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Kurzzusammenfassung

Timer sind Bestandteil jedes Mikrocontrollers und beeinflussen zahlreiche Aspekte eingebetteter
Systeme. Ihre wachsende Vielfalt lässt sich jedoch nur noch unzureichend über die historisch
gewachsenen APIs eingebetteter Betriebssysteme abbilden. Ein solider und zukunftsorientierter
Ersatz für die aktuelle Hardware-Abstraktion ist daher notwendig.

Diese Arbeit bietet einen umfassenden Einblick in heutige Timer-Peripherie. Wir analysieren die
Timer von 43 Gerätefamilien und acht Herstellern, charakterisieren Timeouts für typische IoT
Anwendungen, beleuchten die Timer APIs eingebetteter Betriebssysteme, identifizieren Mängel
aktueller Lösungen und diskutieren Ansätze zur Hardware-Abstraktion. Auf dieser Wissensbasis
entwickeln wir ein zweischichtiges Low-level Timer API Design und implementieren es für das
RIOT Betriebssystem. uTimer ermöglicht die transparente Nutzung unterschiedlicher Timer-
Typen über eine gemeinsame Schnittstelle. Diese ist plattformunabhängig nutzbar und stellt
grundlegende sowie gerätespezifische Funktionen zur Verfügung. Timer und Kanäle werden im
Durchschnitt verdreifacht und neue Timer-Typen, wie beispielsweise ultra low-power timer, nativ
unterstützt. Die Vereinheitlichung aktueller APIs sorgt darüber hinaus für konsistenten und gut
wartbaren Timer-Code innerhalb des gesamten RIOT-Ökosystems.

Wir entwickeln plattformunabhängige Unit-Tests sowie Benchmarks und führen diese auf ins-
gesamt 14 Mikrocontrollern in einem HiL-Testbett mit CI Unterstützung aus. Die vorgestellte
uTimer API benötigt für ihre zusätzliche Abstraktion lediglich zwischen 6 und 21 CPU-Zyklen.
Dies entspricht einem Timeout-Fehler von weniger als 0.05 %. Diesem steht die Nutzbarkeit
zahlreicher neuer Timer-Funktionen gegenüber. Verzichtet man für spezielle Anwendungsfälle auf
die Abstraktion von Timer-Typen, so kann jeglicher API-Overhead vollständig vermieden wer-
den. Die automatisierte Ausführung von Tests und Benchmarks auf der aktuellen Code-Basis
sowie für alle bevorstehenden Änderungen erleichtert außerdem die Entwicklung nachhaltiger
Peripherie-Treiber und ermöglicht deren fundierte Bewertung.
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Abstract

Timers are part of every microcontroller and influence numerous aspects of embedded appli-
cations. As the heterogeneous spectrum of timer peripherals continues to grow, embedded OSs
increasingly struggle to expose novel timers and advanced features via their time-honoured APIs.
The need for comprehensive and future-proof hardware abstraction therefore arises.

This work provides detailed insight into modern timer peripherals. We conduct a survey of timer
hardware across 43 device families from eight manufacturers, characterize typical timeouts within
IoT applications, examine timer APIs of popular embedded OSs, identify deficiencies of current
solutions, and discuss different approaches to hardware abstraction. This forms a solid base, on
which a two-layered low-level timer API design is proposed and implemented for the RIOT OS.
Its uniform interface allows transparently interchangeable use of all hardware timers. Generic
and peripheral-specific features are exposed, yet application portability is preserved. On average,
available timers and channels are tripled, and previously unexposed advanced timer types such as
ultra-low power timers become usable. Current interfaces are streamlined to form a single API,
fostering uniformity and maintainability of timer code throughout the whole RIOT ecosystem.

We develop platform-independent timer unit tests and benchmark suites that are executed using
a HiL testbed with CI support. The performance of our novel uTimer API is assessed on 14
MCUs. It only adds between six and 21 CPU cycles of abstraction overhead compared to existing
solutions. This corresponds to timeout errors of less than 0.05 % while numerous modern timer
features are made available to user applications and high-level OS modules. For high-performance
use, deliberate renunciation of timer-type transparency eliminates any performance differences
between APIs at the cost of narrowing application portability. Automated execution of the
contributed unit tests and benchmarks on nightly builds and pull requests moreover facilitates
the development of sustainable implementations and permits their sound evaluation.
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1 Introduction

With the ubiquitous Internet of Things (IoT), applications and deployment contexts of embedded
systems vastly increased in number and heterogeneity. Devices are often severely constrained
in terms of computational power, memory, and energy consumption. Hardware manufacturers
respond to this by continuously improving their microcontroller units (MCUs), including CPUs
and on-board peripherals. Timers in particular are required by almost every application and
have great influence on the total energy consumption, wherefore an ever-increasing variety of
them exists. Firmware developers must adapt to this frequent changes in hardware accordingly.
Embedded operating systems conveniently abstract from the underlying hardware and therefore
became the prevalent solution for developing sustainable applications in the IoT. They are ex-
pected to provide portable yet feature-rich hardware interfaces, carefully weighing generalization
against its inevitable performance degradation. However, current operating systems struggle in
doing so due to their inflexible APIs and the high heterogeneity of target devices. Their long
unchanged function definitions are limited to basic timer features, hence prevent exposure of
advanced timer features and innovative timer types. The need for sound and flexible low-level
peripheral abstraction therefore arises to meet the requirements of embedded applications.

RIOT [3] is an increasingly popular open-source operating system that targets low-power and
resource constrained devices in the IoT and Wireless Sensor Networks. It provides five distinct
low-level timer APIs, distinguished by exposed timer types and features. We aspire to unify
the existing modules into a single streamlined interface. It shall comprehensively present novel
hardware timers including all their functions, while preserving application portability. Our goal
is not to provide a fully-featured and ready-to-use implementation, but rather a sound and
future-proof low-level timer API design. The major contributions of this work are therefore
primarily of analytical and conceptual nature. We give profound insight into the variety of
hardware timers and how they are used within embedded applications, to base a reliable API
design on. Since RIOT targets more than 200 MCU boards, a solid interface must not only be
able to expose this hardware diversity, but the numerous device-specific drivers must likewise
perform correctly and resource efficiently. Automated cross-platform unit tests and performance
benchmarks encourage the development of sustainable implementations and permit their sound
evaluation. The contributions of our work are highlighted in the remainder of this section.
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1 Introduction

Chapter 2 introduces fundamental concepts and techniques that are encountered throughout this
thesis. It explains the basic components that make up a hardware timer and how they interact
with each other. Abstraction of on-board MCU peripherals and embedded operating systems are
moreover highlighted. The manifold challenges that arise when designing platform-independent
hardware interfaces for a heterogeneous range of devices are outlined in our problem statement in
Chapter 3. We address the limits of platform-specific solutions and the difficulties that come with
platform-agnostic ones. Hardware diversity, functional validation, and performance optimization
are likewise discussed.

In Chapter 4, a total of four analyses are conducted. First, a review of related work on low-level
timer properties, hardware abstraction techniques, and timer modules of embedded operating
systems is performed. The demands of high-level timer subsystems for peripheral interfaces
are furthermore highlighted. Second, we take a closer look at the current low-level timer APIs
of RIOT, identifying similarities and potential shortcomings. Third, we contribute a large-scale
analysis of all timer peripherals that are found on RIOT supported boards. Results from those 43
MCU families are compiled into a comprehensive overview and discussed in a comparative fashion.
Fourth, timing requirements of IoT applications are determined by examining timer usage within
the whole RIOT code base as well as prevalent network communication protocols. We use the
insights from all four analyses within Chapter 5 to base the design of our low-level timer API
on them. The proposed uTimer API consists of two distinct layers that allow transparently
interchangeable use of all available timer peripherals, provide out-of-the-box support for both
generic and device-specific functions, and preserve platform-independence whenever possible.
Besides the design itself, we discuss its trade-offs and remaining issues. Within Chapter 6,
uTimer is implemented for six distinct microcontroller platforms, covering a total of 129 boards.
We describe both its generic and platform-specific components, as well as their integration into
the RIOT system architecture. The correct behavior of implementations is subsequently verified
by timer unit test suites across all platforms.

Our design is evaluated within Chapter 7. Extensive benchmark suites are developed to assess
the manifold aspects of low-level timer drivers in an automated fashion. The performance of
uTimer is compared to existing APIs on 14 different MCUs. We reveal the impact of individual
design decisions and isolate the overhead that is inherent to the APIs themselves. This is followed
by an evaluation of various qualitative aspects and the suitability for integration into high-level
timer subsystems. The impact of the contributed benchmark suites on the operating systems
development life cycle is furthermore discussed there. Chapter 8 then closes this thesis with a
concluding summary of our contributions and gives an outlook on future work.
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2 Background

This chapter introduces basic concepts and techniques that are used in this thesis. Section 2.1
starts by explaining what microcontrollers are and how their basic timer peripherals work. It
is followed by a description of hardware abstraction techniques in Section 2.2 and a definition
of embedded operating systems, including their purpose and goals,in Section 2.3. This chapter
provides only an initial overview, as all aspects touched upon will be covered in detail within our
extensive analysis Chapter 4.

2.1 Microcontrollers and Timer Peripherals

A microcontroller unit (MCU) is an integrated circuit often found in embedded systems. It
combines a central processing unit (CPU), integrated memory, and peripheral devices within
a single chip package. In addition to system memory, it typically likewise includes read-only
memory (ROM) and random-access memory (RAM). Clock generators and internal oscillators
are moreover found in most devices. Today, a broad spectrum of MCUs is offered to cover a wide
range of possible applications. These differ in terms of computing power, energy consumption,
and on-board peripherals.

Among the manifold peripherals that are available, hardware timers are one of the few that are
essential to all embedded devices [29]. They are used to measure time and generate periodic
signals independent of the main program flow. The CPU hereby can primarily execute the
deployed firmware and is only rarely interrupted for timekeeping tasks. This is indispensable for
most embedded applications. Hardware timers, also referred to as low-level timers, differ from
software timers in that they are always physical hardware modules and are not generated by the
device firmware based on a purely virtual clock source.

Components of a basic timer peripheral are illustrated in Figure 2.1. Hardware timers count
pulses of an independent clock or external events within an internal counter register. It is either
incremented or decremented at a fixed frequency until a threshold is reached. This can either
be the maximum counter width or an arbitrary value, specified within a designated auto-reload
register. Once reached, the counter value is reset, an overflow is signalled, and the timer may
continue to count. Compare channels allow measuring time by triggering system events, whenever
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the counter register reaches a certain value. They hereby request the CPU to interrupt the main
program flow, enabling user applications to asynchronously react to elapsed timeouts. Counting
speed is determined by the selected timebase, i.e., clock source, and can be altered by a prescaler
or phase-locked loop (PLL). All functions of a timer module can be configured through its control
registers. Peripheral status is likewise exposed and includes various information, such as pending
interrupts or current counting mode.

Internal Clock

External Clock

Event Source

Prescaler

Counter Status & Control 
Registers

Compare Channels

Interrupt 
Controller

Auto-reload 
Register

0

...

n

1

0

Hardware Timer

Figure 2.1: Core components and functional overview of a basic hardware timer. Interrupt event
sources are indicated by flash symbols.

Today, various types of specialized hardware timers are offered alongside the ubiquitous general-
purpose modules described above. These include among others: high-speed timers, low-power
timers, and real-time counters. Although each type possesses a distinct feature set, they all
share the same basic concepts of operation. Firmware developers can therefore select the most
suitable peripherals from a wide range of timers and use either solely its basic functions or also
advanced timer-type specific features, whenever required for the current use case. In addition to
the huge variety of on-board peripherals, external timekeeping devices1 exist, but are used far
less frequently. They become an attractive energy-saving solution whenever very long-running
timeouts (> 10 s) are employed. Such external devices allow to completely power down the MCU
during timeout periods and only consume ultra low currents (< 50 nA) themselves.

2.2 Hardware Abstraction Techniques

All hardware peripherals within MCUs are usually controlled via designated registers. Those
registers are read to determine device status or to receive application data. Writing them allows
to control and configure on-board devices or triggers specific hardware functions. Whenever
accessing peripheral registers, the CPU must know their exact memory address and the firmware

1For example, the Texas Instruments TPL5111 ultra low power system timer (35 nA) for power gating in duty
cycled applications. See: https://www.ti.com/product/TPL5111 (Accessed: 04.01.2022)
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developer must interpret bit values correctly. This direct form of register access is not only highly
error-prone and cumbersome, but it also ties an application firmware to the target hardware. To
aid this problem, hardware is abstracted by so-called hardware abstraction layers (HALs). They
enable the user application to access hardware through a well-defined application programming
interface (API). Device manufacturers always provide at least a basic register mapping, while
some vendors even offer a rich function-based HAL. Register mappings are usually made available
in the form of header files that contain preprocessor macros. These often define custom data
types that in turn are used to model peripheral registers as well as complete peripheral devices.
Function-based APIs are built on top of these mappings and are commonly shipped within
vendor-specific software development kits (SDKs).

Besides such basic forms of hardware abstraction, there may be additional, more complex layers.
In general, lower layers are hardware-dependent up to a certain point and higher layers do
get increasingly independent of the underlying hardware while hiding more and more details of
low-level implementations. Well-designed APIs make up the interfaces between two adjacent
abstraction layers.

High-level Device API

Low-level Device API

Vendor SDK

Register Map

Hardware Peripheral

A
bs

tr
ac

tio
n

Figure 2.2: Example of a highly abstracted hardware peripheral. Each box represents one layer
of abstraction.

An example of a multi-layered hardware abstraction is illustrated in Figure 2.2. Here, registers
are first mapped to their memory addresses and peripherals are then exposed via a vendor-
provided SDK. This SDK in turn is used by a low-level device API to provide the application
with performant and user-friendly access to all peripheral features. Finally, a high-level device
API eliminates hardware-dependence entirely and provides additional features that go beyond
pure hardware presentation. User applications that exclusively use this high-level device API can
be run on any target hardware that implements the low-level device API. However, this large
amount of abstraction imposes a notable computational overhead and limits access to special
hardware-specific features, which potentially makes the API unsuitable for some applications.
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2.3 Embedded Operating Systems

Operating systems (OSs) are collections of reusable software components that interface device
hardware, manage system resources, and provide basic services to user applications. Embedded
OSs make up a subset of these and are designed to run on resource constrained hardware. The
targeted devices can be limited in multiple aspects, including processing speed, system memory,
and allowed power consumption [31]. Operating systems for embedded devices therefore place
a strong emphasis on resource efficiency and offer only a very limited set of features compared
to general-purpose operating systems. Developers are relieved from repeatedly implementing
hardware-specific driver code and provided with extensively tested solutions to common soft-
ware problems. These typically include memory management, task scheduling, or hardware
abstraction and are complemented with implementations for various communication protocols.
Application code can often be written in a portable and platform-agnostic fashion, allowing for
quick changes in target hardware. Embedded OSs hereby greatly reduce time-to-market and can
improve code quality. The application and the operating system are usually statically linked
together into a single firmware binary, effectively limiting the system to run only a single appli-
cation. As a consequence, the OS generally dictates the set of usable programming languages,
as for example the nesC dialect used for writing TinyOS [56] application.

