these measurements can be reported to a third
party, which can use them to ensure the trustworthiness of the measured system. Secure
boot, measured boot and remote attestation can be combined.

While a secure or measured boot process is necessary to make a device trustworthy, it
will not be part of this work. The focus of this thesis is the implementation of a secure
firmware that can use a Root of Trust (RoT) and provide secure services to an existing
operating system. A secure boot process should be implemented in a separate effort.

2.3 Trusted Execution Environments

A Trusted Execution Environment is an isolated environment within a SoC, in which
sensitive key material and data can be stored and processed, without exposing them to
the main operating system or other applications. According to the GlobalPlatform TEE
System Architecture [11] and the IEEE Standard for Secure Computing Based on Trusted
Execution Environment [12] specifications, a TEE comprises a combination of hardware
and software components which can be used to restrict memory access, manage privilege
levels, and perform security critical operations. Its purpose is to ensure the integrity of
trusted applications, which are executed within the TEE, and protect critical assets from
unauthorized access. A TEE usually runs side by side with an untrusted operating system
on the same device, as shown in Figure 2.2. An untrusted OS is not able to directly call
internal functions of the TEE, but can request secure services through dedicated APIs.

The fundamental layer of a TEE comprises a Root of Trust [12], which is a combination
of “reliable hardware, firmware and software components that perform specific, critical

Untrusted

Application

OS

Trusted

Trusted
Application

RoT

Hardware

Figure 2.2: Basic concept of a system with trusted and untrusted components.
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security functions” [12] and is instantiated in a secure boot process [11]. It is a non-
extractable and unchangeable hardware-protected secret (e.g., a device root key), that
is the source of trustworthiness of the system, and can be used to derive other keys used
for signatures or encryption.

Hardware-based TEEs. Examples of hardware components that can be used to im-
plement TEEs in desktop computers are the Intel SGX and its successor Intel TDX, and
AMD PSP for AMD processors. These examples have been developed for large computer
systems with lots of resources and cannot be easily transferred to embedded devices.
In Arm Cortex application processors, which are used in mobile phones, tablets, gam-
ing consoles, automotive and the industrial sector, TrustZone provides a base for TEE
implementations. While Arm TrustZone already takes some constraints into account, it
was originally designed for Cortex-A processors, which still have a lot more resources
than microcontrollers used in IoT devices. To bring TrustZone to microcontrollers, Arm
introduced the TrustZone-M security extension, which is a more lightweight redesign
of the original TrustZone. Other memory protection mechanisms that were optimized
for microcontrollers are the Arm Memory Protection Unit (MPU) and RISC-V Physical
Memory Protection (PMP), which will be described in Section 2.4. All of these mecha-
nisms only provide a base for a TEE and need to be combined with software components
to provide secure services to an operating system.

Software-based TEEs. Pure software implementations of TEEs can also provide mem-
ory isolation on platforms without the necessary hardware mechanisms. SofTEE [13]
deprivileges the kernel and provides a secure monitor for privileged execution. Open-
TEE [14] is a software-based TEE that runs Trusted Applications as isolated processes
and manages communication between trusted and untrusted applications through a man-
ager process. Zandberg and Baccelli introduce Femto-containers [15] to isolate software
modules through containerization and virtualization in IoT devices. While these soft-
ware implementations are flexible and hardware-independent, they do not make use of
available hardware protection mechanisms.
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2.4 Hardware Protection Mechanisms for Constrained
Devices

Manufacturers of microcontrollers have added several hardware mechanisms to protect
memory regions from unprivileged access. Examples are Arm MPU and RISC-V PMP,
as well as the TrustZone-M security extension for Cortex-M microcontrollers. They all
can be used as a basis for TEE implementations in the IoT.

2.4.1 Memory Protection

The RISC-V PMP and Arm MPU operate in similar ways. They rely on applications and
operating systems running on different privilege levels and restricting certain memory
regions to only be accessible with certain privilege levels. The main differences are
summarized in Table 2.1.

RISC-V. The RISC-V architecure [16, 17] provides three different privilege modes:
Machine, Supervisor and User mode. The machine mode has the highest privilege level
and is the only one that is required in all implementations, while supervisor mode and
user mode are optional. A RISC-V processor boots in machine mode and can configure up
to 16 memory regions with sizes ranging from 4 B to 32 GB for unprivileged access [18].
After initializing the system, it switches to user mode to run unprivileged applications.
When access to a protected memory region is needed, a software interrupt triggers the
switch to machine mode for executing privileged code.

Arm MPU. Devices with the Armv8-A architecture and an MPU provide four exception
levels (E0-E3), with E0 being the lowest privilege level reserved for applications and E3
being the highest privilege level for the firmware. Armv8-M devices provide a privileged
handler mode and a thread mode, which can be privileged or unprivileged. Similar to
the RISC-V PMP, the MPU can configure memory regions to only be accessible on
certain exception levels (Cortex-A) or in privileged mode (Cortex-M). Compared to the
RISC-V PMP, the MPU is less flexible in terms of configuration: There are 8 regions for
privileged access and 8 for unprivileged access available, with sizes ranging from 32 B
to 4 GB. Cortex-M0/M3/M4 devices only support 8 different regions in total, with a
minimum size of 32 B. Additionally, sizes can only be a power of 2. Those regions can
be further divided into eight subregions, which all have equal access rights, but can be
individually activated.
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RISC-V PMP Cortex-A Cortex-M
M0/M3/M4 Others

Privilege
Levels

User (Unprivileged)
Supervisor (Medium Privilege)
Machine (High Privilege)

E0 (Applications)
E1 (privileged OS kernel)
E2 (Hypervisor)
E3 (Secure Monitor)

Thread Mode (unprivileged)
Thread Mode (privileged)
Handler Mode (privileged)

Memory
Regions 0-16 freely configurable 8 privileged

8 unprivileged
8 regions with
0-8 subregions

8 privileged
8 unprivileged

Region
Sizes 4 B - 32 GB 32 B - 4 GB 25 − 2x B

memory aligned 32 B - 4 GB

Table 2.1: Differences between RISC-V PMP, Arm Cortex-A MPU and Cortex-M MPU.

2.4.2 Arm TrustZone

In addition to the MPU, Arm has introduced the TrustZone security extension for Cortex-
A application processors with the Armv8-A architecture and, most recently, Cortex-M
microcontrollers with the Armv8-M architecture. Both add a system separation into
secure and non-secure domains. The processor switches between a secure and non-secure
mode to manage access to memory and peripherals. While TrustZone-A and TrustZone-
M share the same basic principles, they are implemented in different ways to take the
difference in hardware constraints into account. Pinto and Santos [1] provide an overview
of the differences between the two, which are also illustrated in Figure 2.3.

Arm TrustZone-A. TrustZone-A introduces a system separation into two domains,
the secure world and the normal, non-secure world. The processor can only operate
in one of those domains at a time, which requires switching between secure and non-
secure states, as shown on the left side of Figure 2.3. To preserve state and execute
the switch, the processor needs to be in the secure monitor mode triggered either by a
special instruction, the secure monitor call, or by exceptions and interrupts. For addi-
tional isolation, some specific registers are banked, meaning they have a separate copy
for each domain. Additional, optional security features such as the TrustZone Address
Space Controller (TZASC) and the TrustZone Memory Adapter (TZMA), can be used
to configure memory regions to be accessible only from the secure world.

Arm TrustZone-M. TrustZone-M implements a different approach to make context
switches between the secure and non-secure world feasible in low-powered microcon-
trollers. On Cortex-A devices, using the secure monitor for context switches introduces
overhead in execution times, interrupt latency and energy consumption. On Cortex-M,
the system separation is memory map-based and the switch between secure and non-
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Figure 2.3: Comparison between TrustZone-A (left) and TrustZone-M (right) according to Pinto
and Santos [1].

secure worlds is performed by hardware. To use the TrustZone-M technology, software
running on the system needs to be split into two applications: A secure firmware needs
to run in secure mode and access secure memory addresses, while a bare-metal app or
an operating system operates in non-secure mode and non-secure memory regions.
Per default, flash and RAM are configured as secure. When the secure and non-secure
binaries are flashed to the device, no memory regions have been configured as non-secure,
yet. This means, the non-secure application can only run after the secure firmware has
explicitly configured its dedicated flash and RAM regions as non-secure. The same ap-
plies to peripherals, which are also separated into secure and non-secure regions. Most
peripherals have two addresses, one for each security state. Security critical peripherals,
such as the crypto accelerator or the system protection unit are only accessible in the
secure state. Non-secure peripheral access must be explicitly configured by the secure
firmware during system setup. When the device is booted, the secure firmware runs prior
to the non-secure application and can configure the memory regions and peripherals that
the non-secure application should be allowed to access.

Between the secure and non-secure flash areas is a special Non-Secure Callable (NSC)
area located. The NSC holds Secure Gateway (SG) instructions, which serve as entry
points for the non-secure side to call secure functions. This NSC area must also be
configured by the secure firmware during startup.

The secure and non-secure images also operate on separate stacks. There are four different
stack pointers available, two main stack pointers (MSP_S and MSP_NS) and two process
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stack pointers (PSP_S and PSP_NS) for the respective security states. The secure main
stack pointer is used by the secure firmware, while the non-secure main stack pointer is
used by the non-secure application. Process stack pointers are only used, when threading
is enabled on either side.
Registers are mostly shared between the states, except for the stack pointers, the Vector
Table Offset Register (VTOR) and some special registers such as the Control and Fault
Mask Register.

There are several ways to switch between secure and non-secure states after the system is
set up and running. The non-secure side can call secure functions provided by the secure
side. In this case, the call is directed to the SG instruction in the NSC region, which
triggers the switch to the secure state and then executes the actual secure function in the
secure world. After execution, the secure side can use two special instructions (BXNS and
BXLNS), to either jump back to non-secure after a secure execution or call non-secure
functions.

Another way to switch between states is through exceptions and interrupts. These can
also be marked as secure or non-secure. In general, it is possible that a non-secure
interrupt preempts a secure execution, though this can be prevented by deprioritizing
non-secure interrupts or disabling them during secure execution.

Secure and non-secure states both provide a handler mode and a thread mode for addi-
tional privilege separation. These are useful when threading is enabled on either side.
Switches between all states and privilege levels can be triggered by exceptions and inter-
rupts (shown on the right side of Figure 2.3).

Known Vulnerabilities of TrustZone-M. TrustZone-A has been analyzed extensively
and a number of vulnerabilities have been reported [19]. While the research on TrustZone-
M is not as extensive, vulnerabilities and attacks have also been reported.

In 2019 Thomas Roth [20] demonstrated fault injection vulnerabilities allowing to by-
pass secure boot and TrustZone-M features, and recover symmetric keys on Microchip’s
SAML11 platform.

In 2023, Ma et al. [21] published ret2ns, a technique that exploits the fast switch between
secure and non-secure worlds for arbitrary code execution and privilege elevation. The
authors show that an attacker can corrupt a code pointer used by the BXNS and BXLNS

instructions to jump to an attacker-controlled user space program without switching to
unprivileged mode. They present several variations of this attack, suitable for operating
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systems as well as bare-metal apps with support for privilege separation. The authors
propose an address sanitizing mechanism for mitigation.

In 2024, Rodrigues, Oliveira and Pintos presented BUSted [22], a time-based side channel
attack on Cortex-M CPUs. The authors prove that it is possible to exploit the shared
bus on Cortex-M CPUs to extract secrets from code running on the platform. They show
that using TrustZone-M does not protect from side channel attacks.