There is a wide variety of application-specific operating systems, of which real-time operating
systems (RTOSs), such as QNX [8] or FreeRTOS [6], are by far the prevalent type. However, a
sharp distinction between different OS types is not always possible, as nowadays most embedded
OSs fall into several categories. RIOT [3], for example, is an open-source OS specifically designed
for resource constrained devices in the Internet of Things. It offers real-time capabilities and
implements full multi-threading. The microkernel architecture of RIOT allows out-of-the-box
support for a comprehensive list of features while keeping the minimum memory requirements
low. User applications can be written in the C, C++, or Rust programming languages. We will
go into detail about various aspects of the RIOT operating system throughout the body of this
work.
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3 Problem Statement

The challenges with designing extensive yet flexible application programming interfaces for a
broad and heterogeneous spectrum of target devices are manifold. In this chapter we describe
the different aspects to this problem with a focus on timer peripherals.

Hardware timers are part of every microcontroller and essential to almost all applications. Due to
their vast use cases, they affect numerous aspects of embedded systems [29]. These include energy
consumption, responsiveness, data transmission, and system performance in general. With the
tight resource constrains that are put upon devices within the Internet of Things or Wireless
Sensor Networks, their comprehensive yet efficient use is of utmost importance [17]. Although
developing hardware APIs may seem simple at first, it quickly becomes challenging when different
types of peripherals shall be exposed via a uniform interface [22]. Because of the far-reaching
influence of timer peripherals, we nevertheless consider it essential to address this problem in a
sound manner. Updating nowadays outdated and insufficient APIs to support advanced timer
features and optimizing low-level driver implementations brings numerous benefits for modern
embedded applications.

3.1 Limits of Platform-specific Solutions

Hardware APIs present peripherals to user applications and other system modules in a convenient
and user-friendly way. Whenever only a single peripheral needs to be exposed, the associated
software interface can be easily tailored to it. Truly platform-specific solutions do not distinguish
between different types within a single class of peripherals, such as basic and advanced timers.
This approach is perfectly sufficient, as long as only a single microcontroller is targeted and
future application portability is no concern. API design, however, quickly becomes challenging
when multiple yet still mostly homogeneous devices, e.g., MCUs of the same family, are targeted.
Even though their peripherals are almost identical in operation principles and features, some may
require a slightly modified driver or do not support a specific feature. With a large and highly
heterogeneous range of target devices, this problem intensifies and can no longer be solved by
any platform-specific solution. In such cases, differentiating between target platforms within
low-level peripheral layers becomes inevitable [3].
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Well-designed hardware APIs nonetheless should bundle peripherals of the same class behind
a single interface. Fully platform-specific solutions struggle at implementing this due to their
inflexibility and lack of abstraction. Platform-agnostic APIs instead are capable of modeling
these peripheral differences. They achieve this by providing multiple implementation variants
that possess a common interface. Whenever the target device is changed, the respective driver
for the new device is automatically loaded. Since all drivers share the same interface, user
applications remain fully compatible and therefore do not need to be manually modified. This
approach, however, tends to limit available functions to the basic set of features that is common
to all target devices [30]. While this potentially results in simple and streamlined application
programming interfaces, features that are only supported by a subset of the platforms are hereby
often left unexposed. With growing peripheral diversity, this not only increasingly limits the
power of the API, but also prevents most optimization opportunities that MCUs nowadays
offer.

Embedded operating systems are designed to provide a sound base that user applications can
build upon [3]. They support a large range of devices and allow for application portability
to a certain extent. Fully platform-specific hardware APIs therefore are generally considered
unsuitable for embedded OSs.

3.2 The Abstraction Trade-off

In the previous section we pointed out that an increase in application portability, i.e., platform
compatibility, is usually linked to an increase in abstraction. However, each additional software
layer entails further computational and memory overhead [22]. Containing the computational
overhead is particularly important with timekeeping applications in order to maintain timeout
accuracy and to ensure overall system responsiveness. The effects on memory consumption, on
the other hand, are less important, but also not to be neglected [51].

This means that operating system developers must carefully weigh the benefits and drawbacks of
different API designs. Forcing user applications and OS modules to directly interact with timer
hardware registers may yield near-optimal performance but is highly error-prone, laborious,
and prevents portability. Abstracting timer peripherals results in portable and user-friendly
solutions but decreases performance. Hence, choosing an appropriate level of abstraction can
be challenging and is referred to as the abstraction trade-off [55]. Sacrificing system memory
to reduce computational complexity can alleviate the negative performance impact to a certain
extent. Corresponding techniques include, for example, replacing resource-heavy calculations
with lookup tables and loop unrolling. This idea was first described by Hellman [24] and is
referred to as the time-memory trade-off 1.

1The time-memory trade-off is also referred to as the space-time trade-off.
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Resource requirements of embedded systems are also important from an economic point of view.
Here, the challenge lies in balancing production and development costs. An increased resource
consumption may require to upgrade the target hardware. This can lead to significant increases
in production costs, as embedded devices are often deployed in large quantities. Complete renun-
ciation of abstraction, on the other hand, skyrockets firmware development costs, dramatically
increases time-to-market, and is therefore also undesirable [31].

Next to pure performance aspects stand the capabilities of an API. The more abstraction is
applied, on one hand, the more details of the underlying hardware are hidden [22]. With little
to no abstraction, on the other hand, solutions fail to support heterogeneous target devices.
The current peripheral APIs of embedded OSs therefore tend to be limited to generic features,
leaving progressive but device-specific ones unexposed, as confirmed by our review of timer APIs
in Section 4.1.4. In order to comprehensively support novel timers while sacrificing neither
portability nor compatibility, a careful balance between feature support and generalization must
be obtained. The need for modern low-level timer APIs that supersede the existing rigid and
functionally limited interfaces therefore arises.

So the problem of abstracting timer hardware lies in carefully balancing the manifold aspects of
the outlined trade-offs. A low-level timer API should offer feature-rich and convenient timer use
while confining performance degradation and allowing for comprehensive application portability
at the same time.

3.3 Hardware Heterogeneity

The great diversity of embedded systems makes the development of generic solutions extremely
difficult [31]. With respect to hardware timers, characteristics and features of general-purpose
peripherals are well-known and allow for sound generalization. Advanced timer types, on the
other hand, differ largely between device families in both capabilities and features.

Hardware manufacturers continuously improve existing peripherals and present new timer types
to satisfy the demanding requirements of modern embedded applications. The RIOT OS alone
supports more than 200 different microcontroller boards, consisting of 43 device families from
eight manufacturers, and new devices steadily expand this range as they become available [48].
Each additional board potentially introduces novel types of timer peripherals. A comprehensive
overview of the properties and capabilities of the target hardware does not exist. However,
profound knowledge about it is a necessity for designing extensive yet lasting APIs. Accordingly,
it is becoming increasingly difficult for OS developers to design streamlined software interfaces
that are also able to support the latest hardware features.
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3.4 Validation and Optimization

Besides all above discussed aspects, long-term system operability and component availability are
likewise important parts of the life cycle of embedded systems [31]. Sound application portability
allows for effortless changes in target hardware whenever the current microcontroller is no longer
manufactured or cheaper devices become available. This challenges embedded operating systems
by expecting user applications to behave identical on all supported devices. In addition, extensive
regression testing must be performed to ensure that neither upcoming nor recent changes to the
OS codebase cause bugs or major performance degradation within existing implementations.

Unit tests support developers by verifying proper behavior of system modules and low-level code
on both new and currently supported devices. With RIOT OS, for example, extensive test suites
already assert the functionality of low-level timer drivers. Their periodic execution on a subset
of all supported boards greatly reduces the risk of malfunctioning or even fully dysfunctional
implementations [58]. Benchmarks that additionally assess the performance of low-level drivers,
however, are not yet available [28]. This makes quantifying the impact of software design decisions
and pending pull requests on non-functional requirements impossible. Whether or not a certain
microcontroller fulfills application requirements therefore cannot easily be determined. The lack
of benchmarks not only hinders the development of performant peripheral drivers, but potentially
also leaves side effects of imminent code changes undetected. This problem again intensifies with
the steadily increasing number of targeted boards. Automated and periodic execution of qualified
benchmark suites therefore is almost inevitable for providing reliable and lasting embedded OSs
for a constantly evolving spectrum of embedded devices [3].
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A well-founded overview of both hardware and software is essential for creating a knowledge base
that ensures a viable and future-proof API design. We therefore conduct four different analyses
prior to designing the aspired low-level timer interface, as describe in Chapter 5.

This chapter starts with a survey of related work and embedded operating systems, which are
frequently used with resource-constrained IoT devices, in Section 4.1. The timer subsystem of
RIOT OS is separately discussed in detail within Section 4.2. Comprehensive insight into the
diverse spectrum of timer peripherals is given by our large-scale hardware analysis in Section 4.3.
Timer usage within the whole RIOT codebase is examined and findings are extended by timing
requirements of network communication protocols in Section 4.4. Each section is individually
concluded with a summary of its most important aspects.

4.1 Related Work

Scientific research related to embedded timer peripherals and their associated hardware APIs is
presented in this section. It is split into the following four categories:

a) characteristics of timer peripherals from a hardware point-of-view,
b) comparative analyses of timer hardware across different MCUs,
c) generic design aspects and implementation techniques for timer subsystems,
d) properties, similarities, and issues of timer APIs found in popular embedded OSs for

resource-constrained devices.

The listed publications were selected according to their anticipated relevance for this work, as
estimated to the best of our knowledge.

4.1.1 Properties of Hardware Timers

Common operation principles of general-purpose timers, their basic feature set, and their typical
characteristics are described by Kamal [29, pp. 152 – 159]. The author elaborates on available
operation and counting modes, different peripheral states, and various timer properties. These
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include, among others, counter register width, clock prescaling capability, and auto-reload func-
tionality. We likewise cover these aspects within our analysis of timer hardware, as described
in Section 4.3. Common use cases and exemplary applications for general-purpose timers are
further depicted. These include measurement of time periods, task scheduling, and baud rate
control for communication protocols. Moreover, other types of timing hardware, here namely
real-time clocks (RTCs) and watchdog timers (WDGs), are briefly illustrated.

While less detailed than Kamal [29] did, Susnea and Mitescu [54] also give insight into general-
purpose timer peripherals. Their book extends the above publication by describing functions
and operation principles of timer hardware that is capable of generating pulse-width modulation
(PWM) output signals. The authors furthermore identify compare channels as another key
component of timer peripherals that we therefore also incorporated into our hardware analysis.

Besides on-board peripherals, Dimitrievski et al. [17] highlight the huge energy-saving potentials
of external ultra-low power timers. They harness a Texas Instruments TPL511, which consumes
less than 35 nA and provides an accuracy of 1 %. Battery lifetime of an IoT sensor node, deployed
within a Wireless Sensor Network (WSN), could hereby be extended by a factor of up to 80.
This not only shows the importance of energy preservation with resource restricted devices in
general, but also showcases the tremendous optimization potential timer peripherals offer.

Reverter [47] uses a hardware timer to autonomously trigger peripheral actions independent of
the CPU. This reduces the total number of wake-ups, resulting in a halving of the systems power
consumption. He moreover found wake-ups to entail a significant overhead power consumption1.
Driver support for hardware features that allow to maintain CPU sleep, such as auto-reload or
timer chaining, therefore is of utmost importance with resource constrained devices.

4.1.2 Comparative Analyses of Timer Peripherals

Susnea and Mitescu [54, pp. 67-68, pp. 87-89] conducted a comparison of timer peripherals from
three MCU families, namely Motorola HC11, Atmel AVR, and Intel 8051. They found that even
though specific timer features differ, the assessed peripherals still share many common operation
principles. Asynchronously waiting for a specified amount of time, measuring elapsed time, and
counting of events are pointed out as predominant use cases. A low-level timer API, as we aspire
it, must in particular be capable of the first two.

Sharp et al., members of the TinyOS [56] developer community, compiled an overview of timer
hardware during the specification of their timer interfaces. Timer properties of the Atmega128,
the MSP430, and the Intel PXA27x MCUs are depicted within their TinyOS Enhancement Pro-
posal #102 Appendix A [52, Ln. 676ff]. The authors found all three platforms to provide several

1Overhead power consumption denotes the energy that is used just for transitioning between device power modes.
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timer peripherals of at least two different types. Differences in counter width, clocking options,
prescaler capabilities, and in the number of available compare channels were emphasized.

Further analyses of microcontroller hardware exist, but they do not cover timer peripherals at the
required level of detail to derive interface design decisions from them. We therefore contribute a
large-scale analysis of timer hardware ourselves in Section 4.3. It covers all the 43 device families
that are supported by RIOT OS at the time of writing.

4.1.3 Hardware Abstraction and Timer Interfaces

The hardware abstraction layers (HALs) in RIOT are described by Baccelli et al. [3]. The OS
provides a single peripheral layer that exposes hardware to system modules and user applications.
This design keeps abstraction overhead low, but limits feature support.

The two-layered design by Kleeberger et al. [30] separates register access from peripheral driver
code. This allows profound feature support and makes the abstract device drivers independent
of the underlying hardware. The authors leverage this additional layer of abstraction to mock
hardware peripherals during unit tests.

Handziski et al. [22] introduce another level of abstraction in their proposed HAL design. Each
of its three layers allows for a different granularity of peripheral access. Hardware-independent
APIs are provided, while access to platform-specific features is available at the cost of consciously
sacrificing application portability. Developers are able to mix interfaces of different abstraction
levels within the same firmware. The authors confirmed the feasibility of their multi-layered
HAL by implementing it for a Wireless Sensor Network (WSN) application.

The Common Microcontroller Software Interface Standard (CMSIS) [2] is a widely used set of
uniform APIs for Cortex-based devices, such as the extensive STM32 device family. It exposes
core components, including the SysTick timer. Additional timer peripherals, however, remain
unsupported by it, since these are not part of the generic Cortex processor family.

Another platform-independent but more extensive timer API is proposed by Lindgren et al.
[35]. They assess similarities between timers of the STM32F4 and LPC1700 MCU families and
discuss their impact on the proposed design. Common timer properties and features that can be
exposed through a uniform API are identified. These include counter width, interrupt capability,
prescalers, auto-reload, and compare channel count. The authors furthermore emphasize, that
the exposure of multiple compare channels significantly benefits timer maintenance.

High-level timer modules heavily depend on low-level timer APIs and the underlying hardware
abstraction layers. Even though these modules are beyond our scope, they provide important
insight and allow the deviation of some implications for our aspired low-level timer API. A quick
survey confirmed the statement of Lindgren et al. [35]: Access to multiple compare channels is
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an indispensable requirement for many high-level timer modules [19], [25], [26], [43]. Most indeed
do make beneficial use of timer features that go beyond the generation of a simple monotonic
clock tick [13], [14], [19], [20], [25], [26]. With contemporary applications, driver support for
low-power operation modes as well as dynamic clock and power management of peripherals are
just as important [7], [41], [50].