In 2021, Abbott and Altherr [23] demonstrated how to use a hidden ROM patching
feature on the NXP LPC55S69 to perform a privilege escalation and enable the non-
secure world to execute an arbitrary payload in the secure world. While this is not
a vulnerability in TrustZone-M itself, it shows how implementation and configuration
errors can introduce flaws to a TrustZone-M based system.

While previous work showed that TrustZone-M is vulnerable to physical attacks, it is
notable, that those attacks require high effort, specialized equipment, and prolonged
physical access to a device. A TrustZone-M-based secure firmware can still protect from
remote attacks and unauthorized access to secure data.

2.4.3 TrustZone-based TEE Implementations

TrustZone-A has been released in 2004 and since then is used as a foundation for a number
of TEE implementations, such as TrustICE [24], OP-TEE [25] and the official reference
implementation of the Arm Firmware Framework Specification Trusted Firmware-A (TF-
A) [26]. Zhao et al. [10] have built a Root of Trust based on SRAM Physical Unclonable
Function (PUF) for Arm TrustZone. The authors argue that TrustZone only provides an
"isolated" environment, which needs to be combined with a RoT to become trustworthy.
Current TrustZone-based systems work on the assumption that the RoT consists of a
unique device key only accessible by the secure world. Zhao et al. argue that such a
key is not always available and also that keys should be updateable to protect from
side-channel attacks. They therefore implement secure key storage and a PUF-based
truly random source as the foundation of a RoT. Yang et al. [27] published Trust-E, a
trusted embedded operating system architecture, which is based on Arm TrustZone, but
also aims to support other processors with similar spatial isolation features. Trust-E
implements the GlobalPlatform TEE System Architecture specification [11].
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The open-source project µTango [28] is built on the much newer Arm TrustZone-M.
µTango is a TEE with a minimal secure scheduler and communication channel, which
can run multiple isolated non-secure applications. In this approach, each application
runs in the non-secure domain, but has its own dedicated memory partition. The secure
firmware does not provide any secure services. It is only responsible for scheduling the
non-secure applications and providing secure communication between them. In an exam-
ple setup, they run an Real-Time Operating System (RTOS), a network stack, a command
line and an LED blinker application in separate non-secure partitions. Each of the appli-
cation only accesses the peripherals and memory areas that it actually needs. Security
benefits of µTango are a minimization of privileged execution, a granular enforcement
of memory isolation and protection from control-flow hijacking. Their evaluation shows
a linear increase in overhead with each additional non-secure world and increased inter-
rupt latency as non-secure worlds need to wait for their turn on being scheduled. While
µTango [28] has a good approach to strictly enforce isolation, it has limitations at time of
publication. Several Arm microcontrollers with TrustZone-M provide features, that can
only be accessed from the secure world (e.g., cryptographic accelerator and hardware
key storage). In the current version of µTango, these features are not supported, since
the secure firmware does not provide them and the non-secure applications cannot access
them. The goal of this work is to make such features available to our target operating
system RIOT, which is why a different approach is needed. Additionally, running ser-
vices such as the network stack isolated from the operating system, would require us to
extract this functionality from the OS and compiling it separately, while still ensuring
interoperability. This would require a lot of effort and increase overall complexity of the
system.

Similar to Trusted Firmware-A, Trusted Firmware-M (TF-M) [29], is the official refer-
ence implementation of a secure processing environment for Cortex-M processors, which
leverages TrustZone-M and dual-core architectures. In a previous effort, TF-M was run
and evaluated as a secure firmware with RIOT [30]. That work concluded that TF-M is
not a fitting solution for RIOT, mostly because it is not platform-agnostic and can only
be run on Arm devices. It is also a highly complex and configurable implementation,
which significantly increases code size.
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2.5 The IoT Operating System RIOT

RIOT is an open source operating system for constrained IoT devices, which is designed
to be energy efficient with a small memory footprint [6]. It is portable to a wide range
of devices and architectures: At the time of writing it supports more than 270 different
platforms. The kernel provides basic functionality, such as multi-threading and context
switching, synchronization primitives, a tickless scheduler based on fixed priorities and
preemption, and Inter-Process Communication (IPC).

Additional system libraries, third-party libraries, drivers and a network stack can be
added through modules, depending on the platform and use-case, allowing for fine-grained
configuration and small-sized binaries without unnecessary components.

2.5.1 A Cryptographic Subsystem in RIOT

In previous work we introduced an implementation of the Arm Platform Security Ar-
chitecture Crypto API [31] as a unified, platform-agnostic crypto module for RIOT OS
[32, 33].

PSA Crypto is one of four secure service APIs that were specified by Arm as part of the
Platform Security Architecture (PSA) Framework [34]. PSA comprises a set of specifica-
tions, tools and requirements for hardware and software design with the goal of achieving
a PSA Certified status. While the focus of PSA lies on Arm Cortex-A and Cortex-M
devices, several specifications (e.g., for the secure service APIs) are architecture agnostic
and thus applicable to other platforms.

In RIOT, the PSA Crypto module provides a common interface for cryptographic opera-
tions and key management, with interchangeable backends. Operations can be executed
in hardware or software, depending on the platform. Key material is managed internally
by a key management module and can be stored either in local memory or in a secure
element. This way RIOT OS can support the whole range of cryptographic software and
hardware backends that is available in IoT devices. The implementation architecture is
shown in Figure 2.4.

To perform crypto operations, applications can call the PSA Crypto API. The second
layer below the PSA Crypto API is the key management module, which is responsible
for storing and retrieving keys. Keys have to be generated or imported before they can

17



2 Background and Related Work

IoT Protocols, Applications & Tests

PSA Crypto API

Key Management & Location Dispatch

Secure Element Dispatch

SE API SE API

Vendor API Vendor API

SE Driver SE Driver

Algorithm Dispatch

PSA Driver Wrapper

Vendor API Vendor API

Hardware
Driver

Software
Library

Figure 2.4: PSA Crypto module in RIOT OS.

be used and are then handled internally, without being accessible to the user. Each key
is stored with a set of attributes, including the key type, size, storage location, lifetime
and usage policy. Upon key creation, each key is assigned a unique identifier, which is
used to reference the key in further operations.

After calling a crypto function, the location dispatcher checks whether the key is stored
in local memory or in a secure element. If the key is stored in a secure element, the call
will be forwarded to the corresponding secure element driver. Through a secure element
dispatcher and a dedicated secure element API, the module can support multiple secure
elements simultaneously.

If a key is stored in local memory, the call will be forwarded to the algorithm dispatcher.
This instance will check the key type and usage policy, forward the call to the correspond-
ing algorithm implementation and pass the key as an argument. Each algorithm can be
implemented either by a hardware driver or a software library and can be transparently
replaced by another implementation.

At the time of writing, all crypto operations in RIOT are executed in the same memory
space as the rest of the operating system. Also, the PSA Crypto module stores key ma-
terial in RAM or unencrypted in flash (exceptions are keys stored in secure elements, but
those are not relevant for this work). To provide memory isolation and secure key storage,
this work will add support for hardware-based memory protection and isolation.
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Figure 2.5: Schematic example of Trusted Firmware-M combined with RIOT OS.

2.5.2 Trusted Computing in RIOT

To leverage the security features of TrustZone-M and provide secure services to RIOT
applications, a secure firmware is needed. An example of such a firmware is TF-M [29],
the reference implementation of the Arm Firmware Framework-M, which is also part
of the PSA framework. It provides a secure processing environment on Armv8-M and
Armv8.1-M architectures with the TrustZone-M security extension, as well as dual-core
platforms.

TF-M implements the four secure service APIs specified by the PSA framework: Crypto,
Secure Storage, Attestation and Firmware Updates. It provides multiple levels of memory
isolation: level one provides a simple separation into two worlds. Higher isolation levels
provide separate partitions for each PSA service, IPC, and, at the highest level, a separate
Application Root of Trust (ARoT) for each application running in the non-secure world.
Several configuration profiles with varying levels of isolation and feature sets allow for
adapting the firmware image to the capabilities of the underlying platform. E.g. the small
profile only provides basic crypto operations, such as hashes and symmetric encryption
and level one isolation, while the largest profile provides level three isolation, asymmetric
cryptography and ARoT.

In previous work we ran RIOT together with TF-M [30], and measured the overhead the
firmware introduces to RIOT (the setup is shown in Figure 2.5). For this purpose we
built an example application that uses a hash generation, a symmetric cipher operation
and an ECDSA key generation, signature and verification. Those crypto operations are
provided by the PSA Crypto API.
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TF-M uses the PSA Crypto implementation provided by the MbedTLS library [35].
For better comparability we replaced the PSA Crypto implementation of RIOT with
MbedTLS, with the same configuration that is used by TF-M. We then built and ran
this application with RIOT as a Non-Secure Processing Environment (NSPE) with TF-M
(medium profile with ARoT) as the Secure Processing Environment (SPE) and compared
the memory usage and processing time to a RIOT-only binary.

Figure 2.6 shows the RAM and flash usage of both binaries as they were measured in [30].
The SPE and NSPE binaries amount to a combined size of 150 KB (around three times
as much as RIOT alone) and 50 KB of RAM (around ten times as much as RIOT alone).
A secure bootloader with included cryptographic features adds another 50 KB of flash
and 25 KB of RAM.

Figure 2.6: RAM and ROM usage of RIOT with a secure bootloader (BL) and Trusted
Firmware-M built with medium profile as measured in previous work.

While this is not an issue on devices such as the nRF9160, it is infeasible for smaller
devices with less flash and RAM. While it is possible to build a smaller TF-M profile, this
will also reduce the available features, such as support for asymmetric cryptography.

When using TF-M as a secure firmware, it is intended that non-secure applications and
the operating system directly call the secure service APIs provided by the firmware (see
Figure 2.5). Additionally, TF-M only supports Arm devices and no other architectures.
On other platforms, TF-M would need to be replaced completely by a different secure
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firmware implementation. To ensure portability, other secure firmware implementations
used by RIOT would also be required to implement the PSA APIs and provide their own
secure service implementations.

The main objective of this work is to isolate cryptographic operations from the operating
system and provide a way to securely store keys. It is more beneficial to reuse the
existing PSA Crypto implementation in RIOT and just replace the implementation of
the cryptographic operations with an isolated secure firmware.

Therefore, we design and implement a new approach to provide cryptographic services
to the PSA Crypto module, below a common, platform-agnostic API. This API can
be implemented by different secure firmware implementations for different architectures.
This way, applications and RIOT itself can still use the PSA Crypto interface, which then
transparently dispatches crypto operations to an isolated environment. Our approach
ensures that applications in RIOT remain platform-agnostic and portable to a wide
range of devices.
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In this chapter we first present a summary of the requirements for a secure firmware in
RIOT. In subsections, we describe the design of a common, platform-agnostic API for
secure services in RIOT, that can be implemented by different secure firmware backends.
We also describe the design of a secure firmware for TrustZone-M-enabled Arm devices,
which implements the API as a proof of concept. We also demonstrate how the Cryp-
toService API and the secure backend can be integrated in the PSA Crypto module in
RIOT.

3.1 Requirements

The target operating system RIOT supports a wide range of platforms with varying
features and capabilities. When adding support for memory protection mechanisms,
the solution should take the different architectures into account and aim to support as
many platforms as possible. Different platforms provide different technologies to support
memory isolation and protection, which require different approaches to implement a
secure firmware. Since application development in RIOT should remain platform-agnostic
and user-friendly, develpers should be able to use the secure services provided by the
firmware without taking into account the specifics of the underlying hardware. These
prerequisites lead to the following requirements for a secure firmware solution in RIOT
in no specific order:

1. The secure firmware must allow RIOT to leverage memory protection features on
different constrained devices.

2. A secure firmware must provide an isolated execution environment for security
critical operations.
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3. The firmware must provide secure services to the non-secure world in RIOT though
a common interface that abstracts the underlying hardware.

4. The secure firmware must provide a way to securely store cryptographic key mate-
rial and execute cryptographic operations.

5. Access to secure services must be transparent and not require platform-specific
code on the application level.

6. A secure firmware should not impact functionality of the operating system. RIOT
should be able to provide its services to applications as if there were no secure
firmware.

7. The firmware should only provide a minimal set of cryptographic operations to
keep the memory footprint and the attack surface small.

8. The firmware should not introduce additional vulnerabilities to the system.

9. The firmware should be able to use a Root of Trust that has been set during system
initialization.

10. For usability, integration in RIOT should be transparent and not require developers
to have extended knowledge about the underlying technologies.

In the following sections we will describe the design of our secure firmware solution for
RIOT and how we fulfilled the listed requirements.

3.2 The CryptoService API and Library

A platform-agnostic API for secure firmware implementation is needed to fulfill the re-
quirement of a common interface for secure services in RIOT. For this purpose of the
CryptoService (CYS) API was designed by Lars Pfau. The API provides a basic set of
cryptographic operations, which can be implemented by different secure firmware back-
ends for various architectures, such as Armv8-M and RISC-V. It also provides a default
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software implementation for cryptographic operations, which can be replaced by platform
specific implementations, e.g., drivers for hardware accelerators.

Key Encryption. While some platforms provide hardware protected key slots to store
keys securely, others do not. To support secure key storage on all platforms, the Cryp-
toService API supports the encryption of key material. For this purpose the API supports
a protected key type CYS_PROT_ecc_p256_key_t. A secure firmware implementing
the API must support the encryption of a plain key with Authenticated Encryption with
Associated Data (AEAD). The encrypted key is stored with a corresponding nonce and
tag as shown in lines 1-4 of Listing 3.1.

Listing 3.1: Declarations of the sealed key type and protected key operations.

1 typedef struct {

2 uint8_t nonce[CYS_PROT_SEAL_NONCE_SIZE];

3 uint8_t private_key[CYS_PROT_ECC_P256_KEY_SIZE + CYS_PROT_SEAL_TAG_SIZE];

4 } CYS_PROT_ecc_p256_key_t;
5

6 CYS_error_t CYS_PROT_ecc_p256_generate(CYS_PROT_ecc_p256_key_t *sealed_key,

7 uint8_t *public_key);

8

9 CYS_error_t CYS_PROT_ecc_p256_seal(const uint8_t *unsealed_key,

10 CYS_PROT_ecc_p256_key_t *sealed_key);

11

12 CYS_error_t CYS_PROT_ecc_p256_derive(

13 const CYS_PROT_ecc_p256_key_t *sealed_key,

14 uint8_t *public_key);

15

16 CYS_error_t CYS_PROT_ecc_p256_sign(const CYS_PROT_ecc_p256_key_t *key,

17 const uint8_t *hash,

18 size_t hash_len,

19 uint8_t *signature);

A set of operations is provided to work with protected keys (see Listing 3.1). At the time
of writing, only the encryption of Elliptic Curve Cryptography (ECC) keys is supported,
but the API can be extended to support other key types. The four existing functions
provide several features. A key generation function generates a key pair, encrypts the
private key and then returns the encrypted private key and the public key. In this case,
the unencrypted key is never exposed to a non-secure application. It can only ever be
decrypted and used within the context of the secure firmware. A sealing function encrypts
a plain key that is passed to the secure firmware by the application and then returns the
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encrypted key back to the non-secure world. A key derivation function can be used to
derive a public key from an encrypted private key, while a signature function can be used
to sign a hashed message with an encrypted private key. The keys should be encrypted
with a device specific root key. It should not be possible to decrypt the key on a different
device.

Cryptographic Operations. Unprotected functions operate on plain keys that are
passed by the application as arguments (see Listing 3.2). At the time of writing, the
unprotected API supports random number generation, multi-step hashing, cipher oper-
ations, as well as asymmetric key generation, derivation, signature and verification.

Listing 3.2: Declarations of the unprotected operations.

1 // RNG

2 CYS_error_t CYS_random_generate(uint8_t *buffer,

3 size_t size,

4 size_t *len);

5

6 // Hash Context and Operations

7 typedef struct {

8 uint32_t data[CYS_HASH_SHA256_STATE_SIZE];

9 } CYS_hash_sha256_ctx_t;

10

11 CYS_error_t CYS_hash_sha256_init(CYS_hash_sha256_ctx_t *ctx);

12

13 CYS_error_t CYS_hash_sha256_update(CYS_hash_sha256_ctx_t *ctx,

14 const uint8_t *data,

15 size_t len);

16

17 CYS_error_t CYS_hash_sha256_finalize(CYS_hash_sha256_ctx_t *ctx,

18 uint8_t *digest);

19

20 // Cipher operations

21 CYS_error_t CYS_aes_128_cbc_encrypt(const uint8_t *key,

22 const uint8_t *nonce,

23 const uint8_t *message,

24 size_t message_len,

25 uint8_t *ciphertext);

26

27 CYS_error_t CYS_aes_128_cbc_decrypt(const uint8_t *key,

28 const uint8_t *nonce,

29 const uint8_t *ciphertext,

30 size_t ciphertext_len,

25



3 Software Design

31 uint8_t *message);

32

33 // Asymmetric Operations

34 CYS_error_t CYS_ecc_p256_generate(uint8_t *private_key,

35 uint8_t *public_key);

36

37 CYS_error_t CYS_ecc_p256_derive(const uint8_t *private_key,

38 uint8_t *public_key);

39

40 CYS_error_t CYS_ecc_p256_sign(const uint8_t *private_key,

41 const uint8_t *hash,

42 size_t hash_len,

43 uint8_t *signature);

44

45 CYS_error_t CYS_ecc_p256_verify(const uint8_t *public_key,

46 const uint8_t *hash,

47 size_t hash_len,

48 const uint8_t *signature);

CryptoService API

Secure Firmware Entry

CryptoService Library

SRAM PUF

micro-ecc

RIOT sys/hashes

Root of Trust

RIOT sys/random

RIOT sys/crypto

Platform-specific
Code

Hardware Abstraction Layer

Figure 3.1: Implementation structure of a secure firmware with the generic CryptoService API
and library. Purple parts are part of CryptoService, the green parts are platform specific.

CryptoService Library. The CryptoService API provides default software implemen-
tations of cryptographic operations for devices that do not have cryptographic hardware
acceleration. For these implementations, existing code from the RIOT operating system
is reused. The CryptoService library includes Random Number Generator (RNG), hash
and cipher operations from the RIOT sys module, as well as the RIOT SRAM PUF
implementation for entropy generation. For ECC operations it uses the third-party li-
brary micro-ecc, which provides a lightweight implementation of ECC operations and is

26



3 Software Design

also supported by RIOT. A secure firmware that implements the CryptoService API can
either reuse the provided software or replace it with platform specific implementations.

Figure 3.1 shows how the CryptoService API and library are intended to be used by a
secure firmware. The common components are the northbound interface and the default
software library (marked in purple). Both can be reused by all platforms. Green parts
need to be provided by a platform specific firmware. This way, hardware-specific code
for the secure firmware entry and the memory configuration of the RISC-V PMP and
Arm TrustZone-M can be implemented separately. Some platforms may provide addi-
tional security features, such as hardware key storage and a Hardware Random Number
Generator (HWRNG), which need to be provided as additional platform-specific code
and hardware abstraction.

3.3 Integration with the PSA Crypto Module

In RIOT, PSA Crypto is integrated into the operating system as the official crypto mod-
ule. It provides a common interface for cryptographic operations, which already allows
for the transparent use of different cryptographic libraries and drivers. It also imple-
ments internal key management, allowing for ID-based indirect access to stored keys.
This way applications can pass identifiers of the keys they want to use for cryptographic
operations, while PSA Crypto transparently handles the storage and management.

It is easy and straightforward to integrate a secure firmware that implements the Cryp-
toService API as an alternative crypto backend into the PSA Crypto module (see Fig-
ure 3.2).

An application or any code running in RIOT on the non-secure side can call the PSA
Crypto APIs as usual. All calls to cryptographic operations are automatically passed
to the secure firmware through the CryptoService API. Keys that are generated and
encrypted by the secure firmware can be securely stored by the key management module
of PSA Crypto. When an encrypted key should be used for a cryptographic operation,
the PSA Crypto module passes the encrypted key to the secure firmware, which can
decrypt it internally and use it for the operation.

If a platform provides hardware key storage, keys can transparently be stored in hardware
key slots, with only a reference to it being returned to the PSA Crypto module for storage
and later access.
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Figure 3.2: Integration of a secure firmware into the PSA Crypto module in RIOT OS with the
CryptoService API.

Figure 3.3 shows a simplified call flow between the non-secure application, the PSA
Crypto module and the secure firmware with the CryptoService API. When comparing
it to the setup of RIOT with Trusted Firmware-M shown in Figure 2.5, the difference is
clear. The interface between RIOT and TF-M are the PSA APIs, which could be called
directly by applications. In our design, the interface is provided by the CryptoService
API, which cannot be called directly by applications, but is only called by the PSA
Crypto module. This way applications can us the PSA Crypto APIs as usual, while the
PSA Crypto module calls the secure firmware through the CryptoService API.

3.4 A New Secure Firmware for Arm TrustZone-M

The product of this thesis is RIOT-TEE, a secure firmware for Arm Cortex-M devices
with the Armv8-M architecture and the TrustZone-M security extension. RIOT-TEE
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Figure 3.3: Call flow between the non-secure application, the PSA Crypto module and the
secure firmware with the CryptoService API.

implements the CryptoService API described in Section 3.2 and provides all the specified
crypto operations.

TrustZone-M provides a memory map-based separation of secure and non-secure memory
regions. This means a secure firmware must be contained in its own binary that is
executed in secure and non-secure callable flash regions. Secure functions can not be
called directly from the non-secure side. To request cryptographic services from RIOT-
TEE, all calls must be passed through a secure entry function.

Listing 3.3: Definitions of I/O structures and tee_secure_entry function.

1 typedef struct {

2 const void* data;

3 size_t len;

4 } io_pack_in_t;
5

6 typedef struct {

7 void* data;

8 size_t len;

9 } io_pack_out_t;
10

11 typedef struct {

12 const int32_t operation;

13 const size_t in_len;

14 const size_t out_len;

15 } io_operation_info_t;
16

17 __attribute__((cmse_nonsecure_entry))
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18 CYS_error_t tee_secure_entry(io_operation_info_t *op_info,

19 io_pack_in_t *in,

20 io_pack_out_t *out);

A secure firmware for TrustZone-M can define as many secure entry functions as needed,
as long as they fit into the non-secure callable memory region. To keep the inter-
face simple, RIOT-TEE provides only one generic non-secure entry function, through
which all secure operations must be called (Listing 3.3). This function must be declared
with __attribute__((cmse_nonsecure_entry)). When compiling and linking
the firmware, the compiler will automatically generate secure gateway instructions for
the functions marked with the cmse_nonsecure_entry attribute and place them in
the non-secure callable memory region.