4.1.4 Embedded Operating Systems

The timer subsystem of RIOT OS [4] consists of five low-level and two high-level timer modules.
Due to its importance for our work, we present the provided features and discuss its different
APIs separately and in-depth within Section 4.2.

Within this subsection, we inspect the timer APIs of four popular embedded operating systems
that are likewise targeted at low-end embedded devices. More complex and sophisticated solu-
tions, such as QNX [8] or Windows Embedded Compact [42], are not part of this survey. Each
OS is discussed individually before a comparative summary concludes our findings.

Contiki / Contiki-NG

Contiki [11] is a cross-platform embedded OS for low-power IoT devices. It is free to use and
distributed under the terms of the 3-clause BSD license. While the original Contiki-OS received
no updates since 2018, its successor Contiki-NG [12] is still under active development. Both
possess a simple clock module that provides system time as an unsigned integer, representing
clock ticks since system boot. Its API only allows to read the counter value and to actively wait
for a number of clock ticks, hereby blocking the CPU. Based on this clock, five different timer
APIs exist. Their interfaces and features are similar, but timer behavior and resolution differs.

The timer module offers high-resolution short-running timeouts, while stimer provides long-
running timeouts with one second resolution. Both require the application to actively poll for
timer expiry but are safe to use within interrupt contexts. The etimer and ctimer modules
can be used to either post an event to a process or to execute a callback function. Both,
however, are not interrupt safe and operate with system tick resolution. Last, rtimer can use
a separate clock instance to provide real-time task execution but might be unavailable when
other OS modules are in use. None of the APIs allows direct access to available hardware timer
peripherals, solely relying on software multiplexing timeouts onto the central system clock.
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FreeRTOS

FreeRTOS [6] is a widely used real-time embedded OS that targets more than 40 MCU families
and requires only 9 kBytes of ROM in its minimal configuration. It is actively developed by
Amazon Web Services and released under the MIT license. The operating system itself only sup-
ports virtual software timers that are multiplexed onto a single system clock source. Application
developers can extend it by manually writing platform-dependent code to make use of available
hardware timers. This, however, closely couples the firmware to the current target hardware
what impedes application portability. A single timer API is provided out-of-the-box, offering
basic features, such as starting, stopping, deleting, and resetting timers. Each of its function
calls exists in two variants that must be used according to the calling context. The API allows
changing a timers period even after creation. A callback function can be attached to each timer
and is executed by the timer service task upon timeout expiry. All virtual timers can furthermore
be named and possess a unique identifier.

TinyOS

TinyOS [34], [56] targets low-power MCUs, lays its focus on wireless communication, and there-
fore is commonly deployed within WSNs. Applications are written in the nesC dialect and are
made up of multiple components that are connected via predefined interfaces. The OS can be
used free of charge and is distributed under the terms of the BSD license. Its timer subsystem
is described in the TinyOS Enhancement Proposal 102 [52]. All of its five timer APIs directly
interface hardware peripherals. They, however, “do not attempt to capture [timer] diversity
in a platform-independent fashion, [besides] measuring time and triggering events at specific
times.” [52, ln. 41ff]. Each interface is parameterized by its precision (e.g., 1 ms) and three
additionally by their width (e.g., 32 bit), providing static properties of the underlying peripheral
to the application.

Platforms expose their timers via the Counter and Alarm interfaces. The first only allows to
read the current system time and signals overflows by a respective event. The Alarm interface
extends the Counter interface by compare channels, signaling timeout expiry via designated
events. It is split into basic commands, such as start(), stop(), or fired(), and an
extended interface with commands for advanced use, such as startAt(), isRunning(), or
getAlarmValue(). Synchronous delays using active waiting are available via the BusyWait
interface and LocalTime provides a fixed 32-bit counter without overflow event handling. Last,
the Timer interface again is split into a basic and an extended command set. It supports periodic
timeouts and can therefore be used as a base clock for software timer multiplexing.
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Zephyr

Among all reviewed operating systems, Zephyr [39] is the newest project. This real-time open-
source OS is targeted at generic IoT devices and is actively developed by the Linux Foundation.
It supports a diverse range of boards and is distributed under the Apache 2.0 license. All
available hardware is modeled using a DeviceTree [16] data structure and system components
can interactively be configured using Kconfig [36].

Low-level hardware timers are exposed via a single Counter interface that operates on device
level. It requires user applications to provide a platform-specific mapping for each MCU target
individually. The API supports basic functions, including start(), read(), and set_chan-

nel_alarm(), but does not allow writing the counter value. It can be used to generate absolute
and relative one-shot timeouts, but lacks support for periodic timeouts. Separate callback func-
tions can be attached to compare match as well as overflow events. Both, static timer attributes,
such as counter width or channel count, and run-time properties, such as counting mode or pend-
ing interrupts, are made available to the application. An optional guard period can be set to
delay the start of absolute alarms whenever they would exceed counter range boundaries. RTCs
should be exposed via the designated interface. However, “all RTC peripherals are implemented
[platform-dependent] through Counter” [37] at the time of writing.

Platform-agnostic software timers are provided by the kernel timer module k_timer, which
multiplexes all virtual timers onto the kernel system clock. It offers periodic timeouts and allows
the attachment of callback functions to timeout expiry and early stop events. Each software
timer is named and maintains a status value that indicates how often it expired since it was
last read. Resolution is limited by the system clock tick rate, which usually is in the order of
milliseconds. Requesting timeouts in the microsecond range is unlikely to work and strongly
discouraged by the developers [38].

Comparison and Synopsis

Out of all four showcased embedded OSs, two provide APIs for peripheral-level access to hardware
timers, while the other two solely offer virtual software timeouts. Three statically multiplex all
virtual timeouts onto a single system clock, where TinyOS is the exception. However, TinyOS still
requires the user to manually distribute virtual timeouts on the instantiated software modules.
While three of the OSs do provide at least one form of fully platform-agnostic timeouts, none
of them exposes advanced timer features via their provided APIs. Developers are left with
the task of manually implementing low-level driver code for such, at all times. Furthermore,
none of the systems allows to dynamically select application-appropriate peripherals based on
hardware attributes, such as counter width or compare channel count. Possibilities to control
timer counting modes or peripheral interconnect systems were present within none of the analyzed
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software modules. All virtual timeouts were found to be in the range of milliseconds or more,
whereas low-level timeouts are usually expressed as raw counter ticks.

4.1.5 Miscellaneous

Comparative benchmarks of the two high-level timer modules that RIOT OS offers are performed
by Ismail [28]. Various characteristics of virtual software timeouts are assessed. These include
system timekeeping, timeout accuracy, scaling behavior, and maintenance overhead. The author
uses PHiLIP [58] to record GPIO event traces independent of the target hardware. Measurements
assess eight different microcontroller boards and are conducted in an automated fashion. We base
our evaluation setup on this work, as described in-depth within Section 7.3.

4.1.6 Summary

Hardware timers were found to share many common operation principles and properties. Besides
basic general-purpose timers, a multitude of advanced timer types, each offering a distinct set
of features, are often available. Even though they all still share certain properties, timer type
specific features were found. This means that our API design can provide a generic platform-
independent interface but also must be capable of exposing advanced features that might not be
available on every device. We evaluate the addressed properties and capabilities in detail within
our timer hardware analysis in Section 4.3. Other comparative analyses of embedded hardware
were previously conducted, but only two discuss hardware timers at the required level of detail.
The importance of energy consumption with resource-constrained devices was highlighted within
multiple publications. As timer peripherals possess a huge power-saving potential, a well-design
API should support the respective features.

There is a multitude of options for presenting hardware to applications and OS modules. Single-
layered solutions tend to yield the best run-time performance, but are limited in the set of features
they can expose in a platform-independent way. At least one additional layer of abstraction
therefore was found necessary for exposing a heterogeneous range of peripherals. A simple timer
API implementation confirmed the feasibility of this approach. Every OS module depends on
the capabilities of the underlying abstraction layers. A brief look at high-level timer subsystems
affirms the importance of profound yet performant low-level hardware interfaces. Access to
all available timers, including their compare channels, and dynamic peripheral configuration at
run-time were identified to be of utmost importance for high-level timer modules.

We identified a clear demand for efficient platform-independent timeouts, but at the same time
found existing interfaces to lack the flexibility to adequately provide such. Popular embedded
operating systems try to obviate this deficiency by multiplexing virtual software timeouts. This
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not only limits timeout resolution to the millisecond range, it moreover wastes the enormous
potential of advanced timer peripherals that nowadays are widely available. Especially with small
IoT devices, developers therefore regularly are forced to bypass existing hardware interfaces along
with manually replacing them with error-prone and platform-specific solutions. Generic mapping
and configuration of peripherals, e.g., using Devicetree [16] and Kconfig [36], was furthermore
found beneficial to application portability.

4.2 RIOT OS Timer Modules

All current low-level timer APIs of RIOT are highlighted in this section. We outline common
design aspects, give insight into implementation details and discuss current shortcomings.

At the time of writing, a total of five low-level timer modules exist in RIOT OS. Each of these
exposes a specific class of hardware timers or provides an advanced timer-related function to the
user application. Three APIs, namely periph_timer, periph_rtc, and periph_rtt, are
designed to handle common timekeeping applications while the two remaining modules, namely
periph_pwm and periph_wdt, are used for more specialized tasks. An overview of all analyzed
low-level APIs including their properties and functions is given in Table 4.1. Each module is
individually discussed in the remainder of this section and a brief overview of available high-level
timer subsystems is given before we finish with a summary of all analyzed low-level timer APIs.

4.2.1 General-purpose Timer Driver

The periph_timer module drives the various general-purpose timers of an MCU. It is designed
to be used as a generic interface that provides short-running timeouts with a high resolution.
Multiple general-purpose timers, including all their compare channels, can be addressed and
simultaneously be used via this API. Their counter values are exposed as raw counter ticks and
a desired counting frequency can be specified during peripheral initialization.

Basic common timer features are made available via the platform-independent function interface.
These include reading the counter register value and arming timer channels to generate events at
specified counter values. Writing the counter value is not supported by the API. A user-defined
interrupt service routine (ISR), to be executed upon compare match events, can furthermore be
attached during timer initialization. Only a single combined callback function can be attached,
hereby leaving the distinction between source channels to the user application. More advanced
configuration options such as counting mode, auto-reload, and clock selection, however, are not
exposed. These are implemented in a highly platform-dependent fashion and handled directly
by the respective peripheral driver, hence are unavailable at run-time.
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periph_timer periph_rtc periph_rtt periph_pwm periph_wdt

Timer types General-
purpose

RTC, (RTT) RTT, low-power Various Watchdog
timers

Time unit Counter ticks Wall-clock time
struct

Counter ticks,
relative time

struct

N/A Counter ticks

Timeouts short-running,
high resolution

long-running,
low resolution

long-running,
low resolution

N/A short-running,
high resolution

Multiple timers
usable (I)

X × × X ×

Multiple
channels /
alarms usable (II)

X × × X ×

Interrupts /
Callbacks

One combined
callback per
timer for all

compare match
INTs. No
overflow
callback.

One alarm,
additional left
unusable. No

overflow
callback.

One alarm,
additional
alarms left
unusable.
Overflow
callback

attachable.

× WDT warning
INT callback
attachable, if
supported.

Low-power
operation (III)

× X X × X

Power up/down
support (IV)

× X X X ×

Timer
capabilities
indicated (V)

× × × × X

Peripheral
allocation
conflicts (VI)

X X X X ×

Timer types het-
erogeneous (VII)

× X X × ×

(I) Module is able to interface multiple timer instances, distinguished by a platform-specific timer instance
identifier.

(II) Module is able to interface multiple compare channels or RTC alarms per timer instance, distinguished
by a numeric channel identifier.

(III) Module is primarily used to drive timer types that offer low-power operation modes and features.
(IV) Explicitly powering up or down (i.e., power gating) a timer instance is supported by the module. This

is different from initialization and start or stop operations.
(V) Static properties and capabilities of the timer hardware (e.g., width, feature support, number of compare

channels) are made available via the module.
(VI) Exposed timer peripherals are simultaneously used by other low-level modules, hereby creating a resource

allocation conflict. For example: Using TIM1 for PWM generation via periph_pwm must result in
removal of TIM1 from the set of timers that are driven by periph_timer. Otherwise, a peripheral
allocation conflict arises.

(VII) Module is used to drive other timer types than initially intended (e.g., using a ”low-power timer” instead
of a ”real-time timer” with periph_rtt).

Table 4.1: Comparison of current low-level timer modules in RIOT OS
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4.2.2 Real-time Clock Driver

Real-time clock (RTC) peripherals can be accessed via the periph_rtcmodule. It provides user
applications with long-running timeouts. Elapsed time is represented as both a wall-clock time
struct2 with second resolution and an additional sub-second counter with microsecond resolution.
Functions for convenient time conversion and comparison are offered by the module.

Reading and writing the RTC time registers as well as explicitly powering up or down the
hardware module is supported by the API. The exposed RTC peripheral is hard-coded, hereby
eliminating the need to specify a peripheral identifier during API calls. This, however, sacrifices
the option to address multiple RTC modules, as provided by some MCUs. This restriction
likewise applies to alarm channels. Only one single channel is exposed to the user application,
hereby leaving additional alarms unusable. A user-defined callback function can be attached to
the alarm channel, but overflow events remain unexposed.

4.2.3 Real-time Timer Driver

The real-time timer driver periph_rtt is a mixture of the general-purpose and RTC modules,
offering long-running timeouts with a low resolution. It is designed to be used with designated
real-time timer peripherals, but regularly is repurposed to expose other timer types, such as low-
power timers. Elapsed time is represented as raw counter ticks, but can be converted to relative
wall-clock time using the provided preprocessor macros. The current counter value can both be
read and set to an arbitrary value. While not providing functions to start and stop the hardware
counter, functions for powering the whole timer module up and down are given instead.

Similar to the RTC driver, the RTT driver does not distinguish between hardware timers. It
therefore likewise only supports a single hard-coded timer peripheral. Equally, only a single alarm
channel is exposed. However, in contrast to the RTC module, an exclusive overflow callback can
be attached. Configuration of this callback is independent of timer initialization and can therefore
be altered at any point during run-time.

4.2.4 Pulse-width Modulation Driver

The generation of pulse-width modulation (PWM) signals is a common task with embedded
systems. Some timer peripherals therefore offer designated hardware features to support this.
With RIOT OS, the periph_pwm interface can utilize both hardware timers that offer such
PWM capabilities and designated PWM hardware. Since this API is focused on output signal

2The wall-clock time struct consists of one unsigned integer value for each of the following time units: second,
minute, hour, day, month, year, day of week, day of year
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generation instead of sole counting tasks, raw values of the internal counter register are left
unexposed. It therefore is impossible for applications to determine the current position within
the period of a generated signal and the module cannot be used to generate timeouts.