TrustZone-M does not support passing arguments to non-secure entry functions through
the stack. This means that only a maximum of four arguments using registers R0-
R3 of the Arm architecture is allowed. Since many operations require more than four
arguments, they are packed into structs (definitions shown in Listing 3.3), which are
then passed as a list to the secure entry function. For input pointers, the read-only
io_pack_in_t structure is defined, for output pointers the writable io_pack_out_-
t structure. The io_operation_info_t structure contains meta information about
the call, such as which operation should be executed and how many input and output
structures are passed. This way the executing operation can check, if the correct number
of arguments has been passed and if all the input and output addresses point to a valid
memory range.

The tee_secure_entry function dispatches the call to an internal function interface
(Listing 3.6), which can then call the underlying crypto implementation. This can be
either the CryptoService Library or a platform-specific driver. The platform-specific code
can directly use secure hardware features, such as hardware key slots and the crypto
hardware accelerator.

Root of Trust. The RoT interface (Listing 3.4) is not a part of the CryptoService API
and thus not directly callable from the non-secure side. It can only be used by the secure
firmware itself. It provides the tee_rot_try_generate_aes_key function, which
generates a new platform Advanced Encryption Standard (AES) key during start-up and
writes it to a hardware key slot as the device root key. This function is a temporary
workaround for this thesis. Such a key should be set by an immutable bootloader and
this function should be removed in the future. In this work, this key will be used to encrpt
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and decrypt key material, which will then be stored by the PSA Crypto module. Keys
can be encrypted and decrypted with the tee_rot_encrypt_key_ocb and tee_-

rot_decrypt_key_ocb functions.

Listing 3.4: Root of Trust operations.

1 /* RoT operations */

2 CYS_error_t tee_rot_try_generate_aes_key(void);
3

4 CYS_error_t tee_rot_encrypt_key_ocb(uint8_t *key_in,

5 CYS_PROT_ecc_p256_key_t *sealed_key);

6

7 CYS_error_t tee_rot_decrypt_key_ocb(CYS_PROT_ecc_p256_key_t *sealed_key,

8 uint8_t *key_out);

Crypto Operations and Random Number Generation. When the non-secure side
requests a cryptographic operation, the tee_secure_entry function dispatches the
call to the corresponding internal function in the crypto module. The internal function
signatures follow the pattern in Listing 3.5.

Listing 3.5: Signature of a low-level API function in RIOT-TEE.

1 CYS_error_t tee_<operation>_<algorithm>_<step>(io_pack_in_t *in,

2 size_t in_len,

3 io_pack_out_t *out,

4 size_t out_len);

They mirror the operations defined in the CryptoService API, so they can be easily
mapped during execution. They all expect pointers to the previously defined input and
output structures which they will unpack and use internally.

Listing 3.6: Signatures of crypto and random methods.

1 /* Hash operations */

2 CYS_error_t tee_hash_sha256_setup(io_pack_in_t *in, size_t in_len,

3 io_pack_out_t *out, size_t out_len);

4

5 CYS_error_t tee_hash_sha256_update(io_pack_in_t *in, size_t in_len,

6 io_pack_out_t *out, size_t out_len);

7

8 CYS_error_t tee_hash_sha256_finish(io_pack_in_t *in, size_t in_len,

9 io_pack_out_t *out, size_t out_len);

10

11 /* Cipher operations */
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12 CYS_error_t tee_cipher_aes_128_cbc_encrypt(io_pack_in_t *in,

13 size_t in_len,

14 io_pack_out_t *out,

15 size_t out_len);

16

17 CYS_error_t tee_cipher_aes_128_cbc_decrypt(io_pack_in_t *in,

18 size_t in_len,

19 io_pack_out_t *out,

20 size_t out_len);

21

22 /* Protected ECC Operations */

23 CYS_error_t tee_prot_ecc_p256_generate(io_pack_in_t *in, size_t in_len,

24 io_pack_out_t *out, size_t out_len);

25

26 CYS_error_t tee_prot_ecc_p256_seal(io_pack_in_t *in, size_t in_len,

27 io_pack_out_t *out, size_t out_len);

28

29 CYS_error_t tee_prot_ecc_p256_derive(io_pack_in_t *in, size_t in_len,

30 io_pack_out_t *out, size_t out_len);

31

32 CYS_error_t tee_prot_ecc_p256_sign(io_pack_in_t *in, size_t in_len,

33 io_pack_out_t *out, size_t out_len);

34

35 /* Unprotected ECC operations */

36 CYS_error_t tee_ecc_p256_generate(io_pack_in_t *in, size_t in_len,

37 io_pack_out_t *out, size_t out_len);

38

39 CYS_error_t tee_ecc_p256_derive(io_pack_in_t *in, size_t in_len,

40 io_pack_out_t *out, size_t out_len);

41

42 CYS_error_t tee_ecc_p256_sign_hash(io_pack_in_t *in, size_t in_len,

43 io_pack_out_t *out, size_t out_len);

44

45 CYS_error_t tee_ecc_p256_verify_hash(io_pack_in_t *in, size_t in_len,

46 io_pack_out_t *out, size_t out_len);

47

48 /* Random operation */

49 CYS_error_t tee_generate_random_bytes(io_pack_in_t *in, size_t in_len,

50 io_pack_out_t *out, size_t out_len);
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In this chapter we describe the implementation of the secure firmware and its integration
with RIOT. It starts with a description of the target platform and the required modifica-
tions to RIOT to run in non-secure mode. Then it will describe the modifications made
to the PSA Crypto module to support the secure firmware as a backend. Finally, we will
describe the implementation of RIOT-TEE, a secure firmware for RIOT on Arm devices
with the TrustZone-M extension. We will provide example program flows to illustrate
how the secure firmware is started and how it interacts with RIOT in the non-secure
world.

4.1 Target Platform

The target board for this implementation is the Nordic nRF9160dk. It is less constrained
compared to other microcontrollers, with 1 MB of flash memory and 256 KB of RAM
and runs at a clock speed of 64 MHz. It has a Cortex-M33 CPU, which implements
the Armv8.0-M architecture with the TrustZone-M security extension. An LTE modem
provides networking capabilities and the board has a variety of peripherals, including an
Arm CryptoCell 310 (CC310) cryptographic accelerator.

Arm CryptoCell 310. The CryptoCell 310 is a cryptographic accelerator, which
provides hardware acceleration for symmetric and asymmetric cryptographic operations.
It has AES, CHACHA, HASH, PKA and RNG hardware engines to support numerous
algorithms, including but not limited to:

• AES 128 (ECB, CBC, CTR, CMAC/CBC-MAC, CCM)

• ChaCha20 stream cipher

• RSA
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• ECC (NIST FIPS 186-4, SEC 2, Koblitz, Brainpool, Edwards/Montgomery)

• SHA-1, SHA-224, SHA-256 hashes

It therefore supports all the algorithms necessary for a CryptoServic API implementa-
tion.

The RNG engine provides a True Random Number Generator (TRNG) for entropy col-
lection, which is compliant with the FIPS 140-2 [36], BSI AIS-31 [37] and NIST SP
800-90B [38] standards. Additionally, it provides a NIST SP 800-90A [39] compliant
AES-based Cryptographically Secure Pseudo Random Number Generator (CSPRNG),
consisting of three Deterministic Random Bit Generator (DRBG)s. A Direct Memory
Access (DMA) engine can be used to transfer data between the CryptoCell and the main
memory without involving the CPU.

A Key Management Unit (KMU) provides hardware key slots for up to 128 session
keys, which can be pushed to the AES and CHACHA engines over a secure bus without
granting key access to the CPU.

Additionally, the platform supports two types of hardware unique keys. The first one
is the RTL key (KPRTL), which is hard-coded into the device during production and
can not be changed. This key value is the same for all devices with the same part code
and can be used for cryptographic operations without a bootloader or application getting
access to the value. This key being the same across multiple devices is a potential security
risk. If an attacker obtains this key, they can compromise all other devices of the same
type. Therefore, this work will refrain from using it.

The second type of hardware unique key is the device root key (KDK), which is a 128
bit AES key and should be set by an immutable bootloader during the boot sequence,
to establish a chain of trust. This means it can be unique for each device and rotated
regularly. Since the software developed for this thesis does not use a bootloader, this key
will be set by the secure firmware itself during start-up. It will then be used to encrypt
and decrypt keys for the PSA Crypto module.

An open-source low-level driver for CryptoCell accelerators is available in the Trusted
Firmware-M project. This firmware includes that driver code as an external dependency,
to be able to use hardware acceleration and to access the hardware key slots.
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4.2 Required Modifications in RIOT

Per default, RIOT is the only operating system running on a device and therefore runs
in secure mode. Running RIOT as a non-secure application on the nRF9160dk, required
changing the access to memory addresses and peripherals from secure to non-secure. As
a first step, all secure register accesses in the CPU and board specific code had to be
changed to their non-secure counterparts whenever RIOT runs in non-secure mode (see
Listing 4.1).

Listing 4.1: Conditional secure/non-secure register access on the nrf9160.

1 #ifdef BOARD_NRF9160DK_NS

2 #define NRF_P0 NRF_P0_NS

3 #else

4 #define NRF_P0 NRF_P0_S

5 #endif

When flashing the operating system to the device, it must be written to a flash address
that will be configured as non-secure during runtime. To ensure this, an offset was added
to the RIOT ROM start address. Similarly, the available non-secure RAM region was
defined in the cpu/nrf9160/Makefile.include file (Listing 4.2). These numbers
are hardcoded and must be congruent with the addresses and sizes defined in the secure
firmware.

Listing 4.2: Conditional secure/non-secure register access on the nrf9160.

1 ifneq (,$(filter nrf9160dk-ns,$(BOARD)))

2

3 export SECURE_FLASH_SIZE = 0x20000

4

5 RAM_LEN = 0x2a000

6 ROM_LEN = 0xF0000

7 RAM_START_ADDR ?= 0x20016000

8 ROM_OFFSET = $(SECURE_FLASH_SIZE)
9 endif

Both the secure firmware and RIOT are built as separate binaries. The RIOT build
system can only flash one binary at a time, which means we need to merge both binaries
into one. For this purpose, a new flash target called tee-flash was added to RIOT,
which needs to be called when RIOT is built as a non-secure image. When building for
this flash target, the secure and non-secure binaries are merged and converted to a hex
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file. The merged hex file is then flashed to the device at the ROM start address. In
the future this flash target can be extended to also flash a bootloader before the secure
firmware.

4.2.1 Threading

RIOT runs two threads, a main thread and an idle thread. Those are created and
started during kernel initialization. New threads are created with an initial exception
return value, which describes the required system state to run the thread and will be
used later to restore the correct thread context after an exception has been handled.

RIOT usually runs in secure mode, which is why the default exception return value set
by RIOT starts the thread in a secure context and with the secure main stack pointer.
When RIOT runs in non-secure mode, the exception return value must be changed to
start the thread in non-secure mode and with a non-secure stack pointer. This is done
in cpu/cortexm_common/thread_arch.c (see Listing 4.3).

Listing 4.3: Default exception return values for new threads.