The frequency and resolution of the generated waveform can be specified during initialization,
hereby impacting the duty cycle of the output signal. Multiple simultaneously operating PWM
channels are supported and distinguished by a unique identifier. Each channel has its own con-
figurable duty cycle but shares frequency and resolution with all other channels of the hardware
module. Powering up or down single PWM channels is not supported. Once the hardware
peripheral is enabled, all channels are always active.

4.2.5 Watchdog Timer Driver

Watchdog timers (WDGs) are exposed via the periph_wdt module. As with PWM peripher-
als, these can neither be used for simple counting tasks nor to generate application timeouts.
Nonetheless, they are classified as timer peripherals on most MCUs while providing only a very
limited feature set. The periph_wdt interface comprehensively exposes this set of features to
other OS modules and user applications alike.

Two common operation modes, namely normal and windowed mode, are supported and a user-
defined callback function can be executed prior to a watchdog timeout, whenever supported by
the hardware. Availability of hardware capabilities and features is indicated by preprocessor
definitions for each MCU platform. It is not possible to distinguish between multiple available
watchdogs, as the peripheral mapping is hard-coded within the implementation.

4.2.6 High-level Timer Subsystems

RIOT provides user applications with high-level timeouts through the xtimer3 module and its
successor ztimer4. Both timer subsystems allow retrieving the current system time, provide
wall-clock time based timeouts, and support active waiting, i.e., spinning. Ultra short timeouts
must be used with caution, as solely surpassing the timeout duration is guaranteed, but a low
timeout latency cannot be ensured.

Both modules multiplex virtual software timeouts onto one or more hardware timers. To achieve
this, they use the generic low-level timer APIs that previously were discussed in this section.
The xtimer module maps all timeouts onto a single channel of one hardware timer that is
exposed via periph_timer. The ztimer module instead allows to define multiple clock tick

3RIOT docs on xtimer: https://doc.riot-os.org/group__sys__xtimer.html (Accessed: 12.01.2022)
4RIOT docs on ztimer: https://doc.riot-os.org/group__sys__ztimer.html (Accessed: 12.01.2022)
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sources, which can use any of the three generic low-level timer APIs. An automated heuristic-
based method for timeout distribution, such as grouping timeouts based on their durations or
time units, is not provided. User applications therefore must split timeouts manually across the
defined clock sources, which again can use only a single compare channel or RTC alarm.

4.2.7 Summary

RIOT offers three generic and two special purpose low-level timer interfaces. The generic ones,
namely periph_timer/rtt/rtc, expose common timer types, such as general-purpose and
low-power timers as well as RTCs. The special purpose drivers, namely periph_pwm/wdg,
do not expose timers directly, but instead use the underlying hardware to provide higher-level
features, such as signal generation. Separating these software modules allows optimizing their
interfaces for specific timer types, but prevents their transparent and interchangeable use. With
this approach, either not all timers can be used due to missing interface definitions or developers
are forced to expose dissimilar timer types via the same, potentially unfavorable, API.

Functions provided by the low-level interfaces are limited to the feature set that is common to all
MCU-platforms, leaving additional timer features unsupported. Though functionality of most
modules overlaps, we found their APIs to differ in use and feature availability. This includes, for
example, counter value representation, interrupt handling, and peripheral instance management.
Underlying timer types moreover vary between MCU families, which is particularly common with
the real-time timer driver periph_rtt. In some cases, the same peripheral is simultaneously
exposed by multiple modules, leading to resource allocation conflicts and undefined behavior.
Special timer types, such as high-speed counters or ultra low-power timers, frequently remain
unsupported by any of the APIs. Three modules statically map to a single hardware timer and
channel, hereby leaving a significant number of available peripherals and compare channels un-
usable, e.g., multiple low-power timers on the STM32 platform. This also limits the number of
simultaneous timeouts to one per software module. Attachment of user-defined callbacks, to be
executed upon timer overflow interrupts, is only supported by periph_rtt. Timer selection
and configuration requires manual changes to system header files. The structure and location of
those files is highly heterogeneous and differs largely across target platforms. Determination of
timer hardware properties and capabilities during run-time is only supported by the watchdog
driver periph_wdt. User applications and high-level timer subsystems therefore are unable to
dynamically adjust their behavior based on the available peripherals. Considering the above,
the application developer often has to expose hardware timers through insufficient or potentially
unfavorable interfaces, encouraging bugs and narrowing the window for optimal hardware uti-
lization. Whenever additional timer features or specific timer peripherals are needed, manual
(re-)writing of low-level driver code is required by the application developer.
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4.3 Hardware-platform Analysis

A major contribution of our work is the analysis of different timer peripherals, which are found in
microcontrollers that are currently supported by RIOT OS. In this section, we start by defining
the analysis scope as well as the methodology we apply conducting it. Results, both specific to
device families and also across all analyzed platforms, then are presented and discussed with an
outlook on the aspired low-level timer API. Outstanding tasks and possible improvements are
identified before a quick summary concludes this section.

4.3.1 Scope

Our analysis covers all chip manufacturers that offer at least one microcontroller, that is targeted
by RIOT OS at the time of writing. For each of those, all supported device families were
examined. This yields a total of 43 MCU families, produced by eight different manufacturers.
Device families that share timer types, such as the STM32 device families, were combined during
our analysis. Table 4.2 gives a detailed overview of all device families that are part of our analysis.
Combined families are represented within a single row.

Manufacturer Device Family
STMicroelectronics – STM32F0 / F1 / F2 / F3 / F4 / F7

– STM32L0 / L1 / L2

Microchip / Atmel – ATmega AVR
– PIC32MX / MZ
– SAMD21
– SAM3A / N / S / U / X

Espressif – ESP8266
– ESP32

Silicon Labs – EFM32 / EFR32
– EZR32

Texas Instruments – CC13x2 / CC26x2
– CC2538
– CC430
– LM4F120
– MSP430x1xx / MSP430x2xx

NXP Semiconductors – Kinetis E / EA / K / L / M / V / W
– LPC176x / LPC175x
– LPC2387

Nordic Semiconductor – nRF51x / nRF52x

SiFive – FE310-Gx

Table 4.2: Summary of device families we analyzed within our hardware-platform analysis

23



4 Analysis

4.3.2 Methodology

Each step of our hardware analysis is conceptually depicted in this subsection. All steps appear
in the order of their execution.

Platform Selection and Information Acquisition

At first, all CPUs that are currently supported by RIOT OS, as listed in /cpu5, were determined.
Chip manufacturers and their respective device families were then rated and processed according
to their expected diversity in timer hardware. This prioritized approach was chosen to be able to
compile a comprehensive list of analysis criteria early on. For each MCU family, documentation
in the form of datasheets, reference manuals, application notes, and others were obtained from
the respective manufacturers.

Definition of Analysis Criteria

After obtaining a brief hardware overview, the initial set of analysis criteria and properties was
defined. It includes all aspects we rated as being of relevance for a timer API and therefore
are to be extracted from the gathered documents for every assessed MCU platform. Selected
characteristics derive from our surveys of both related work, as summarized in Section 4.1.6, and
existing timer interfaces, as summarized in Section 4.4.3. These were further expanded by us to
cover additional aspects, according to their anticipated significance. The initial set of criteria
includes basic timer properties such as counter register width, prescaler capabilities, compare
match channels, and auto-reload functionality as well as advanced aspects such as interrupt
generation, timer chaining, and low-power features. A full list including the detailed definition
of each criterion is given in Section A.1.

Extraction of Timer Hardware Details

All selected timer peripherals were analyzed and information found within the previously acquired
documentation was transformed into a mind-map structure. Properties and implications beyond
our defined criteria were recorded nonetheless in order to be used in future work (see Section 8.1).
If the device documentation was unclear at some point, additional information sources were used
to resolve the respective property. These included peripheral register descriptions as well as
SDKs provided by the respective manufacturers. However, if a property could not be determined
with sufficient confidence, it was marked as unknown.

5See: https://github.com/RIOT-OS/RIOT/tree/master/cpu (Accessed 22.04.2020)
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Consolidation of Results

Since our data acquisition was not strictly limited to the defined criteria, it yielded information
beyond the initially chosen set of properties. We therefore adopted and extended our set of
analysis criteria once more before consolidating final results. For each MCU platform, a Timer
comparison matrix (TCM) was created. A TCM lists all available timer types and their respective
properties for a group of devices. It allows to quickly determine various characteristics and
features of each of the available timers and makes comparison across different MCU families
and manufacturers possible. The TCMs were subsequently used as a data basis to derive our
inter-MCU-platform findings from. All created TCMs can be found in Section A.2.

Inter-MCU-platform Findings

To obtain comprehensive insights, we evaluated various assessed properties across all platforms
and timer types. These properties could either be found directly within the TCMs or indirectly
be derived from them. If one timer type was available in multiple versions, e.g., 16-bit and
32-bit general-purpose timers, each version was evaluated as an independent timer type and
therefore counted separately. Platforms were counted whenever any of their available timer types
matched both the respective property and selection criterion. Unknown timer properties were
excluded from the affected results. Exclusion of specific peripherals, such as watchdog timers, is
furthermore possible and accordingly denoted in the result description whenever applied.

Each analyzed property possesses a unique identifier that is used for referencing, a short title,
and a description that elucidates the respective property. Moreover, a selection criterion can
be specified, allowing to split properties into multiple cases, e.g., to separate counters by avail-
able register width. All assessed inter-MCU-platform properties are listed in Table 4.3 and get
discussed in Section 4.3.3.

4.3.3 Results

Cross-platform findings from our timer hardware analysis are listed in Table 4.3 and discussed in
the remainder of this section. It should be noted that the total number of platforms and timer
types may vary between properties. This can either be due to an applied selection criterion or due
to the exclusion of specific timer types, as stated in the property description. To cope with this,
we list both the exact number of timer types or platforms and their proportional share among
all applicable types or platforms for each result. A detailed description of our data collection
and evaluation methodology can be found in Section 4.3.2.
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R-01 Counter width Usable size of the counter register in bits
(Excluding watchdog timers)

≥ 16 19 83 100 % 87 %
≥ 32 17 32 90 % 34 %
≥ 64 4 4 21 % 4 %

R-02 Compare channels Number of available compare channels
(Excluding timers w/o compare channels)

≥ 1 19 80 100 % 100 %
≥ 2 14 51 74 % 64 %
≥ 4 10 19 53 % 24 %

R-03 Prescaler Support for prescaling the timer clock yes 19 87 100 % 74 %

R-04 Timer chaining Support for timer module combination
(Excluding watchdogs and RTCs)

R-01 ≤ 16† 10 15 71 % 38 %
R-01 > 16‡ 4 5 27 % 16 %

R-05 Compare interrupts Unique INTs for each compare channel yes 11 28 58 % 31 %

R-06 Overflow interrupts Unique INTs for counter over-/underflow
(Excluding watchdogs)

yes 8 13 42 % 19 %

R-07 Event flags Availability of status bits for timer events yes 16∗ 100 100 % 100 %

R-08 Auto-reload

Auto-reload at over/-underflow (OVF),
at compare-channel match (CCM),
or via auto-reload register (ARR)

(Excluding watchdogs and RTCs)

OVF 3 14 16 % 17 %
CCM 6 25 32 % 32 %
ARR 10 40 53 % 51 %
any 19 79 100 % 100 %

R-09 Clock sources Number of available clock sources
(Distinct external and internal clocks)

≥ 1 19 117 100 % 100 %
≥ 2 16 59 84 % 50 %
≥ 4 6 20 32 % 17 %

R-10
Internal

clock sources Number of available internal clock sources
≥ 1 18 110 95 % 92 %
≥ 2 15 40 79 % 33 %
≥ 4 1 2 5 % 2 %

R-11
External

clock sources Number of available external clock sources
≥ 1 19 114 100 % 95 %
≥ 2 13 46 68 % 38 %
≥ 4 3 7 16 % 6 %

R-12 Low-power clock Low-power oscillator can be used by timer yes 19 84 100 % 71 %

R-13 Deep-sleep active Timer operational in lowest MCU power states yes 19 68 100 % 57 %

R-14 GP timers Number of available general-purpose timers = 1 1 - 5 % -
≥ 1 18 - 95 % -

R-15 WDT interrupts Watchdog generates interrupt prior to reset yes 13 14 68 % 67 %

R-16 Unknown items Timer has unresolved or unknown properties yes 6 17 32 % 14 %

∗ Three platforms are excluded due to unknown properties. See ”Interrupt Handling and Event Flags”
within Section 4.3.3 for details.

† i.e.: Only counting timers that are chainable and have a counter width of 16 bit or less.
‡ i.e.: Only counting timers that are chainable and have a counter width greater than 16 bit.

Table 4.3: Hardware analysis results across all MCU platforms. Each result is evaluated for both
timer types and associated MCU platforms. It is explained by its description and may
be split into multiple cases, as denoted by the specified selection criterion. If specific
timer types were excluded, it is indicated by the result description. See Sections 4.3.2
and 4.3.3 for details.
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Counter Range

A ubiquitous property of timer peripherals is the width of their internal counter registers. It
dictates the maximum number of cycles a timer is able to count before an over- or underflow
happens. The less frequent such events occur, the less timer maintenance and CPU wake-ups are
required. Greater widths allow for longer running low-level timeouts, i.e., timeouts that directly
use a physical compare channel, without the need for complex high-level software timers. A large
counter width therefore is desirable.

Our analysis revealed 16 bit to be the minimum counter register size among all platforms. A total
of 90 % even provide 32-bit timers, while only 21 % offer timers featuring a width of at least 64
bit (see R-01). MCUs that solely offer small timers particularly benefit from extending counter
range through the use of timer chaining. This feature allows combining one or more hardware
timers to extend their width. We found that 71 % of all platforms that offer one or more 16-bit
timers allow extending these small timers to a range of at least 32 bit (see R-04). As lowering
the number of wake-ups and a reduction of maintenance overhead are desired, we conclude that
timer chaining shall be utilized, especially when exclusively working with small range timers.
It, however, must be noted that the use of timer chaining comes at the cost of sacrificing one
timer peripheral for every range extension. This can be undesirable for some applications and
the usage of timer chaining therefore shall remain optional.

Prescalers can reduce the frequency of a clock prior to feeding it into a timer, hereby making
it only count every n-th pulse of the base clock. They allow to use a single clock source for
multiple hardware timers with different counting frequencies and extend long-running timeouts.
This advantage, however, comes at the cost of a reduced resolution, due to the lower base clock
frequency. Prescalers are nonetheless indispensable, especially when dealing with small counter
widths (≤ 16 bit), high clock frequencies, and long time durations. This trade-off indicates,
that a separation of short high-precision delays and long-running timeouts is desirable for an
optimized timer driver in order to perform well in a diverse range of application scenarios.

Prescalers are generally available on all platforms, as well as on 75 % of all analyzed timer types
individually (see R-03). The only platform that has non-prescalable general-purpose timers
is the SiFive FE310-Gx (see Table A.16), which instead features a 64-bit counter register and
thereby eliminates the need for an additional prescaler. Moreover, all other timer types, which
are available on this MCU, do provide prescalers.

Auto-reload Capabilities

Timers frequently need to generate either periodic events or timeouts that are longer than the
time before the next counter over- or underflow happens. Both use cases therefore require a
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convenient way of resetting and restarting the timer. To prevent the missing of clock pulses and
to reduce maintenance overhead, this task can directly be handled by the timer hardware via the
auto-reload feature. It resets the counter register to either a fixed or configurable value, once a
designated event occurs. This can be a counter over- and underflow, a compare channel match,
or the reaching of a configurable threshold.

All applicable timers were found to support at least one form of auto-reload, as indicated by
R-08. It was further found that 17 % of all timer modules only allow auto-reloading at over-
or underflow events while others allow specification of an arbitrary value at which the counter
reloads. The latter is either achieved by sacrificing one compare channel (32 % of all timers)
or through the use of a designated auto-reload register (51 % of all timers). Having a separate
auto-reload register benefits a timer subsystem by keeping all compare channels available to the
application and other OS modules. We therefore argue that using a separate register is the
preferred method for reloading.

Compare Channels

Timers can trigger system events, such as CPU interrupts, at specific counter values through the
use of compare channels. Each compare channel can be armed to an arbitrary value, which is
continuously compared with the counter register. This operation is performed directly by the
timer hardware, thus no polling or active waiting is required. A compare match event is generated
once the counter value reaches the configured threshold. Compare channels are used by timer
subsystems to signal expiring timeouts. The more compare channels a hardware timer offers,
the larger the number of parallel timeouts can be and the more freely different timeouts can be
split across channels. This, for example, allows to separate short from long-running timeouts,
what benefits the distribution of virtual timers across hardware peripherals and hereby reduces
the overall timer maintenance overhead.

At a bare minimum, a hardware timer is required to provide at least one compare channel to be
suitable for usage within an optimized timer subsystem. Otherwise, active polling of the current
counter value would be required, thereby occupying the CPU with timer maintenance tasks and
preventing the use of power-saving modes. Our analysis showed that all timer modules provide
at least one compare channel, while most offer at least two (64 %) or even four (24 %) channels
(see R-02). We therefore conclude, that all MCUs within our scope meet this base requirement
for usage within timer subsystems.

Interrupt Handling and Event Flags

Timer events, such as over- or underflows and compare matches, may generate interrupts (INTs)
upon occurrence. Corresponding interrupt service routines (ISRs) can be used by timer drivers
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to get informed about expired timeouts and to execute internal maintenance tasks as well as
user-defined callbacks. Interrupt handling heavily depends on the actual CPU but was found
to usually be implemented uniform among device families from the same manufacturer. When
handling such events it is important to know whether an exclusive interrupt for every single
event exists or if multiple events share one common interrupt vector. The former does not
require manual resolving of the interrupt cause upon occurrence and therefore is the preferred
method. With the latter, additional status register reads are inevitable to determine the exact
interrupt cause.

Our analysis revealed that out of all timers only 19 % provide fully independent overflow and only
31 % offer fully independent compare match interrupts for each channel, as indicated by R-05 and
R-06. An additional layer of indirection for resolving the interrupt cause therefore is introduced
in many cases, hereby negatively impacting timeout latency. Flags that indicate peripheral status
and signal event occurrence are available throughout all platforms, as shown by R-07. Three
platforms, namely Espressif ESP8266 (see Table A.6), Espressif ESP32 (see Table A.7), and
Nordic Semiconductor nRF51x/52x (see Table A.15), do not state the availability of event status
bits in their manufacturer provided documentation (see Section 4.3.4). These device families
were therefore excluded from the total platform count. Nonetheless, we highly doubt that there
is no way to access such information but were not able to reliably confirm its availability either.

Clock Sources

The selected clock source not only affects the frequency and resolution of a timer. It can also
have an effect on specific timer features or limit the available operation modes. Clock sources
can be categorized into internal and external clocks. The former are generated solely within the
MCU and therefore are always available. The latter are either supplied as an external signal
that is applied to a specific input pin or generated internally with the help of additional external
hardware that needs to be connected to the MCU, such as a crystal oscillator.

We observed that 95 % of all timers can be driven by at least one internal and 92 % of all timers
by at least one external clock source, as shown by R-10 and R-11. It was furthermore found
that on 84 % of all platforms multiple timer clock sources are configurable, as shown by R-09.
This yields numerous clock configuration options and indicates that clock configuration should
be considered an important aspect when designing a timer API. Especially power constrained
devices can benefit from run-time clock source reconfiguration. It aids dynamic power mode
transitions and allows utilization of special purpose low-power oscillators. As these applications
entail a large set of specific requirements, implications for low-power operation and further energy
saving considerations are discussed separately in the following section.
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Low-power Operation and Energy Saving

Proper utilization of low-power operation modes is particularly crucial with resource constrained
devices. The ability to operate timers of a low-power oscillator therefore is of high importance
for many IoT applications. As R-12 shows, 71 % of all analyzed timer types are able to run
on such a low-power clock. This enables timer drivers to make use of a range of power-saving
modes modern MCUs provide. This, for example, includes powering down the CPU and main
peripheral clock while keeping the required timers operational, hereby greatly reducing the idle
power consumption. Allowing utilization of such features therefore is of utmost importance when
designing a timer subsystem for embedded OSs like RIOT and IoT applications in general.

We found that all platforms provide at least one timer type that can run of a low-power clock.
Our analysis furthermore confirmed that all platforms offer at least one timer that is capable
of both operating in even the lowest possible power states and waking the CPU upon event
occurrences (see R-13). We refer to timers that fulfill these criteria as always-on peripherals.
Among these, real-time counters and real-time clocks are the prevalent type. Five platforms
additionally provide designated ultra low-power timer peripherals (see Tables A.2, A.3, A.8,
A.11, and A.17), as for example the Cryotimer on the Silicon Labs EFM32/EFR32 platform
(see Table A.8). Especially when dealing with long timeouts and deep-sleep periods, these timer
types allow significant energy-consumption optimizations and therefore must be made available
to the user application through a well-designed timer API.

Application Suitability of Timer Types

Even though we covered all types of timer peripherals within our analysis for the sake of complete-
ness, we think that not every timer type is applicable for the use in a generic timing subsystem.
We suggest that especially watchdog timers fall into this category. These timers are designed
to recover a system from firmware malfunctions, endless loops, or critical error states. They
achieve this through performing a full device reset if they are not periodically serviced by the
application. Our analysis discovered that 67 % of all watchdogs offer the possibility to generate
an interrupt prior to or even instead of performing a system reset, as shown by R-15. While this
ability can theoretically be used to generate generic timeouts, it must be used with great caution
to prevent unintentional system resets. Watchdog timers are usually limited to a very basic
feature set and often behave non-uniform across MCU platforms. Moreover, they commonly are
already occupied by other components of the application or system modules. We therefore do
not recommend their usage within a generic timer subsystem.

30



4 Analysis

Hardware Diversity

Being able to choose timer peripherals from a wide range of types opens up a broad spectrum of
opportunities for application optimizations. We found the feature sets of general-purpose timers
to be largely uniform across all platforms, whereas special purpose timers differed greatly with
respect to their offered functions and modes of operation. Taking a look at the first, there is just
one platform that guarantees the availability of only a single general-purpose timer, namely the
SiFive FE310-Gx (see Table A.16). All other platforms provide at least two or even more general-
purpose timers, as indicated by R-14. The availability of other timer types varies greatly between
manufacturers and even within device families of the same manufacturer. Those platform-specific
peripheral types, however, do provide advanced features that are important to many applications,
such as high-resolution timeouts or low-power operation capabilities. We therefore conclude,
that both the proper utilization of the available timer modules and the incorporation of platform
specific peripherals alongside generic general-purpose timers is a necessity for a uniform yet
flexible timer interface.

We moreover encountered MCUs that only leave the possibility of multiplexing high-level software
timers onto a single general-purpose hardware timer, as outlined by R-14 and R-02. These
namely are the SiFive FE310-Gx (see Table A.16), with only a single general-purpose timer,
and the Espressif ESP8266 (see Table A.6), with only one compare channel while leaving the
alarm functionality of the RTC undocumented. We therefore argue, that a timer subsystem
must be able to cope with situations in which only a single hardware timer is available. A way
to determine the available hardware and its capabilities at run-time can hugely aid this aspired
flexibility while also benefiting application portability when changing target platforms.

Missing Information

Not every property of the analyzed timers could be determined with sufficient confidence, based
on the available documentation or further information sources, as described in Section 4.3.2.
Six platforms therefore still suffer such unresolved properties, as indicated by R-16. Five of
these can more precisely be grouped into the two Espressif MCUs (see Table A.6 and A.7) as
well as three of the Cortex-M based platforms, namely the Microchip / Atmel SAMD21 (see
Table A.5) and the Silicon Labs MCUs (see Table A.8 and A.9). The documentation of the
Espressif devices, especially the ESP8266, remains unclear about many of our analysis criteria
and only some properties could be resolved by inspecting the manufacturer provided SDKs. The
Cortex-M based MCUs, in contrast, only leave the SysTick timer, which commonly is found
across processor cores of this type, largely or even fully undocumented. We suspect them to be
very similar to those found on other Cortex-M based devices but are unable to confirm it at the
time of writing. Lastly, the documentation of the Nordic Semiconductor nRF51x/52x MCUs
(see Table A.15) remains unclear about the availability of event flags.
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4.3.4 Outstanding Tasks and Issues

Even though our analysis of timer hardware already yielded insight into a broad range of prop-
erties and features, various outstanding tasks as well as some issues remain. These are, to the
best of our knowledge, highlighted in this section.

Unresolved Properties

During our analysis we were able to gather data for nearly all the defined analysis criteria and
timer types within our scope. Nonetheless, some properties still remained unresolved, as outlined
in the previous section. Resolving these may further improve our results. When assessing these
properties, however, the required effort must be justifiable when put into comparison with the
estimated information gain and expected impact on the overall results.

Timer Resolution and Clock Tree Properties

Its resolution, i.e., the period of a single timer tick, and the maximum timeout length it can
achieve without requiring intermediate maintenance wake-ups both are essential characteristics of
every hardware timer. A timer subsystem can use this information to allocate requested timeouts
to the most appropriate hardware peripherals that are available. Determining these properties
generically for a whole class of timers is unfortunately not feasible due to their strong dependence
on MCU oscillator frequencies. As the system clocks depend on both the microcontroller and its
current configuration, their actual operation frequencies can vary greatly, hereby preventing the
calculation of a single appropriate value that can be used for comparisons across platforms.

Another aspect we do not have full insight into yet are the different clocks each timer peripheral
is able to run of. Since each device family or even single MCUs provide different oscillators and
methods of routing the generated clock signals to peripherals, a standardized and comparable
way of analyzing these has yet to be defined. As this clock tree analysis is an entire complex
topic on its own, it was excluded from our hardware analysis for now. We nonetheless expect
promising results from it, especially with respect to power-saving optimizations and therefore
suggest conducting an in-depth analysis of the clock trees within future work (see Section 8.1).

Peripheral Interconnect and Event Systems

Some MCUs are capable of routing various internal signals directly between components via a
designated peripheral interconnect bus. Others allow executing certain hardware tasks based on
specific events whenever generated by applicable peripherals. Both methods benefit the overall
system performance by removing the need to execute a designated ISR upon event occurrence,
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hereby leaving the CPU available for application use at all times. Such peripheral interconnect
and event systems might prove valuable for some applications, e.g., timer chaining. Furthermore,
a reduction of maintenance overhead could be possible by exploiting event systems in order to
execute simple maintenance tasks autonomously within respective hardware peripherals.

Configuration and Maintenance Costs

Each read, write, status check, or reconfiguration of timer peripherals requires a certain amount
of system resources, such as CPU time or battery power. Information about the exact resource
consumption of such operations is unfortunately only sparsely available. Timer operations can
furthermore entail side effects that need to be taken into account. For example, it can be required
to enable a high-power oscillator in order to read or write registers of a timer that is running of a
low-power clock. As a result, frequent timer operations drastically increase power-consumption,
as the high-power oscillator is always started prior to execution of the desired operation. We
therefore consider information on such costs beneficial to the timer peripheral selection process
and suggest further research.

4.3.5 Summary

To gain insight into the diverse landscape of hardware timers, we conducted a large-scale analysis
of timer peripherals. It includes 43 device families from eight manufacturers, hereby covering
all MCUs currently supported by RIOT OS. Assessed aspects derive from our survey of existing
timer interfaces and related work. Their initial set was extended, whenever our explorative data
acquisition revealed additional points of interest. We examined basic characteristics such as
counter width, prescalers, and compare channels as well as advanced aspects such as interrupt
generation, timer chaining, and low-power features. Gathered information was transformed into
uniform result tables, referred to as Timer Comparison Matrices (TCMs), found in Section A.
These allow a detailed comparison of timer peripherals across all assessed device families. The
TCMs were then used as a base to derive inter-MCU-platform findings from.

Our analysis identified counter register widths to be at least 16 bit among all platforms, while
90 % also provide 32-bit and 21 % even 64-bit timers. On 71 % of all platforms, smaller timers
in particular support range extension through timer chaining. Frequency prescalers are always
available, and many timers provide at least two (64 %) or even four (24 %) channels. Only 31 %

feature fully independent interrupt vectors for every compare channel. On 84 % of all platforms,
multiple timer clock sources are selectable and 71 % of all timers can be driven by a designated
low-power clock. All platforms offer at least one timer that is capable of operating in the lowest
power mode and waking the CPU on designated events.
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Susnea and Mitescu [54] previously found common characteristics and operation principles among
all their three devices. Our analysis confirmed this to also apply on a larger scale. Basic feature
sets of general-purpose timers were found uniform across all MCUs, allowing to expose them in a
platform-independent way. Other timer types differed largely in function and modes of operation,
requiring a more complex interface as a consequence. Simply extending a generic interface to
support device-specific features contradicts its platform-independence. We therefore argue, that
a uniform timer API should provide both a basic platform-independent and a platform-specific
interface to be capable of effectively abstracting and presenting the available timer hardware.

4.4 Use Case Analysis

Knowing the different use cases and requirements for a software module is crucial when designing
and evaluating it. Applications within the Internet of Things are highly diverse and all have their
own characteristics. These include smart devices, environmental monitoring, process automation,
vehicle-to-vehicle communication, and many more [57]. What they all have in common, however,
is that they are controlled and exchange data via different types of networks [23]. Therefore,
timers are not only required for the local tasks of an embedded device, e.g., periodically reading
a sensor, but also for the associated network communication.

The durations of requested timeouts constitute a key indicator to judge the performance and
applicability of a timer interface. We quantify it for both above described cases by analyzing the
usage of timer functions within the whole RIOT codebase and assessing specifications of network
communication protocols that are commonly used with IoT and WSN applications. Results of
these analyses and their implications for the aspired timer API are discussed in this section.