1 #ifdef BOARD_NRF9160DK_NS

2 #define EXCEPT_RET_TASK_MODE (0xffffffbc)

3 #else

4 #define EXCEPT_RET_TASK_MODE (0xfffffffd)

5 #endif

4.2.2 PSA Crypto Integration

The CryptoService API supports the encryption of cryptographic keys to securely store
them in memory. For this it introduces the CYS_PROT_ecc_p256_key_t type (de-
scribed in Section 3.2). To use this type with the PSA Crypto module, it needs to be
supported by the PSA key slot management module. The key slot management already
supports storing three different types of keys: plain keys, asymmetric key pairs and
hardware protected keys. We added a new slot type, which can store a sealed key with
attributes and, optionally, a corresponding public key. (Listing 4.4).

Listing 4.4: PSA sealed key slot structure.

1 typedef struct {

2 clist_node_t node;
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3 size_t lock_count;

4 psa_key_attributes_t attr;

5 struct sealed_key_data {

6 CYS_PROT_ecc_p256_key_t sealed_key;

7 uint8_t pubkey_data[PSA_EXPORT_PUBLIC_KEY_MAX_SIZE];

8 size_t pubkey_data_len;

9 } key;

10 } psa_sealed_key_slot_t;

Describing a Sealed Key. When generating or importing a new key, it must be speci-
fied that the key should be sealed. PSA Crypto already defines a number of attributes to
describe keys, which can be extended by implementations. The best option to describe
that a key should be sealed, is the key lifetime attribute, which is used to specify how a
key is stored.

The psa_key_lifetime_t type is a compound type consisting of the psa_key_lo-
cation_t and the psa_key_persistence_t types. The psa_key_location_t

type is used to describe where a key is stored, e.g., PSA_KEY_LOCATION_LOCAL_-
STORAGE or PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT. The psa_key_-

persistence_t type is used to describe how long a key should be stored, e.g., PSA_-
KEY_PERSISTENCE_VOLATILE, PSA_KEY_PERSISTENCE_READ_ONLY. Location and
persistence values can be extended by vendors to describe additional storage locations
and persistence levels.

Table 4.1: PSA Crypto key slot location values.

Value Range Usage

0x0 to 0x7fffff Specification-defined locations
0x800000 to 0xffffff Implementation-defined locations
0x800000 to 0x8000ff Secure element locations
0x800100 to 0x8001ff Sealed key locations

The PSA Crypto specification reserves values from 0x0 to 0x7fffff for specification-
defined locations and 0x800000 to 0xffffff for implementation-defined locations
(overview shown in Table 4.1). 0x800000 up to 0x8000ff are already used by RIOT
for secure element locations, so this implementation defines 0x800100 to 0x8001ff

as sealed key locations, with 0x800100 as the default PSA_KEY_LOCATION_LOCAL_-
SEALED. This allows for storing sealed keys in local memory.
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The key location only needs to be set once when the key is generated or imported, and
will be stored within the key attributes. After key creation, the user does not need to
specify the location again and can select the key by passing a key identifier to the PSA
Crypto functions, just like with every other type of key.

Listing 4.5: PSA low-level driver glue code for CryptoService API.

1 psa_status_t psa_generate_ecc_p256r1_key_pair(
2 const psa_key_attributes_t *attributes,

3 uint8_t *priv_key_buffer,

4 uint8_t *pub_key_buffer,

5 size_t *priv_key_buffer_length,

6 size_t *pub_key_buffer_length)

7 {

8 psa_status_t status;

9 psa_key_location_t location =

10 PSA_KEY_LIFETIME_GET_LOCATION(attributes->lifetime);
11

12 switch(location) {

13 case PSA_KEY_LOCATION_LOCAL_STORAGE:

14 status = CYS_ecc_p256_generate(priv_key_buffer, pub_key_buffer);

15 break;

16 case PSA_KEY_LOCATION_LOCAL_SEALED:

17 status = CYS_PROT_ecc_p256_generate((CYS_PROT_ecc_p256_key_t *)

18 priv_key_buffer,

19 pub_key_buffer);

20 break;

21 default:

22 return PSA_ERROR_NOT_SUPPORTED;

23 }

24

25 if (status != PSA_SUCCESS) {

26 return status;

27 }

28

29 *pub_key_buffer_length = CYS_ECC_P256_PUB_SIZE;

30

31 (void) priv_key_buffer_length;

32 return PSA_SUCCESS;

33 }

CryptoService API as a PSA Crypto Backend. The CryptoService library is
included in RIOT as an external package, that is downloaded, compiled and linked by
the RIOT build system. To use it as a cryptographic backend for PSA Crypto, glue
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code needs to be added. The wrapper function will be called by the PSA Crypto module
and then invoke the corresponding secure firmware function. An internal switch case
dispatches the call depending on whether the key is sealed or not (Listing 4.5).

Since RIOT supports threading, it is possible that multiple threads try to access the
secure firmware. To prevent this, it needs to be protected with a mutex. For this, three
wrapper functions for initializating, claiming and releasing a mutex were added to the
CryptoService API. Those are implemented with calls to the RIOT mutex implementa-
tion (Listing 4.6).

Listing 4.6: Mutex wrapper implementations in RIOT.

1 #include "mutex.h"

2 #include "CYS/os_mutex.h"

3

4 mutex_t cryptoservice_mutex;

5

6 void os_init_mutex(void)
7 {

8 mutex_init(&cryptoservice_mutex);

9 }

10

11 CYS_error_t os_get_mutex(void)
12 {

13 return mutex_trylock(&cryptoservice_mutex) ?

14 CYS_SUCCESS : CYS_ERROR_BAD_STATE;

15 }

16

17 void os_release_mutex(void)
18 {

19 mutex_unlock(&cryptoservice_mutex);
20 }

Listing 4.7: CYS function claiming the secure firmware mutex.

1 CYS_error_t CYS_hash_sha256_init(CYS_hash_sha256_ctx_t *ctx)

2 {

3 io_pack_out_t out[1] = {

4 { .data = ctx, .len = sizeof(CYS_hash_sha256_ctx_t) }

5 };

6

7 io_operation_info_t info = {

8 .operation = TEE_HASH_SHA256_SETUP,

9 .in_len = 0,
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10 .out_len = sizeof(out)/sizeof(io_pack_out_t)
11 };

12

13 while (os_get_mutex() != CYS_SUCCESS) {};

14 CYS_error_t status = tee_secure_entry(&info, NULL, out);

15 os_release_mutex();
16

17 return status;

18 }

This way it is possible to use the RIOT mutex implementation from within the Cryp-
toService API implementation. The CryptoService API will call the os_get_mutex()
and os_release_mutex() functions before and after each call to the secure services
(Listing 4.7, lines 13 and 15).

Compile Time Configuration. To use the CryptoService as a backend for PSA
Crypto, the corresponding module must be selected explicitly when configuring the PSA
Crypto module in the application makefile. And example of this is shown in Listing 4.8.

Listing 4.8: PSA Crypto compile time configuration.

1 USEMODULE += psa_crypto

2 USEMODULE += psa_asymmetric

3 USEMODULE += psa_asymmetric_ecc_p256r1

4 USEMODULE += psa_asymmetric_ecc_p256r1_custom_backend

5 USEMODULE += psa_asymmetric_ecc_p256r1_backend_cryptoservice

When psa_asymmetric_ecc_p256r1_backend_cryptoservice is enabled, the
PSA Crypto module will add the CryptoService package to the dependencies and use
it to execute ECC operations. The actual secure firmware implementation behind the
CryptoService API depends on the platform and will be selected automatically at compile
time. If, for example, the application is built for the nRF9160dk, RIOT-TEE will be
included as a package.

4.3 Secure Firmware Implementations

This work comprises two implementation variants for the RIOT-TEE firmware for Armv8-
M devices with the TrustZone-M security extension. Both implement the CryptoService
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API described in Section 3.2. Figures 4.1 and 4.2 show a comparison of the two im-
plementations. The first variant (Figure 4.1) uses the default software implementation
supplied by the cryptoservice library. On the non-secure side the CryptoService API
serves as an interface between the PSA Crypto module and the secure firmware. On the
secure side the secure entry function manages the transition between the two domains and
dispatches operations to the internal RIOT-TEE APIs. Calls to cryptographic functions
are passed to CYS library functions. Only the key encryption and decryption functions
are modified to use an AES key stored in a key slot on the device. For random number
generation, a software CSPRNG seeded with entropy collected from an SRAM PUF is
used.

PSA Crypto Module

CryptoService API
Non Secure

Secure
Secure Entry

RIOT-TEE APIs Secure Main

CryptoService Library

SRAM PUF

micro-ecc

RIOT Hash

RIOT RNG

RIOT AES

Platform-
specific Code

RoT

Hardware

HW Key Slots

Figure 4.1: RIOT-TEE secure firmware
with the CryptoService API and library.
Most code from CryptoService is reused.

PSA Crypto Module

CryptoService API
Non Secure

Secure
Secure Entry

RIOT-TEE APIs Secure Main

CryptoService
Library

RIOT AES
OCB

Platform-specific Code

RoT

CryptoCell310 Driver

Hardware

HW Key Slots CC310HWRNG

Figure 4.2: RIOT-TEE with most Cryp-
toService modules replaced by platform
specific code (e.g., hardware drivers).

The second variant (Figure 4.2) replaces almost all software implementations with driver
code for the crypto accelerator of the target platform as well as code to access hardware
key slots. The CryptoCell 310 hardware random number generator is used to seed a
deterministic random bit generator during start-up. Keys are generated, and crypto-
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graphic operations are performed by the CryptoCell 310 accelerator. For key encryption
and decryption, the device root key is used. This key can be pushed directly to the AES
engine over a secure bus of the CryptoCell 310. Since keys are encrypted with AES OCB
and CryptoCell 310 does not support this mode, the implementation reuses the OCB im-
plementation from the CryptoService library, but replaces the AES block function with
the CC310 hardware driver.

The purpose of these different variants is to demonstrate the flexibility of the software
design and to show how it can be adapted to different hardware platforms. The pure
software implementation is also used for evaluation and comparing results to a RIOT-
only version in Chapter 5. It can also be used to compare this TEE implementation
to other implementations, which use the same software libraries. The implementation
using the hardware driver is used as a Proof of Concept (PoC) to demonstrate how the
CryptoService API can be implemented with platform specific code.

4.3.1 System Configuration during Start-Up

The secure firmware has its own main function, which is run after the secure firmware
has been booted. This function is responsible for configuring secure and non-secure
memory regions, non-secure callable regions, peripherals, as well as starting the non-
secure firmware. Additionally, some security related configurations are required by the
Secure Software Guidelines for Armv8-M [40]. Figure 4.3 shows the program flow of the
secure firmware start-up process. The following sections describe the configuration steps
in the order of execution.

Configuration of Memory Regions 1 . Flash is separated into 32 regions of 32 KB
size, which are configured as secure per default. To allow an application or operating
system to run, parts of the flash and RAM need to be configured as non-secure before the
non-secure image can be started. The first four regions keep the secure configuration, to
fit the secure firmware and the non-secure callable region. The rest will be configured as
non-secure by setting a permission bit for each region. Similarly, RAM is separated into
32 regions of 8 KB size, of which the first eleven blocks keep the secure configuration.
The number of secure and non-secure regions depends on the size requirements of the
secure and non-secure binaries and can be adjusted accordingly. Regions can only be
configured as a whole.
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Figure 4.3: Program flow of the secure firmware start-up process.

The non-secure callable regions are placed end of the last of the four secure flash regions.
It is possible to configure two NSC regions, but for our purposes we only need one.

According to the Secure Software Guidelines for Armv8-M [40], there is a risk of inad-
vertently placing a secure gateway instruction in the non-secure callable region. This
can happen if there is uninitialized memory, or if general data, such as jump tables, is
placed in the region and certain bit patterns are interpreted as secure gateway calls. To
reduce the risk of such an occurrence, the non-secure callable region should be as small
as possible and only contain secure gateway veneers. The smallest possible non-secure
callable size supported by Nordic platforms is 32B, which is enough space to fit the secure
entry function in this implementation(Listing 4.9).

Listing 4.9: Configuration of non-secure callable regions in secure main function.

1 int flash_nsc_id = 0;

2 int flash_region = 3;

3

4 NRF_SPU_S->FLASHNSC[flash_nsc_id].REGION = flash_region;

5 NRF_SPU_S->FLASHNSC[flash_nsc_id].SIZE = NRF_SPU_NSC_SIZE_32B;

Configuration of Peripherals for Non-Secure Use 2 . To make sure RIOT has
access to the peripherals it needs, the secure firmware must configure the System Pro-
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tection Unit (SPU) to allow non-secure access to them. In this case we set non-secure
permissions for the GPIO, UART and TIMER peripherals as shown in Listing 4.10.
Others can be added as needed.

Listing 4.10: Configuration of non-secure peripherals.

1 /* Configure GPIO P0 for NS access */

2 NRF_SPU_S->PERIPHID[NRFX_PERIPHERAL_ID_GET(NRF_P0_NS)].PERM &= \

3 ~(SPU_FLASHREGION_PERM_SECATTR_Msk);

4

5 /* Configure UARTE0 for NS access */

6 NRF_SPU_S->PERIPHID[NRFX_PERIPHERAL_ID_GET(NRF_UARTE0_NS)].PERM &= \

7 ~(SPU_FLASHREGION_PERM_SECATTR_Msk);

8

9 /* Configure TIMER0 for NS access */

10 NRF_SPU_S->PERIPHID[NRFX_PERIPHERAL_ID_GET(NRF_TIMER0_NS)].PERM &= \

11 ~(SPU_FLASHREGION_PERM_SECATTR_Msk);

12

13 /* Configure TIMER1 for NS access */

14 NRF_SPU_S->PERIPHID[NRFX_PERIPHERAL_ID_GET(NRF_TIMER1_NS)].PERM &= \

15 ~(SPU_FLASHREGION_PERM_SECATTR_Msk);

16

17 /* Set GPIO P0 pin attributes to 0 (= non-secure) */

18 NRF_SPU_S->GPIOPORT[0].PERM = 0x00000000ul;

Clearing Floating Point Registers 3 . The Armv8-M architecture allows for some
optimizations to decrease interrupt latency when using floating point registers. It is
possible to configure the processor to not save and clear floating point registers after
handling a secure exception. According to the Secure Software Guidelines for Armv8-
M [40], this can cause information leakage, if the secure software uses floating point
registers for data storage. It is therefore recommended to always clear the registers after
handling a secure exception. This is done by setting the FPCCR register as shown in
Listing 4.11.

Listing 4.11: Configuration of floating point registers and exception priorities.

1 /* Make sure floating point registers are cleared

2 when returning to non-secure world */

3 FPU->FPCCR |= FPU_FPCCR_TS_Msk | \

4 FPU_FPCCR_CLRONRET_Msk |

5 FPU_FPCCR_CLRONRETS_Msk;

6

7 /* Raise NS exception priority to 0x80 to prevent
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8 preemption of secure fault exceptions */

9 SCB->AIRCR |= SCB_AIRCR_PRIS_Msk;

Preventing Preemption of Secure Fault Exceptions 4 . Another weakness ac-
cording to Secure Software Guidelines for Armv8-M [40] is that the secure stack could be
corrupted, if a secure fault exception is preempted by a non-secure exception, which then
triggers another operation on the secure context associated with the fault. To prevent
this, it is recommended to ensure that all secure fault exceptions have a higher priority
than non-secure exceptions. This is achieved by setting the Prioritize Secure exceptions
(PRIS) bit in the Application Interrupt and Reset Control Register (AIRCR) as shown
in line 9 in Listing 4.11. An alternative would be to disable all faults except for the Hard-
Fault on the secure side. This way all secure exceptions would escalate to a HardFault,
which always has the highest priority and cannot be preempted.

Initialization of RNG and Crypto Modules 5 . A cryptographically secure random
number generator is required for a number of cryptographic operations, such as key
generation and signatures. The target platform provides a hardware random number
generator, which uses a ring oscillator to generate entropy. Generating random numbers
in hardware can be slow and consumes a lot of energy [41], which is why it is more
efficient to use a software pseudo-random number generator seeded with entropy from a
hardware random number generator. This way the hardware generator only has to be
used for the initial entropy generation and, optionally, for occasional reseeding.

This implementation uses an HMAC deterministic random bit generator (DRBG) from
the CryptoCell 310 as a hardware random number generator. The initialization of this
DRBG with an initial seed happens during system setup in the main function by calling
the tee_init_random function as shown in Listing 4.12. After that the low-level driver
of the CryptoCell hardware accelerator needs to be initialized. To reduce power consump-
tion, the CryptoCell reference manual recommends disabling the peripheral when it is
not used and only enable it if needed. This is done by setting and clearing the ENABLE
bit in the NRF_CRYPTOCELL register before and after each operation.

After initializing the RNG and CryptoCell, the device root key is set 6 . Usually this
should be done by an immutable bootloader. As a temporary workaround, this is done
by the secure firmware during start-up. The key can be set only once per reset, so we
check if it already exists before generating a new one.

Listing 4.12: Initialization of RNG, CryptoCell and device root key.
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1 /* Initialize the random number generator */

2 CYS_error_t status = tee_init_random();
3 if (status != CYS_SUCCESS) {

4 return -1;

5 }

6

7 /* Initialize the CryptoCell */

8 NRF_CRYPTOCELL->ENABLE = 1;

9 cc3xx_lowlevel_init();
10 NRF_CRYPTOCELL->ENABLE = 0;

11

12 /* Generate the device root key */

13 status = tee_rot_try_generate_aes_key();
14 if (status != CYS_SUCCESS && status != CYS_ERROR_ALREADY_EXISTS) {

15 return -1;

16 }

Loading and Starting the Non-Secure Image 7 . Just as an entry function from
the non-secure side to the secure side, the entry from the secure side to the non-secure side
must also be declared with a specific attribute (cmse_nonsecure_call, shown in line
2 in Listing 4.13). The secure firmware then writes the address to the non-secure vector
table to the non-secure vector table offset register (VTOR) and sets the non-secure main
stack pointer to the beginning of the non-secure stack. Afterwards it loads the address of
the non-secure reset handler and calls it to trigger the transition to the non-secure side.
After the transition, RIOT will start executing in non-secure mode. It can now access
the secure firmware through the CryptoService API for cryptographic services.

Listing 4.13: Transition to non-secure side.

1 /* Define the function pointer type for the non-secure reset handler */

2 typedef int __attribute__((cmse_nonsecure_call)) nsfunc(void);

3

4 SCB_NS->VTOR = TZ_START_NS; /* TZ_START_NS = 0x20000*/

5 uint32_t* vtor = (uint32_t*)TZ_START_NS;
6

7 /* Set the non-secure main stack pointer */

8 __TZ_set_MSP_NS(vtor[0]);
9

10 /* Load and call the non-secure reset handler */

11 nsfunc *ns_reset_handler = (nsfunc*)(vtor[1]);

12 ns_reset_handler();
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4.3.2 Calling a Secure Function from the Non-Secure Side

During system operation, the non-secure side can call secure functions through the Cryp-
toService API. The following sections describe the implementation of the firmware with
the help of an example program flow for cipher encryption (Figure 4.4).
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Figure 4.4: Example of a program flow for encrypting a plaintext with a plain key.

CryptoService API 1 . When a cryptographic operation is called from the non-
secure side, the PSA Crypto module will call the corresponding function in the Cryp-
toService API. A representative implementation example of such a function is shown
in Listing 4.14. Here, the CYS_aes_128_cbc_encrypt operation needs to pass five
arguments to the secure entry function. The input pointers (key, nonce, message)
and their lengths are packed into read-only io_pack_in_t structures, while the out-
put pointer (ciphertext) is packed into a writable io_pack_out_t structure. Those
structs are then stored in two arrays (input and output). The pointers to those arrays are
passed to the secure entry function. The io_operation_info_t structure contains
information about which operation should be executed (in this example TEE_CIPHER_-
AES_128_CBC_ENCRYPT) and how many input and output structures are passed.

Listing 4.14: Example of a call to tee_secure_entry and I/O parameter packing.

1 CYS_error_t CYS_aes_128_cbc_encrypt(const uint8_t *key,
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2 const uint8_t *nonce,

3 const uint8_t *message,

4 size_t message_len,

5 uint8_t *ciphertext)

6 {

7 io_pack_in_t in[3] = {

8 { .data = key, .len = CYS_AES_128_KEY_SIZE },

9 { .data = nonce, .len = CYS_AES_128_NONCE_SIZE },

10 { .data = message, .len = message_len }

11 };

12

13 io_pack_out_t out[1] = {

14 { .data = ciphertext, .len = message_len }

15 };

16

17 io_operation_info_t info = {

18 .operation = TEE_CIPHER_AES_128_CBC_ENCRYPT,

19 .in_len = sizeof(in)/sizeof(io_pack_in_t),
20 .out_len = sizeof(out)/sizeof(io_pack_out_t),
21 };

22

23 while (os_get_mutex() != CYS_SUCCESS) {};

24 CYS_error_t status = tee_secure_entry(&info, in, out);

25 os_release_mutex();
26

27 return status;

28 }

Secure Entry Function 2 . All calls to the secure firmware are made through the
secure entry function shown in Listing 4.15. The operation that needs to be called is
encoded in the io_operation_info_t struct that is passed as a parameter to the
secure entry function. The corresponding function is then looked up in a jump table
(Listing 4.16). The pointers to the input and output structures are passed on to the
internal crypto API.

Listing 4.15: Implementation of the secure entry function.

1 __attribute__((cmse_nonsecure_entry))

2 CYS_error_t tee_secure_entry(io_operation_info_t *op_info,

3 io_pack_in_t *in,

4 io_pack_out_t *out)

5 {

6 tee_operation_t function = tee_operation_table[op_info->operation];

7 if (function == NULL) {
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8 return CYS_ERROR_NOT_SUPPORTED;

9 }

10

11 return function(in, op_info->in_len, out, op_info->out_len);

12 }

Listing 4.16: Function type definition and jump table for dispatching secure function calls.

1 typedef CYS_error_t (*tee_operation_t)(io_pack_in_t *in,

2 size_t in_len,

3 io_pack_out_t *out,

4 size_t out_len);

5

6 static const tee_operation_t tee_operation_table[] = {

7 [TEE_RANDOM_GENERATE] = tee_generate_random_bytes,

8 [TEE_HASH_SHA256_SETUP] = tee_hash_sha256_setup,

9 [TEE_HASH_SHA256_UPDATE] = tee_hash_sha256_update,

10 [TEE_HASH_SHA256_FINISH] = tee_hash_sha256_finish,

11 [TEE_CIPHER_AES_128_CBC_ENCRYPT] = tee_cipher_aes_128_cbc_encrypt,
12 ...,

13 [TEE_PROT_ECC_P256_DERIVE] = tee_prot_ecc_p256_derive

14 };

Internal Crypto API 3 . This API is implemented as a set of internal functions,
which are called by the secure entry function (Listing 3.6 in Chapter 3). Listing 4.17
shows an example implementation of an internal function.