4.4.1 Timeouts within RIOT OS Modules and Drivers

To determine characteristics of real-world timer usage, timeouts within all RIOT modules, CPU
implementations, and peripheral drivers were evaluated. This includes both low-level timeouts
via periph_timer and high-level timeouts via xtimer and ztimer. For each module, all non-
blocking timeout calls were evaluated. This includes absolute, relative, and periodic timeouts but
excludes tick-based active waiting (i.e., spinning). If a module uses multiple applicable timeouts,
the shortest timeout duration was always selected, since it entails the strictest performance
requirements. If a module does not use any applicable timer function, it was excluded from the
analysis. This resulted in a total of 97 modules. Figure 4.1 shows the distribution of the shortest
timeout durations among each of these.
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Figure 4.1: Distribution of shortest timeouts used within RIOT OS modules and drivers

Timeouts are grouped into bins according to their order of magnitude. The 1e-3 bin, for example,
covers the right-open interval

[
10−3, 10−2

)
. The most common range for timeout durations is

1 ms to 10 ms, as found within 30 % of the analyzed modules. Moreover, 69 % of all modules
solely use timeouts of at least 1 ms and 14 % even exclusively use timeouts that are at least 1 s

long. The latter are used to model message timeouts within different communication protocols,
such as CAN, LoRaWAN, or BLE. Due to their long durations, they usually do not require
high-precision timeouts. Shorter timeouts (τ ≤ 1 s) are frequently used within drivers to reliably
surpass a certain hold-off time that is required by a peripheral device. Precision of these is no
issue either, as these only require to surpass a certain time threshold but do not suffer from a
slightly delayed response.

Only four peripheral drivers use timeouts that are shorter than 10 µs. Two of those represent
minimum hold-off times (hd44780 and mcp2515), hence are insensitive to timeout latency and
jitter. The remaining two are used for software clock generation (sdcard_spi and soft_-

uart @ 11 520 bps6), hence require precise timing. These clock signals are generated by periodic
timeouts that are used to trigger a General-purpose input/output (GPIO) pin. A reliable clock
signal possesses a stable period but is insensitive to absolute offsets due to its periodicity. It
therefore can tolerate a certain amount of timeout latency but is highly sensitive to jitter.

6The actual timeout period depends on the selected UART bus speed. For common configurations it ranges
between 104.2 µs @ 9600 bps down to 8.68µs @ 115 200 bps.
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4.4.2 Network Protocol Timing Requirements

The RFC 1122 communication layer model [10] groups network protocols into four distinct layers.
It is often also referred to as the TCP/IP model. The generic (GNRC ) network stack and
application layer protocol implementations of RIOT are structured in the same way [33]. We
inspected popular members from each of its layers to systematically assess timing requirements
of network communication protocols. An overview of this model is illustrated in Figure 4.2.

Application Layer

Transport Layer

Internet Layer

Link Layer

Ti
m

eo
ut

 d
ur

at
io

ns

Ab
st

ra
ct

io
n

Figure 4.2: Overview of the RFC 1122 communication layer model

The rapid growth in size and diversity of both the IoT and WSNs fostered the development of
numerous novel protocols on most network and adaption layers [21]. Our analysis shows that
timeout durations generally are inversely proportional to the abstraction level of respective layers.
Within application layer protocols, such as MQTT [5], CoAP [53], or DHCP(v6) [18], all time
durations are in the order of seconds or more. This also applies to transport layer protocols,
such as TCP [45] or UDP [46], as well as internet layer protocols, such as IPv6 [15] or RPL [60].
This is due to the fact that timers within these layers predominantly are used to schedule and
terminate high-level activities, model message timeouts, and recognize absence of events or lack
of activity [44].

Timing demands of link layer protocols, in contrast, are significantly higher. IEEE 802.15.4 [27],
for example, is used as a base for many communication protocols in the IoT and operates at a
symbol time of 16 µs [32]. It requires a minimum of 12 symbols (192 µs) between frames when
operated in short inter frame spacing mode and a commonly used ACK timeout is 40 symbols
(640 µs). Another widely used protocol is LoRaWAN [40]. It has a maximum data transmission
rate of 27 kbit/s, which corresponds to a minimum symbol time of 37 µs [1]. Last, Bluetooth
Low Energy (BLE) [9] can operate at over-the-air symbol rates between 125 kbit/s and 2 Mbit/s,
corresponding to signal times between 8 µs and 0.5 µs. However, effective application payload
throughput is limited by additional factors, such as protocol overhead and the 150 µs inter frame
spacing. Timing of link layer protocols is only rarely implemented in software, but instead often
is handled directly within designated networking peripherals. Data is passed to such modules
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either bytewise or even via direct memory access (DMA). All data is buffered prior to the time
critical transmission phase, hereby relaxing timing requirements that are based on the symbol
rate. The application nonetheless must be able to manage the data fast enough to keep up with
the effective payload throughput that is desired.

Besides the requirements of network protocols themselves, Gundogan et al. [21] outline technical
timing requirements for industrial IoT use cases. Deployed devices must respond within less than
10 ms for safety critical network traffic. Control and monitoring messages are less important, but
should nonetheless be transmitted in less than 100 ms.

4.4.3 Summary

Among all timer usages within the RIOT codebase, 1 ms was found to be the prevalent timeout
duration. This is consistent with the findings from our previous review of timer interfaces from
other embedded operating systems, as conducted in Section 4.1. Out of all RIOT modules,
69 % only use timeouts that are at least 1 ms long and only two modules require precise timeouts
shorter than 10 µs. Generating such very short timeouts is challenging due to constant abstraction
and maintenance overheads. With those two modules, however, said timeouts are used for the
generation of periodic signals, hence can tolerate a certain amount of timeout latency while being
highly sensitive to timeout jitter.

Our analysis of network communication protocols showed that protocols of all layers above the
link layer solely require timeouts in the range of seconds or more. On the link layer, however,
timeout durations can get as short as 0.5 µs, hence are not accurately achievable with a highly
abstracted timer API. Therefore, such timeouts are usually generated by protocol specific hard-
ware peripherals. They relax the timing requirements by providing buffered access to transmitted
and received data, while allowing sequential asynchronous writing of application payload. Last,
industrial IoT devices must be capable of signaling emergencies within less than 10 ms.

We conclude that a comprehensive timer API evaluation should include timeout lengths between
10 µs and 10 s. This range covers over 95 % of all timeout usages within our analyses. To
assess the performance within different scenarios, both the latency and the jitter of timeouts
should be measured. Quantifying the platform-independent abstraction overhead moreover allows
determining the general accuracy limits of an application programming interface.
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Within this chapter, we employ the insights from our four extensive analyses to develop uTimer,
a low-level timer API for the RIOT operating system. It provides user applications and high-
level OS modules with a uniform and streamlined interface for hardware timers. Different timer
types can be used interchangeably, device-specific hardware features are supported, and future
extensibility is ensured. uTimer preserves application portability for as long as possible, or until
the application developer deliberately sacrifices it.

Prior to all conceptual decisions, requirements for an application programming interface, as we
aspire it, are defined in Section 5.1. Addressed aspects include feature support, application
portability, resource consumption, and ease of use. We subsequently derive a sound API design
from them. It is described in detail in Section 5.2, where we discuss its two-layered architecture,
the distinct abstraction layers, and individual aspects, such as interrupt handling or platform
agnosticism. User-space code examples follow in Section 5.3 before we discuss various trade-offs
and issues of the proposed design in Section 5.4.

5.1 Demands and Goals

RIOT positions itself as a general-purpose IoT operating system that supports a diverse range
of resource constrained embedded devices. The OS provides users with generic peripheral in-
terfaces that can be used largely independently of the target hardware, striving for effortless
application portability. Use cases and deployment contexts are as vast as their requirements.
Regarding timekeeping tasks in particular, ease of use, timeout accuracy, resource consumption,
and optimized low-power operation are essential to most applications. Because low-level timer
APIs constitute the base layer of abstraction, they must comprehensively address these aspects
to be capable of exposing hardware timers in a feature-rich yet flexible and portable way.

Requirements for a low-level timer API, as we aspire it for the RIOT OS, are compiled in this
section. Each aspect has a unique identifier and similar ones are combined into a total of six
groups, as indicated by the subsection titles. We distinguish between application and operating
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system developers. Application developers, on one hand, program the firmware that implements
all control logic for a respective use case. They rely on OS modules and peripheral drivers to
achieve the desired device behavior. Operating system developers, on the other hand, provide
application developers with this sound base. They are responsible for programming any module
and driver that is provided by the embedded operating system. Our requirements are defined in
the remainder of this section.

5.1.1 Features and Usability

The purpose of hardware interfaces is to comprehensively present on-board peripherals to user
applications and operating system modules alike. Features to be exposed and how they are to
be used are important aspects to consider when designing respective software interfaces.

A low-level timer API therefore . . .

(R-1) should be intuitive and straightforward to use. It should encourage uniformity of timer
code throughout applications and OS modules.

(R-2) must allow different timer types, such as general-purpose, low-power, or high-precision,
to be used transparently interchangeable via the same uniform interface.

(R-3) must be capable of exposing multiple peripherals, i.e., timer instances, of the same
timer type including all compare and alarm channels. Peripherals and channels must
be addressable by unique identifiers.

(R-4) should allow to use all timers that a microcontroller offers. This also includes timer
types that are only available on a small subset of target devices.

(R-5) must expose generic timer features, which are supported by all peripherals, in a platform-
independent way. Advanced timer features, which are only supported on a subset of all
devices, should moreover be exposed whenever possible.

(R-6) must expose identical features in a standardized way among all timers. This allows using
them regardless of their actual type, as long as they fulfill application requirements.

(R-7) should provide ready-to-use peripheral drivers for all targeted microcontroller boards to
relieve application developers from the error-prone task of writing low-level driver code.

(R-8) should allow to present multiple hardware timers as a single timer instance. This in-
cludes exposing multiple chained timer modules as an atomic timer instance.

(R-9) should encourage OS developers to follow a common pattern for platform-dependent
driver code. This fosters maintainability and guides the integration of new devices.
Similar functionality should be implemented within across all platform implementations.
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5.1.2 Peripheral State and Capabilities

Numerous system components require timers. Providing convenient and extensive access to the
properties of a hardware timer is as important as comprehensively exposing its current state.

A low-level timer API therefore . . .

(R-10) should differentiate between the following types of information and properties:
(a) static properties of the underlying timer hardware, such as counter register width

or available channels.
(b) compile-time properties that can only be changed prior to compilation and therefore

remain fixed during run-time, such as available timer drivers and modules.
(c) run-time properties that can change at any point in time, such as counting mode

or pending interrupts.
(R-11) must expose run-time dynamic properties, allowing user applications and OS modules

to determine the peripheral status at any time.
(R-12) should expose static hardware properties, hereby fostering the platform-independent use

of timer peripherals.
(R-13) should allow user applications and OS modules to determine whether a timer supports

a specific feature during run-time.
(R-14) must support user-defined callback functions for both compare match (CMP) and over-

flow (OVF) interrupts. The exact interrupt cause should be easy to determine.

5.1.3 Application Portability

Embedded operating systems strive to support a large number of target devices. User applications
should easily be portable to different microcontroller boards without requiring a large amount
of manual code changes.

A low-level timer API therefore . . .

(R-15) must present timer instances in a standardized way across all platforms.
(R-16) should provide both a platform-independent and an explicit way of addressing peripheral

instances. This allows
(a) application developers to explicitly select specific timers from the full set of avail-

able peripherals.
(b) user applications to automatically select timers based on their features.
(c) using timers inside other OS modules, such as the network stack or sensor drivers.
(d) optional management of peripheral allocation by some form of external resource

allocator, providing mutually exclusive timer usage.
(e) to define generic application requirements like ”at least n low-level timers”.
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(R-17) should allow selecting timer clock sources as either a platform-independent clock class
or an explicit platform-specific clock.

(R-18) should maintain platform-independence as long as possible and only be platform-specific
whenever inevitable. Target device compatibility should only gradually be reduced,
based the required feature set.

(R-19) must allow application developers to consciously sacrifice cross-platform portability
whenever platform-specific features are required by an application.

5.1.4 Configuration Management

With the ever-growing number of target devices come not only new peripherals, but also numer-
ous configuration options. Managing their diverse range of configuration options in a generic yet
extensive way can be challenging.

A low-level timer API therefore . . .

(R-20) must support to select timer instances during compile-time that are then made available
to the application at run-time.

(R-21) must permit the dynamic (re-)configuration of hardware timers during run-time. This
includes, in particular, changing timer clock sources to facilitate power mode transitions.

(R-22) should encourage a common pattern for peripheral configuration management. It should
guide OS developers in storing configuration data and provide application developers
with a convenient way of accessing it. If one configurable parameter applies to a relevant
number of platforms, it should globally be configured for all affected platforms.

5.1.5 System Impact and Resources

Because timer peripherals are required for numerous system functions and most user applications,
they can have an significant impact on system performance. Hence, possible side effects and
resource efficiency are important aspects.

A low-level timer API therefore . . .

(R-23) must be modular so that code that is not required for the current application can
be excluded from the binary. Implementations should automatically be selected for
compilation, based on the used peripherals.

(R-24) can define optional convenience functions that may be excluded from the build if desired.
(R-25) must not interfere with other OS modules nor introduce side effects, whenever avoidable.
(R-26) should allow timer instances to be managed by an external resource allocator.
(R-27) should use system resources efficiently and minimize maintenance overhead.
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(R-28) should keep the abstraction overhead that is inherent to the API itself to the bare
minimum. Timer performance should primarily depend on the platform-specific drivers.

5.1.6 Miscellaneous

Requirements that did not fall into any of the above categories are listed in this section.

A low-level timer API . . .

(R-29) must allow to verify the behavior of platform implementations by generic unit tests.
(R-30) should enforce a defined behavior upon hardware failures or invalid parameters. Both

erroneous cases should be signaled accordingly.
(R-31) should seamlessly integrate with existing OS modules. This especially applies to high-

level timer subsystems, such as xtimer or ztimer.
(R-32) should be able to coexist with other low-level timer APIs, such as periph_timer.
(R-33) should encourage uniform driver implementations and prevent code duplication.

5.2 Design

The design of uTimer is proposed in this section. This novel API streamlines existing low-level
timer modules and exposes hardware timers via a uniform interface, fostering an interchangeable
use of all available timer peripherals. Besides common timer functions, out-of-the-box support for
device-specific features is provided, while platform-independence is preserved whenever possible.
The developed software design is based on the requirements we defined in the previous section
and supported by insights from our four comprehensive analyses.

An architectural overview of our two-layered design is given in Section 5.2.1. The presentation of
timer peripheral instances and the used data models are described in Section 5.2.2. It is followed
by detailed descriptions of both abstraction layers in the Sections 5.2.3 and 5.2.4. All subsequent
sections discuss individual aspects of our design, such as interrupt handling and configuration
management.