Since the non-secure side can pass pointers as input and output parameters to the secure
services, the secure firmware must validate them before using them. Otherwise, the non-
secure side could pass a pointer to a secure memory region and read or write data from
or to it. For this we perform address range checks 4 , for which the Cortex-M Security
Extension (CMSE) for compilers provides a set of functions.

All input pointers and their length must be passed to the cmse_check_address_-

range function. This function checks whether the pointers start and end address are
within the non-secure memory region. If the address range is valid, the function re-
turns a pointer, otherwise it returns NULL. All future accesses to the pointer must be
done through the returned pointer to make sure that they have been validated (exam-
ple shown in Listing 4.17). After checking the pointers, they are passed to the actual
crypto implementation. In Listing 4.17 the default software implementation provided by
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the CryptoService library is used. Alternatively this could be replaced by a hardware
driver.

Listing 4.17: Address range check of non-secure input and output pointer with the cmse_-

check_address_range function.

1 CYS_error_t tee_cipher_aes_128_cbc_encrypt(io_pack_in_t *in,

2 size_t in_len,

3 io_pack_out_t *out,

4 size_t out_len)

5 {

6 if (in_len != 3 || out_len != 1) {

7 return CYS_ERROR_INVALID_ARGUMENT;

8 }

9

10 uint8_t *key = cmse_check_address_range(
11 in[0].data, in[0].len, CMSE_NONSECURE);

12

13 uint8_t *iv = cmse_check_address_range(
14 in[1].data, in[1].len, CMSE_NONSECURE);

15

16 uint8_t *plain = cmse_check_address_range(
17 in[2].data, in[2].len, CMSE_NONSECURE);

18

19 uint8_t *cipher = cmse_check_address_range(
20 out[0].data, out[0].len, CMSE_NONSECURE);

21

22 if (plain == NULL || cipher == NULL || key == NULL || iv == NULL) {

23 return CYS_ERROR_CORRUPTION_DETECTED;

24 }

25

26 size_t plain_len = in[2].len;

27

28 return CYS_aes_128_cbc_encrypt(key, iv, plain, plain_len, cipher);

29 }

Using the Hardware Accelerator 5 . To use the hardware accelerator for cipher
encryption, a driver is needed. The open source project Trusted Firmware-M provides a
low-level driver implementation for CryptoCell accelerators. Listing 4.18 shows how the
first part of the function containing the address range checks remains the same. Only in
line 28 the driver code is called to perform the actual encryption. First, the CryptoCell
peripheral must be enabled and the AES operation is initialized. This example sets the
AES engine up for an AES encryption in CBC mode (lines 29 and 30). Line 31 specifies
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that the operation should use a user key that is passed as an input argument. If a key
stored in protected hardware on the device were used, this could be specified here. In line
39 the output buffer is explicitly set. Afterwards, the encryption operation is executed,
and the cipher text is written to the output buffer. When exiting the function, the
CryptoCell peripheral is disabled again to save power (line 53).

Listing 4.18: Implementation of the tee_cipher_aes_128_cbc_encrypt function with
the CryptoCell low level hardware driver.

1 CYS_error_t tee_cipher_aes_128_ecb_encrypt(io_pack_in_t *in,

2 size_t in_len,

3 io_pack_out_t *out,

4 size_t out_len)

5 {

6 if (in_len != 2 || out_len != 1) {

7 return CYS_ERROR_INVALID_ARGUMENT;

8 }

9

10 uint32_t *key = cmse_check_address_range((void *)in[0].data,

11 in[0].len,

12 CMSE_NONSECURE);

13 uint8_t *plain = cmse_check_address_range((void *)in[1].data,

14 in[1].len,

15 CMSE_NONSECURE);

16 uint8_t *cipher = cmse_check_address_range(out[0].data,
17 out[0].len,

18 CMSE_NONSECURE);

19

20 if (plain == NULL || cipher == NULL || key == NULL) {

21 return CYS_ERROR_CORRUPTION_DETECTED;

22 }

23

24 size_t plain_len = in[1].len;

25 size_t cipher_len = out[0].len;

26 size_t output_bytes = 0;

27

28 NRF_CRYPTOCELL->ENABLE = 1;

29 cc3xx_err_t status = cc3xx_lowlevel_aes_init(CC3XX_AES_DIRECTION_ENCRYPT

30 CC3XX_AES_MODE_CBC,

31 CC3XX_AES_KEY_ID_USER_KEY,

32 key,

33 CC3XX_AES_KEYSIZE_128,

34 NULL, 0);

35 if (status != CC3XX_ERR_SUCCESS) {
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36 goto exit;

37 }

38

39 cc3xx_lowlevel_aes_set_output_buffer(cipher, cipher_len);

40

41 status = cc3xx_lowlevel_aes_update(plain, plain_len);

42 if (status != CC3XX_ERR_SUCCESS) {

43 goto exit;

44 }

45

46 status = cc3xx_lowlevel_aes_finish(NULL, &output_bytes);

47 if (status != CC3XX_ERR_SUCCESS) {

48 goto exit;

49 }

50

51 exit:

52 cc3xx_lowlevel_aes_uninit();

53 NRF_CRYPTOCELL->ENABLE = 0;

54 return tee_map_error_values(status);

55 }

4.3.3 Using the Root of Trust to Encrypt and Decrypt Keys

When generating asymmetric keys, it is possible to encrypt the private key for secure
storage on the non-secure side. To encrypt and decrypt a key with the device root key
that has been set during system setup, the RIOT-TEE firmware provides a Root of Trust
API. This API is for internal use only and cannot be called from the non-secure side.
Figure 4.5 shows an example program flow for generating and storing a sealed key in
PSA Crypto.

The application can normally call the psa_crypto_generate_key function from the
non-secure side to generate a new key. To generate a sealed key, it needs to specify the key
location as PSA_KEY_LOCATION_LOCAL_SEALED. Now the call will be automatically
dispatched to the correct operation in the CryptoService API. Internally, the key is
generated by the CryptoCell 310 hardware accelerator 1 and then passed to the Root of
Trust API to encrypt it with the device root key (KDR) 2 . The firmware now passes the
encrypted key back to the non-secure side, where PSA Crypto stored it in the internal
key management module and returns the key ID to the application. The application can
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Figure 4.5: Example of a program flow for generating and storing a sealed key in PSA Crypto.

now use the encrypted key with the identifier, just like any other key stored by PSA
Crypto.

Key Encryption Function. The CryptoService API stipulates the use of the AES
OCB mode for key encryption. Since the CryptoCell 310 hardware accelerator does not
support AES OCB mode, this implementation uses the software implementation of the
OCB mode provided by the CryptoService library. This implementation provides the
OCB mode operations, but allows for replacing the AES block operation with a custom
one. To be able to use the device root key for encryption and decryption, the secure
firmware defines its own AES block function, which uses the CryptoCell 310 hardware
accelerator with direct access to the device root key. This way, when encrypting a
key, the tee_rot_encrypt_key_ocb function will call the cipher_encrypt_ocb
operation provided by the CryptoService library, but pass a function pointer to the
custom AES block function, to perform the AES block operation in hardware, as shown
in Listing 4.19.

Listing 4.19: Call of the OCB mode operation with a custom AES block operation.

1 /**
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2 * Interface to the aes cipher

3 */

4 static const cipher_interface_t cc310_aes_interface = {

5 AES_BLOCK_SIZE,

6 cc310_aes_init,

7 cc310_aes_encrypt_block,

8 cc310_aes_decrypt_block

9 };

10

11 CYS_error_t tee_rot_encrypt_key_ocb(uint8_t *key_in,

12 CYS_PROT_ecc_p256_key_t *sealed_key)

13 {

14 cipher_t cipher = { 0 };

15 cipher.interface = &cc310_aes_interface;

16

17 int32_t result = cipher_encrypt_ocb(&cipher,

18 NULL, 0,

19 CYS_PROT_SEAL_TAG_SIZE,

20 sealed_key->nonce,

21 CYS_PROT_SEAL_NONCE_SIZE, key_in,

22 CYS_PROT_ECC_P256_KEY_SIZE,

23 sealed_key->private_key);

24

25 if(result == CYS_PROT_ECC_P256_KEY_SIZE + CYS_PROT_SEAL_TAG_SIZE) {

26 return CYS_SUCCESS;

27 }

28

29 return CYS_ERROR_GENERIC_ERROR;

30 }

Using the Sealed Key for a Signature. Figure 4.6 shows an example program flow
of a hash generation with a sealed key. The non-secure application passes a message hash
and the key ID of a sealed key stored by the PSA Crypto key management module to the
PSA Crypto API. The sealed key is fetched from storage and passed to the CryptoService
API, which then calls the actual secure firmware implementation. The sealed key is
decrypted with the device root key and then used to sign the hash. The generated
signature is returned to the non-secure application. This example shows how keys are
still transparently handled by the PSA Crypto module and the secure firmware. From
the application perspective, there is no difference between using a sealed key and a plain
key.
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Figure 4.6: Example of a program flow for generating a hash signature with a sealed key.
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In the constrained IoT, it is required that operating systems and applications have a small
memory footprint and low processing overhead. It is therefore necessary to measure the
impact of a secure firmware on the performance and memory usage of an application.

The following sections evaluate the measurements of RAM and ROM usage, as well
as execution times of an application performing cryptographic operations with different
backends.

The compared backend configurations are shown in Figure 5.1. An application runs on
RIOT and calls the PSA Crypto API. PSA Crypto is built with three different configu-
rations.

1. The first configuration builds RIOT on its own and uses software implementations
that are already provided by the operating system. These are the RIOT Crypto
and Hash modules, as well as the µECC library, which is included as a third-party
package.

2. The second configuration builds RIOT for the non-secure world and the secure
firmware the secure world. In this variant, the CryptoService library is used as a
software backend. The CryptoService library uses the same software implementa-
tions as RIOT, making both versions comparable.

3. The third configuration also builds the secure firmware for the secure world, but
replaces the CryptoService library with the hardware driver for the CryptoCell 310
(CC310).
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Figure 5.1: Evaluation Configuration.

5.1 Runtime Overhead

To measure performance overhead, we execute one operation for 1000 iterations. Before
and after each operation we toggle a GPIO and measure the elapsed time with a logic
analyzer sampling at 12 MS/s. All operations are measured from start to finish and
include the overhead added by the PSA Crypto module and the firmware. The measure-
ments include time for input checks, function dispatching, as well as the key management
(storing and looking up keys) from PSA Crypto. The firmware overhead includes the
transition between secure and non-secure mode, as well as the execution of glue code.

The CryptoService library included in the RIOT-TEE software variant uses the same
implementation as the RIOT operating system. This makes both versions comparable,
since the execution times of the actual crypto operations are the same. The difference
between the RIOT only measurements and the RIOT-TEE software variants thus define
the additional overhead introduced by the secure firmware.

The RIOT-TEE version with hardware drivers uses the hardware accelerator of the target
platform, which has very different execution times from the software implementations and
is used more as a proof of concept than a real comparison.

All applications have been compiled with the -Os compiler flag, optimizing for size and
speed. The target CPU provides an instruction cache, which can be enabled to reduce
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the number of flash accesses and wait cycles. During these measurements we discovered
that caching significantly reduced the execution time of the crypto operations (e.g., hash
computations could be reduced to half the speed). Therefore, caching is enabled during
these experiments. We measure inputs of three different sizes, to show how input length
impacts execution times.