5.2.1 Overview

Our design is split into a hardware-facing API (hAPI) and a user-facing API (uAPI), as illustrated
in Figure 5.1. The hAPI consists of timer-type specific drivers that interact directly with the
peripherals. The uAPI then builds upon the hAPI to provide a convenient hardware-agnostic
interface to user applications and higher-level OS modules alike. This design decouples the
abstract timer logic from hardware-dependent driver code. Application developers are free to
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Figure 5.1: Overview of the proposed low-level timer API design

choose the interface that best suits their current needs. Both abstraction layers are steadily
available and can be mixed within the same application. uTimer hereby encourages uniformity
of timer code throughout the whole RIOT ecosystem.

The additional layer of abstraction inevitably causes computational overhead. Our API design
minimizes the negative impact on performance, though cannot fully eliminate it. However, using
only a single-layered design would not allow for the aspired interface uniformity, application
portability, and extensive feature support. We quantify the abstraction overhead that is caused
by both the hAPI and the uAPI individually within our evaluation in Chapter 7.

5.2.2 Timer Types and Instances

Each hardware timer is represented by a designated timer instance struct, called utim_pe-

riph_t. An excerpt of its definition is given in Listing 1. It uniquely identifies the peripheral
device, provides static timer properties, and specifies the hAPI driver to use. This allows the
transparent and interchangeable use of different hardware timers via a mutual API. Binding all
mandatory timer information directly to the device identifier eliminates the need for platform-
dependent preprocessor defines and fosters code uniformity.

typedef struct utim_periph {
const utim_t dev;
const utim_driver_t *const driver;

const uint16_t width :8;
const uint16_t channels :4;
// 8< -----

} utim_periph_t;

Listing 1: Excerpt of the utim_periph_t struct. Its full definition is given in appendix
Listing 10.
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Timer instances can be addressed in a platform-independent fashion using abstract identifiers,
such as Timer 0. They can also explicitly be addressed via their platform-specific names, such
as STM32_LPTIM2. If the user application requests a specific timer that is either not available
on the MCU or currently disabled, an error will be thrown during compilation. This guards
against unexpected timer behavior after changing peripherals or target platforms. Selection
of the timers that are made available to the application is done via Kconfig at compile-time.
Exposed peripherals can interactively be selected and required drivers are automatically included.
Configuration of API features and peripherals is described in detail in Section 5.2.6.

Counter values are represented by the utim_cnt_t type, defined in Listing 11. Its width can
either be automatically determined to match the exposed peripherals or manually selected during
compile-time. uTimer always uses the fastest minimum-width unsigned integer types, as defined
in <stdint.h>. This accounts for speed benefits from matching the CPU word size1.

5.2.3 Hardware-facing API

The hardware-facing API (hAPI) provides low-level drivers that directly interact with timer
hardware registers. They share a common interface that is lightweight yet flexible. One such
driver exists for every timer type, e.g., general-purpose, low-power, or RTC, that is used by at
least one timer instance. Drivers are implemented as structs of the utim_driver_t type. They
consist of minimal function sets, each represented as a group of function pointers. An overview
of the available functions is given in Listing 2.

typedef struct utim_driver {
int (*const init)(/*timer, freq, clk, cmp_cb, cmp_args, ovf_cb, ovf_args */);
utim_propval_t (*const get_property)(/* timer, prop */);
int (*const set_property)(/* timer, prop, value */);
int (*const enable)(/* timer, run */);
utim_cnt_t (*const read)(/* timer */);
int (*const write)(/* timer, count */);
int (*const set_channel)(/* timer, channel, mode, count */);
#ifndef CONFIG_UTIMER_USE_REDUCED_API
int (*const is_valid_freq)(/* timer, clk, freq */);
#endif

} utim_driver_t;

Listing 2: Excerpt of the utim_driver_t struct. Its full definition can be found in appendix
Listing 15.

Common basic features are directly accessible through designated functions, allowing for platform-
independent use. Device-specific features, on the other hand, are exposed via a compact and
flexible property interface that supports optional feature availability. This combination permits

1Integers with a width different from CPU word size can impair performance by requiring additional processor
instructions during access and arithmetic operations.
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comprehensive presentation of arbitrary timer features in a standardized way, independent of
the underlying peripheral type. The hAPI is extensively specified to establish a sound pattern
for uniform platform implementations. Defining drivers both board-specific and cross-platform
allows to conveniently model peripheral similarities and aids code quality.

Timer Features and Property Access

uTimer distinguishes between static properties of the timer hardware, such as counter register
width or channel count, and dynamic properties, such as counting mode or pending interrupts.
While the former are constant, the latter can change at any time during firmware execution.
Both types are made available by the hardware-facing API.

Static properties that are common to all timer types are encoded within the utim_periph_t
structs, defined in Listing 1. System memory is preserved by combining multiple static properties
into bit fields, whenever appropriate. Important hardware parameters are hereby directly bound
to the timer instance itself. This provides a simple and convenient way to determine whether a
peripheral is suitable for a specific task, e.g., based on its maximum counter value. Applications
and high-level system modules can hereby dynamically adjust to the available hardware and
utilize it to its full extent. This, for example, can be the dynamic distribution of timeouts, based
on the number of available compare channels.

typedef enum {
UTIM_PROP_MODE = 0x01, //!< Timer counting mode
UTIM_PROP_CNT_DIR = 0x02, //!< Counting direction
UTIM_PROP_INT_CMP_MATCH = 0x03, //!< IRQ generation on compare match
// 8< -----
UTIM_PROP_OVF_PENDING = 0xF0, //!< Overflow flag is set
UTIM_PROP_CMP_MATCH_PENDING = 0xF1, //!< Unhandled compare match pending
// 8< -----

} utim_prop_t;

typedef struct utim_driver {
// 8< -----
utim_propval_t (*const get_property)(/* timer, prop */);
int (*const set_property)(/* timer, prop, value */);
// 8< -----

} utim_driver_t;

Listing 3: Excerpt of the Dynamic property interface that is provided by the hAPI. Available
properties are encoded within the utim_prop_t enum and can be accessed using the
listed driver calls. Its full definition can be found in appendix Listing 13.

Properties that are either timer-type specific or can change during run-time are instead exposed
via a slim and straightforward interface, as defined in Listing 3. Available properties are encoded
within the utim_prop_t enum. They are extended by property-specific value definitions, found
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Figure 5.2: hAPI driver design concepts for code reusability

in appendix Listing 12. All properties can be read and written using the hAPI functions get_-
property() and set_property().

Advanced features that are not available on every device are likewise exposed via this interface.
These can be configured by writing the respective property and their current status can be
determined by reading it accordingly. If a timer does not support a particular feature, it can be
left unimplemented. Such cases are signaled via the return values of the access functions. This
solution is a future-proof way to support new features as they become available without requiring
changes to the application programming interface. This applies to both platform-specific and
generic features alike.

Function Bundling

Maintaining a slim and lightweight interface is important for the hAPI. Providing individual
functions for every timer operation inflates the interface and requires numerous pointers to be
stored. The memory footprint that is inherent to the API itself would thereby significantly in-
crease. The flexible property interface, described in the previous section, efficiently addresses this
problem for all advanced and platform-specific features. However, some basic timer operations
do not require individual functions, hence offer further optimization opportunities. Such closely
related operations are bundled into single functions whenever appropriate. An example for this
is the combination of start() and stop() into a single enable(bool) call. Even though
this somewhat impairs the ease of use, the reduction in ROM consumption easily makes up for
this small loss. Moreover, all bundled function calls are conveniently unbundled again within the
uAPI, as described in Section 5.2.4.
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Code Reusability

Both our timer hardware analysis and our survey of related work found that microcontrollers
typically offer multiple timer peripherals of the same type (see Sections 4.3.3 and 4.1). The
hardware-facing API accounts for this by allowing to map a single driver to multiple timer
instances. An example of this is depicted in Figure 5.2a. Here, Timer 0 and Timer 1 share the
same hAPI Driver A, while Timer 2 is interfaced by Driver B instead. We refer to this concept
as driver-granular code reusability.

Our analyses furthermore revealed that certain timer types can be available in multiple versions
that share most of their features. The hAPI therefore enables OS developers to map a single
implementation to multiple drivers, allowing selective re-use of driver functions. Figure 5.2b
illustrates two timers that share parts of their driver code. Here, Driver A and Driver B share
the functions fn_1 and fn_2, but also possess individual implementations for the functions fn_A
and fn_B. We refer to this as function-granular code reusability.

Virtual Drivers

In most cases, drivers interface hardware timers directly. Virtual drivers can instead also use
other base drivers to control peripherals. They allow to freely mix direct hardware access and
foreign driver calls within a single hAPI driver. In addition, functions of the base driver can be
overwritten if necessary. An important use case for virtual drivers is the representation of multiple
small timers as a large atomic timer instance. Such a scenario is illustrated in Figure 5.3.
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Figure 5.3: A virtual hAPI driver used for timer chaining
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In the example above, Timer 0 and Timer 1 can be linked in hardware to form a single timer
with an extended counter range. Both peripherals can individually be controlled using their base
drivers. However, combining them requires additional configuration and special behavior during
counter operations. The virtual driver implements the required control logic and automatically
configures the peripherals accordingly. Both timers are then exposed as the atomic Timer 0+1
instance. User applications and high-level system modules can transparently interface the chained
timer via the existing API. However, removing the base timers from the set of exposed peripherals
is strongly advised when using timer chaining. Simultaneous access to the same hardware timer
via two different interfaces can lead to undefined behavior of the combined timer instance.

5.2.4 User-facing API

The user-facing API (uAPI) provides a single set of functions that abstracts from the underlying
timer type. It is designed for convenient use by all components of the embedded firmware.
Provided platform-agnostic timeouts allow the development of generic applications and high-
level OS components, such as sensor drivers. Function calls are either directly delegated to
the respective driver, such as read and write operations, or performed as compound operations
of multiple subsequent hAPI calls, such as relative timer arming. The uAPI moreover defines
additional convenience functions to enhance usability.

In contrast to the hAPI, the uAPI does not need to limit the number of functions it provides.
Unused functions are automatically excluded during the build process and therefore do not
negatively affect the final binary size. This allows to provide an extensive interface without raising
memory consumption by default. A list of all uAPI functions can be found in Section B.3.

Generic Timer Functions

Basic functions that are found on all timer types are straightforwardly exposed by the hAPI.
This includes peripheral initialization, counter operations, and compare channel configuration.
The uAPI transforms this limited set of features into user-friendly functions. It autonomously
determines the responsible driver and invokes the requested hAPI methods with appropriate
arguments. The utimer_read() call, for example, executes the hAPI read() function, based
on the respective timer driver.

Advanced Timer Functions and Status Information

The above discussed set of basic timer functions is extended by operations that are only available
on a limited number of MCUs. We refer to such functions as advanced timer functions. These
include widespread features like counting mode selection as well as peripheral-specific functions.
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The hAPI exposes them via its slim but somewhat inconvenient property interface. The uAPI
builds upon this base to provide designated functions for many advanced features. Whether
a device supports a specific feature can be determined during run-time and is indicated via
function return values. However, offering an individual function for each potential feature would
quickly inflate the API. The user-facing API therefore continues to provide the property interface
via the utimer_get_property() and utimer_set_property() functions. All not widely
used features hereby remain available while the API is kept streamlined. This not only enables
uTimer to expose up-to-date timer features, but also ensures future expandability. Whenever
a feature becomes available on a relevant number of target devices, an exclusive uAPI function
can easily be added for it.

Static attributes such as counter width or channel count, and run-time dynamic properties
such as counting mode or pending interrupts, are moreover exposed by the hAPI. They are
either stored within the timer instance struct or accessible via the property interface. The
user-facing API can provide wrapper functions for convenient access to both types. These in-
clude, among others, utimer_has_pending_ovf(), utimer_set_irq_ovf(bool), and
utimer_set_count_mode(utim_mode_t).

Compound Functions and Unbundling

Operations that can be achieved by a combination of multiple subsequent hAPI function calls
are exclusively implemented within the uAPI. We refer to these as compound functions. An
example of such is depicted in Figure 5.4. Here, relative timer arming is performed by (1.)
reading the current counter value, (2.) calculating the target counter value, and (3.) arming a
compare channel to the calculated value. Compound functions keep the driver structs compact
by eliminating partially redundant functions.

User-facing API Hardware-facing API

utimer_set()

read()

1
2
3

set_channel()

Figure 5.4: Exemplary uAPI compound function. Here, relative timer arming is implemented
exclusively within the uAPI as a combination of two hAPI function calls.

Closely related to this is the unbundling of hAPI calls. Each function that was previously bundled
within the hardware-facing API is now split into parts. The hAPI function set_channel(),
for example, is unbundled into the four uAPI functions utimer_set(), utimer_set_abso-
lute(), utimer_set_periodic(), and utimer_clear(). This relieves developers from
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the somewhat inconvenient use of compressed functions. All unused functions again are auto-
matically excluded from the firmware binary during build, hence do not waste system memory.

Convenience Functions

All above described uAPI functions always entail a call to the hardware-facing API. Convenience
functions are an exception to this. They provide the user with out-of-the-box solutions for typical
problems, but are not mandatory for timer use. These include, for example, the conversion
between wall-clock time and timer ticks or checking whether a timer can be configured to a given
frequency and, if not, determining the closest achievable one (see Section B.3.5). The set of
convenience functions can be excluded as a whole during compile-time configuration.

Error Behavior

Sound hardware interfaces must define their behavior upon errors. This becomes particularly
important when developing for a diverse range of target devices, each possessing different driver
implementations. uTimer therefore extensively specifies the behavior upon hardware errors or
invalid API use. All errors are signaled via negative function return values. Their causes are
defined within the interface specification of the respective function for both all hAPI (see Sec-
tion B.2) and all uAPI (see Section B.3) functions. A rich HTML documentation is automatically
generated from the Doxygen2 compatible definitions. These measures guide OS developers during
the integration of new devices and ensure consistent API behavior across all platforms.

5.2.5 Interrupt Handling

Timers can generate interrupt requests to signal overflows or elapsed timeouts, i.e., their counter
register reached a certain value. uTimer allows the attachment of separate user-defined callbacks
for both compare match and overflow events. All mandatory maintenance tasks are performed
by the hAPI driver within the corresponding low-level interrupt service routines. This happens
automatically prior to user-callback execution.

Interrupt support is indicated by the static properties within every timer instance struct, and
all interrupts can individually be (un-)masked during run-time. Associated function signatures
and interrupt context definitions can be found in appendix Listing 14. The interrupt cause is
indirectly determined by the invoked callback. With compare channel matches, the channel
that triggered the compare match event is passed to the function as an argument. All callbacks
furthermore allow to bind an arbitrary context that is made available during invocation. Separate
callbacks for every channel are not natively supported, as discussed in Section 5.4.
2Doxygen source code documentation generator: https://www.doxygen.nl/ (Accessed: 21.02.2022)
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5.2.6 Configuration Management

Establishing a uniform scheme for peripheral configuration is just as important as its convenient
use. We distinguish between compile-time and run-time configuration. The former includes all
settings that cannot be altered after the firmware binary is built, such as the exposed timer
peripherals. The latter instead includes all properties that can be changed during run-time, such
as timer frequency.