5.1.1 Hashes

We measure a multi-step SHA-256 execution. It consists of a setup part, which initializes
a context with initialization values defined by the FIPS 180-4 standard, an update part
which processes the current input and can be called multiple times, and a final part, which
performs the last hashing step and copies the computed digest into an output buffer. We
perform all these steps for inputs of sizes 32 bytes, 262 bytes and 1024 bytes.

Figure 5.2 shows the different execution times, while the exact values are listed in Ta-
ble 5.1. The execution times for the software implementations are similar, showing only
a small overhead caused by the secure firmware. The execution time of the update
operation increases proportionally with the input size when using the software imple-
mentations, while the finish operation remains constant. The length of the input has
only a small impact on the execution time of the hardware driver. For setup and up-
date operations, the transition between secure and non-secure mode including glue code
execution and input checks add up to ≈ 6µs, while the finish operation adds ≈ 15µs of
overhead.

The complete hash computation with a hardware driver takes ≈ 16µs longer on small
inputs, but stays almost constant when increasing the input sizes.

Figure 5.2: Comparison of processing times of multi-step hash computation.
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Version Operation Execution Times [µs]

32 Bytes 262 Bytes 1024 Bytes

PSA + RIOT Crypto
Setup 3 3 3
Update 5.84 316.94 1232.23
Finish 125.00 126.43 127.05

PSA + CryptoService
with RIOT Crypto

Setup 9.35 9.34 9.34
Update 11.82 321.03 1231.14
Finish 139.03 141.01 141.55

PSA + CryptoService with
CC310 AES Engine

Setup 46.02 45.99 45.97
Update 47.17 52.83 72.71
Finish 83.37 83.92 85.21

Table 5.1: Execution times of SHA-256 computation in numbers.

5.1.2 Cipher

For the cipher we measure an AES operation in cipher block chaining mode with a key size
of 128 bit. Here we measure single-step functions consisting of an encrypt and a decrypt
operation. The encrypt function includes the generation of a random initialization vector
(IV), which is included in these measurements. We encrypt and decrypt inputs of sizes
32 bytes, 256 bytes and 1024 bytes.

Figure 5.3 and Table 5.2 show the comparison between the different implementations.
Again, the execution times of the software implementations increase proportionally to
the input sizes. The overhead added by the secure firmware remains small.

The hardware implementation of the encrypt operation takes significantly longer than
the software encryption with the 32 byte input. This is caused by the random number
generator used for the IV generation. Here we use the HMAC DRBG provided by
the CC310 driver, which adds 650mus to each encryption operation. The encryption
operation itself is faster than the software implementation.

As with the hash generation, the execution times of the hardware accelerator remain
almost constant for different input sizes.

5.1.3 ECDSA

We measure an ECDSA operation with a NIST-P256 curve. The operation consists of
an asymmetric key pair generation, the signing of a 32 byte input hash with a private
key and the verification of the hash signature with a public key. As with the hash and
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Figure 5.3: Comparison of processing times of multi-step cipher encryption and decryption.

Version Operation Execution Times [µs]

32 Bytes 256 Bytes 1024 Bytes

PSA + RIOT Hashes Encrypt 182.41 810.94 2949.29
Decrypt 198.35 1410.8 5565.76

PSA + CryptoService
with RIOT Hashes

Encrypt 181.56 819.95 3006.65
Decrypt 201.08 1425.82 5619.51

PSA + CryptoService with
CC310 Hash Engine

Encrypt 785.01 794.38 825.34
Decrypt 122.83 132.68 163.62

Table 5.2: Execution times of AES-128 CBC encryption and decryption.

cipher operations, the execution times of the software implementations are similar, with
only a small overhead caused by the secure firmware (Figure 5.4).

The hardware driver implementation of the key generation and signature operations
is slower than the software implementation. This is probably due to the Public Key
Algorithms (PKA) and DRBG implementations of the CC310 driver.

Compiling the PKA driver code with -Ofast optimization instead of -Os, only lead
to negligible improvements, while significantly increasing the code size. Optimizing the
hardware driver further is out of scope of this thesis.

5.2 Memory Usage

To compare RAM and ROM usage, we build an example application, which performs
hash, cipher and ECDSA operations, and analyze the resulting ELF files. As with the
performance measurements, the code was optimized for size with the -Os flag.
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Figure 5.4: Comparison of process-
ing times of ECDSA key generation,
signature and verification.

Version Operation
Execution
Times [µs]

32 Bytes

PSA + µECC
Key Generation 137.82
Sign Hash 149.22
Verify Message 167.27

PSA + CryptoService
with µECC

Key Generation 143.34
Sign Hash 155.21
Verify Message 172.94

PSA + CryptoService with
CC310 PKA Engine

Key Generation 213.69
Sign Hash 299.70
Verify Message 88.38

Table 5.3: Execution times of ECDSA key generation,
hash signature and message verification times with a NIST
P-256 curve.

As shown in Figure 5.5, the application built with only RIOT uses ≈ 26kB of ROM and
≈ 14kB of RAM. When building the application with RIOT and the secure firmware
with the CryptoService software library, the RIOT binary gets smaller. This is because
implementations of the cryptographic operations are not compiled as part of the RIOT
binary anymore, but are now part of the secure firmware code. Combined, the firmware
and CryptoService library add ≈ 14kB of ROM, while RAM usage remains almost the
same.

Using the CC310 hardware driver as a crypto backend, adds another ≈ 15kB of ROM
usage, mostly due to the code size of the PKA sources. The driver also uses ≈ 2.5kB of
RAM.

5.3 Interpretation of Results

The measurements of runtime overhead show, that the secure firmware has a constant, but
insignificant impact on the execution time of cryptographic operations. When performing
symmetric encryption/decryption and hash operations in software, the size of the input
has a significant impact on the processing time. Using the hardware accelerator for these
operations reduces the processing time significantly.

These results do not translate to the ECDSA operations. Here, the key generation and
signature generation take significantly longer in hardware. Only the verification operation
is faster with the hardware accelerator.
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Figure 5.5: Comparison of Flash and RAM usage of the example application with different
secure firmware variants.

Regarding the usage of flash and RAM, the results are mixed. The secure firmware variant
with the software implementation does not increase the RAM usage. When running the
variant with the hardware accelerator, the CryptoCell driver increases RAM usage by
merely ≈ 1kB, which is negligible. Both secure firmware variant have a noticeable
impact on the flash usage. The software variant adds ≈ 14kB, the CryptoCell driver in
the hardware variant even doubles the size of the application binary.

Most platforms with TrustZone-M support provide sufficient flash and RAM for these
configurations. The biggest platforms (e.g., Nordic nRF91XX, nRF5340, Nuvoton M2354)
provide 1 MB of flash memory and at least 256 KB of RAM. Medium platforms such as
the Microchip SAML11, STM32L5, STM32U5 and Nuvoton M2351 range from 256 KB
to 640 KB of flash with a minimum of 64 KB RAM. The lower end of the STM32H5
series provided the smallest amount, with 128 KB of flash memory and 32 KB RAM
(larger options are available). Most of these MCUs will be able to run a secure firmware,
even with added features on the non-secure side, such as a large network stack. It can
therefore be concluded that, while this secure firmware uses additional resources, it is
still feasible to run it, especially considering the security benefits it provides.
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IoT devices with constraints in memory, battery and processing power are vulnerable to
a range of attacks. One of the most common threats in IoT devices are buffer overflow
attacks, which can be used to extract sensitive data or execute arbitrary code. Devices
can be hardened against those attacks by implementing memory protection mechanisms,
and isolating security critical data and code execution from untrusted applications or
operating systems. Common microcontrollers used for IoT devices, such as RISC-V and
Arm Cortex-M33 devices, provide hardware-based protection mechanisms, which can be
used to implement memory isolation in constrained devices. A special firmware is needed,
to leverage such technologies and provide a so called Trusted Execution Environment,
in which trusted code can execute without exposing any sensitive data to unauthorized
system components.

Due to the heterogenity of device architectures in the IoT, platforms require different
secure firmware implementations to leverage their respective memory protection features.
To make sure, RIOT remains portable, the CryptoService API was designed as a common,
platform-agnostic interface for secure firmware implementations. A secure firmware can
implement this API to provide cryptographic services to the operating system. This
way, RIOT can request crypto operations from the interface, without knowledge about
the underlying implementations. Applications can therefore be ported to other devices
without requiring any platform-specific code.

The contribution of this thesis comprises two parts. First, the CryptoService API was
integrated as a backend for the existing crypto subsystem in RIOT. This allows applica-
tions to use the regular PSA Crypto interface provided by the operating system, while the
actual execution is transparently dispatched to a secure firmware running in protected
memory.

In the second step we implemented a secure firmware for Arm Cortex-M microcon-
trollers with the TrustZone-M security extension for the IoT operating system RIOT.
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This firmware implements the CryptoService API and can thus be used by the PSA
Crypto module as a backend for cryptographic operations. It provides a set of common
cryptographic operations and allows for encryption of asymmetric private keys with a
device root key, so they can be stored securely by the PSA Crypto module.

The evaluation of the secure firmware shows that switching states to execute operations
in the secure world does not increase the processing time of cryptographic operations
significantly compared to the execution in a RIOT-only environment. Also, the increase
in RAM usage is small. While the amount of flash memory increases significantly, running
the secure firmware is still feasible on all devices with TrustZone-M support. Even on
the smallest available platforms the secure and non-secure binaries combined use less
than 50% of the available flash, leaving plenty of space for additional operating system
modules or a bootloader. Considering the benefits of the secure firmware, such as secure
key storage and memory isolation, the increase in memory usage is justified.

Outlook. At the time of writing, a secure boot process is not implemented, which
means that the firmware is not protected from unauthorized modifications. The device
root key that is used as a Root of Trust, is set by the firmware itself during startup. This
key should be provisioned securely, e.g., by an immutable bootloader, to ensure that it is
not compromised. For a complete secure boot flow, it is crucial that support for a secure
boot process is added to RIOT.

At the time of writing, the secure firmware supports only the nRF9160 microcontroller
and only a subset of its cryptographic hardware. In future work this firmware should be
extended to support other platforms with TrustZone-M support, as well as other platform
features, such as hardware key storage.

New types of affordable IoT devices, such as the Raspberry Pi Pico 2, combine two
Arm Cortex cores with two RISC-V Hazard3 cores. The Arm Cortex-M33 core has a
TrustZone-M extension, a SHA-256 hardware accelerator and a True Random Number
Generator. The RISC-V core provides a Physical Memory Protection Unit. This ar-
chitecture is a good candidate for a secure firmware implementation that supports both
TrustZone-M and RISC-V PMP. Future work should explore the possibilities of integrat-
ing such a platform with the secure firmware concept presented in this thesis.
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Glossary

Application Programming Interface A set of functions that define an interface between
computer programs..

Arm Platform Security Architecture A framework developed by Arm for developing
secure IoT systems, that defines security requirements and provides implementation
guidelines..

Internet of Things The network of physical devices, vehicles, home appliances and other
items embedded with electronics, software, sensors, actuators, and connectivity
which enables these objects to connect and exchange data..

Root of Trust Unextractable and unchangeable secret on a device, that can be used for
device authentication or attestation (e.g., a device root key)..

Trusted Execution Environment An isolated environment within a SoC, in which data
and code execution are protected from unauthorized access..

TrustZone A hardware-based security extension for Arm Cortex processors, that pro-
vides memory isolation and can be used as a base to build Trusted Execution
Environments..
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