We use Kconfig [36] to provide a solid and user-friendly management of compile-time config-
urations. This solution seamlessly integrates with the existing configuration system of RIOT.
Kconfig allows to define both platform-specific and global settings in a uniform way. Stored
data is easily accessible from all parts of the firmware. It can either conveniently be altered
during build via the console-based user interface or statically be set via a target configuration
file. Figure 5.5 shows the interactive selection of timer peripherals during build.

Figure 5.5: Interactive selection of timer peripherals using Kconfig

Configurable parameters are defined within designated Kconfig files. They allow to specify
data type, parameter range, and dependencies. Entries can be created on different hierarchical
levels, allowing system-wide, CPU-specific, and board-specific settings to be modeled alike. We
use this to provide device-family wide peripheral definitions that are automatically adjusted to
the target board. Generic settings, such as overwriting the counter type width, are employed
on a system-wide scale instead. This not only significantly reduces code duplication, but also
fosters a uniform and maintainable configuration management.

The proposed API also enables applications to reconfigure timers during operation. All run-time
configurations can be performed via the user-facing API. However, one parameter that requires
special attention is the timer clock, with which two crucial restrictions apply. First, explicitly
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using a platform-specific clock comes at the cost of loosing application portability. uTimer
copes with this by allowing to select clock sources as either a generic clock class, such as high-
frequency, low-power and default, or explicitly as a platform-specific clock. Second, altering a
clock source during run-time must not affect other timers or peripherals in any way. Certain clock
configurations can therefore be unavailable, based on the target hardware and the configuration
of other peripherals. We continue to discuss this problem in-depth within Section 5.4.2.

5.2.7 Application Portability

Operating systems provide user applications with the necessary abstraction to run independently
of the underlying hardware. With embedded systems, this becomes particularly important and
challenging at the same time. OSs like RIOT are expected to support a highly heterogeneous
range of hardware targets while ensuring identical behavior on all MCUs. Being able to write
code in a platform-independent fashion fosters reusable software solutions, widens the range of
compatible microcontrollers, and can in turn lower development costs as well as the time-to-
market [31]. On one hand, peripheral APIs must therefore put on enough abstraction to satisfy
the requirements for application portability. Too much abstraction, on the other hand, quickly
turns negative because it narrows the exposed feature set and impairs system performance. This
problem is in detail described in Section 3.2.

uTimer implements effortless cross-platform portability of user applications in multiple ways.
Generic peripheral identifiers and the class-based clock selection allow for platform-independent
timer configurations. The abstract uAPI can transparently interchange different timer types,
also across target devices. All functions that are not common to every peripheral are exposed
via the flexible property interface. It permits comprehensive interchangeability, as long as all
required timer features are supported by the targeted microcontroller. Platform-agnosticism is
only fully relinquished once the application developer actively decides to use explicit peripheral
or clock mappings. In this case, the timekeeping code is bound to the current target device and
peripheral mappings must be manually adjusted whenever changing the MCU. The extensive
specification of the application programming interface ensures its consistent behavior. Although
not recommended for new applications, uTimer can also coexist with current low-level timer
APIs. This facilitates the incremental migration of old firmware to the uniform API.

5.3 Usage Examples

This section presents two simple code examples that use the uTimer API to control low-level
timers. Error handling is omitted within both examples to keep them concise.
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#include "periph/utimer.h"

static void cb(void *arg, int channel) {
(void) arg;
printf("Callback executed. channel=%d\n", channel);

}

int main(void) {
utim_periph_t timer = utimer_get_periph(0);
utimer_init(&timer, TIMER_SPEED, UTIM_CLK_DEFAULT, &cb, NULL, NULL, NULL);
utimer_set(&timer, 0, 10000);
utimer_start(&timer);
puts("Timer 0 armed and started.");

return 0;
}

Listing 4: Code Example: Platform-independent use of a single timer to generate an absolute
timeout. The attached callback function is executed upon compare match.

#include "periph/utimer.h"

static void cb(void *arg, int channel) {
(void) arg;
printf("Callback executed. channel=%d\n", channel);

}

int main(void) {
utim_periph_t timers[] = {

utimer_get_periph(TIMERS_STM32_TIM5), // 32-bit, 4 CC, general-purpose
utimer_get_periph(TIMERS_STM32_TIM1), // 16-bit, 4 CC, advanced-control
utimer_get_periph(TIMERS_STM32_LPTIM1), // 16-bit, 1 CC, low-power
utimer_get_periph(TIMERS_STM32_LPTIM2) // 16-bit, 1 CC, low-power

};

for (size_t i = 0; i < ARRAY_SIZE(timers); i++) {
utim_periph_t* tim = &timers[i];
utimer_init(tim, TIMER_SPEED, UTIM_CLK_DEFAULT, &cb, NULL, NULL, NULL);

for (size_t chan = 0; chan < tim->channels; chan++) {
utimer_set(tim, chan, 10000);
printf("Timer %d channel %d armed.\n", tim->dev, chan);

}

utimer_start(tim);
printf("Timer %d started.\n", tim->dev);

}

return 0;
}

Listing 5: Example Code: Interchangeable use of different timer types. Peripherals are explicitly
selected among platform-specific timers. All available compare channels are automatic
armed, based on the static properties of the respective timer instance.
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An introductory code example is given in Listing 4. Here, the first generic timer instance is ini-
tialized and set to wait for 10000 timer ticks. It subsequently is started and the main application
halts. The callback function cb is asynchronously invoked upon timeout and prints the number
of the compare channel that triggered it.

The interchangeable use of different platform-specific timers is demonstrated in Listing 5. A total
of four timer instances are explicitly addressed here. The set consists of one general-purpose,
one advanced-control, and two low-power timers from the STM32 device family. This explicit
selection limits the application compatibility to all devices that possess at least the selected
peripherals and causes the automatic use of a 32 bit wide counter value type. Requesting timers
that are not available on a desired build target raises a respective error during compilation. Each
timer is initialized to a common counting frequency, using its type-specific default clock. It is
followed by the arming of all available compare channels and the subsequent timer start. This
produces a total of six callback executions for the chosen set of timers.

5.4 Discussion

Various trade-offs had to be weighed during the design of uTimer. The most important of these
are discussed in the first part of this section. Even though the proposed API was developed with
great care, certain issues remain. The second part of this section therefore focuses on implications
that arise from certain design decisions, as well as generic limitations of the architecture itself.
However, only conceptual aspects that are inherent to the API design are discussed here. The
run-time performance of uTimer is separately assessed by the comprehensive benchmarks we
develop in Chapter 7.

5.4.1 Design Trade-offs

Compare match (CMP) and overflow (OVF) callbacks are separated due to their disjoint use
cases. However, the compare match callback is not further split into individual channel-specific
functions because only 31 % of all timer types provide distinct interrupts for every compare
channel. Even though applicable platforms may experience a slightly lower timeout latency, the
remaining majority (69 %) only suffers the additional memory overhead for storing respective
function pointers. We found the potential performance gain on some devices to not nearly
outweigh the general drawbacks for all platforms. Individual functions can nonetheless still be
dispatched within the user-defined callback, whenever required.

All timer functions are registered within hAPI driver structs which in turn are assigned to timer
instances. Each uAPI call must therefore resolve the corresponding driver upon invocation,
hereby introducing pointer dereferencing overhead. Functions could instead be mapped directly
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within each timer instance struct, which would remove a layer of indirection. However, this not
only significantly increases the memory footprint, but also results in a non-negligible amount of
duplicate code. We therefore decided against this performance optimization. The exact overhead
caused by the different abstraction layers of uTimer is quantified in Section 7.4.5.

Bundling hAPI functions impairs their ease of use but reduces driver struct size. Because the
hardware-facing API is only rarely used by applications directly, the improved resource efficiency
undoubtedly outweighs the somewhat reduced convenience. The memory footprint of uTimer is
quantified during our Evaluation in Section 7.5.3. This includes a breakdown of all contributing
factors, including hAPI function pointers.

Exposing widely available advanced functions and timer-type specific features via the property
interface likewise impedes usability of the hardware-facing API. These functions could instead be
implemented directly as individual driver calls, allowing easy access and removing the additional
layer of indirection. However, this would again entail a massive increase in memory requirements.
Every driver would need to store a pointer for each potential timer function, regardless of whether
the interfaced peripheral actually supports it.

The width of the counter value type utim_cnt_t is defined globally. Smaller timers are thereby
forced to use superfluously wide data types, whenever required by at least one exposed timer.
Being unaware of such counter width differences can theoretically lead to unexpected behavior
during bit shifting and delay desired integer overflows. Using each timer with its exact width
requires separate function calls for every timer width that is available. Assuming all unused
functions are excluded during build, this still requires a minimum of 3 uAPI function sets on
57 % of the evaluated MCUs (see Table 7.2). This is not feasible because it drastically limits
peripheral interchangeability, impairs application portability, and greatly inflates the user-facing
API without any significant gain in functionality.

5.4.2 Issues

In Section 5.2.6 we already stressed that altering timer clock sources during run-time entails two
potential problems. One of them is to ensure that a clock change does not affect other hardware
timers or system components. Determining the impact domain of such reconfigurations requires
an examination of the clock tree. The following example illustrates this problem:

Given a timer clock TIMx_CLK can be driven by three different sources, namely CLK_A,
CLK_B, and CLK_C. If TIMx_CLK is only used by a single hardware module, reconfiguring it
does not cause any side effects and can therefore be performed at any time without restrictions.
In such cases, applications are free to select among the following clock sources: CLK_A, CLK_B,
and CLK_C. If TIMx_CLK is used by multiple timers or other peripherals instead, changing it
for one timer will likewise change it for all other peripherals. Now it is no longer possible to freely
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chose among the full range of clock sources. The clocking options of all affected timers therefore
must be limited to only TIMx_CLK. In other words, when traversing the hierarchical clock tree,
only those clocks are applicable that lay on the path originating from the timer peripheral up to
the first branch that leads to other peripherals.

One solution to this problem is proposed by Rottleuthner et al. [50]. FlexClock combines a
lightweight yet flexible scheme for modeling microcontroller clock trees with a generic software
implementation. It is specifically designed for low-power and resource constrained IoT devices.
This novel solution makes clock trees explorable during run-time and manages the dynamic
reconfiguration of all system clocks. We are very much in favor of using techniques like this
to allow dynamic and platform-independent clock selection. Because such changes not only
affect timers but all device peripherals alike, we suggest implementing them at a system-wide
scale. uTimer therefore does not evaluate clock trees, hence is unable to automatically determine
possible clock configurations. As a consequence, appropriate clock sources must be specified
by the operating system developer during implementation. Effects of this design decision are
revisited during our Evaluation in Section 7.5.9.

Mutual exclusive use of hardware timers is likewise not currently ensured by uTimer. This can
lead to undefined behavior if a single timer instance is used simultaneously by multiple system
components. As with clock management, peripheral allocation should not be implemented by
every low-level API itself. Hence, the need for an external resource allocator component arises.
Nonetheless, this remains a currently still unsolved problem when using uTimer in RIOT OS.

We explained our decision to enforcement a global counter value type width in the previous
section. Closely related is the transparent interchangeability of different timer types, which is
one key feature of the proposed API. Offering a single uniform interface likewise requires time to
be represented in a uniform way too. uTimer achieves this by using counter ticks as a common
base unit. While this approach is fine for most timers, some real-time clocks expose their current
”counter value” as wall-clock time instead. Conversion between timer ticks and alternative time
representations therefore becomes mandatory. The uniformity of the uAPI, however, contradicts
a transparent conversion of time formats and hides the wall-clock time from user applications.
Even though respective helper functions can aid in usability, the conversion overhead remains
inevitable. Separate counter-type based interfaces solve this problem, but were decided against
in the preceding trade-off section.
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Our implementation of the proposed API design is divided into a platform-independent operating
system module and six platform-specific packages. The latter include all low-level drivers for the
timer types of the respective MCUs, already providing support for a total of 129 boards. We use
RIOT release 2021.071 as the code base on which to build all our changes.

This chapter first presents the software architecture of RIOT and which parts of it are touched
upon by uTimer in Section 6.1. All hardware-independent aspects of the periph_utimer

module are addressed in Section 6.2. Section 6.3 continues by discussing each of our six platform
implementations individually, highlighting important aspects we found during the development of
hAPI drivers and within existing low-level timer drivers. This chapter closes with an automated
validation of the contributed software components in Section 6.4. The performance of uTimer is
evaluated separately in Chapter 7.

6.1 RIOT System Architecture

The structure of the RIOT code base is illustrated in Figure 6.1. It is divided into four layers
that build upon each other. All parts that are relevant for uTimer are highlighted in green.

Starting from the device hardware, boards and cpus are the first components. Peripheral
configurations, pin mappings, clock settings, and certain peripheral-specific initialization routines
are placed inside the boards directory for each board the is supported. uTimer extends these
definitions with a registry of all timer peripherals that targeted devices provide. Each board maps
to exactly one CPU, as defined in the cpu directory. It contains all CPU-specific code, including
processor configurations, interrupt handling routines, startup code, and clock initialization. Both
cpu and boards allow entities to share parts of their code via designated directories, identified
by a _common suffix. It is strongly encouraged to place code at the highest possible level
to minimize redundant segments. The periph subdirectory constitutes the next hardware-
dependent layer. It contains implementations of low-level peripheral drivers for each individual

1RIOT release 2021.07: https://github.com/RIOT-OS/RIOT/releases/tag/2021.07 (Accessed:
06.02.2022)

2This illustration is largely based on the following image: https://doc.riot-os.org/riot-structure.svg
(Accessed: 05.02.2022)

57

https://github.com/RIOT-OS/RIOT/releases/tag/2021.07
https://doc.riot-os.org/riot-structure.svg


6 Implementation

Figure 6.1: Structural overview of the RIOT OS. Components are displayed in their hierarchical
order from the device hardware up to the user application. All areas that are affected
by our implementation of uTimer are highlighted in green2.

CPU, including periph_timer/rtc/rtt. uTimer is likewise implemented here as the exclusive
periph_utimer module, containing all hAPI drivers for the respective MCU.

The first hardware-independent layer comprises drivers and the system core. The former
directory contains drivers for external devices such as sensors, network interfaces, and radios.
All device drivers rely on the low-level periph implementations to interface external hardware
in a platform-independent fashion. The periph_common subdirectory allows extending the
CPU-specific periph implementations by additional platform-agnostic components. It is pre-
dominantly used for common peripheral driver initialization, to implement compound functions,
and to provide utility code. We therefore implement the user-facing API here.

All remaining components are not related to uTimer and therefore are only briefly outlined
below. The core directory contains the RIOT kernel. It provides scheduling, threading, and
inter-process-communication as well as all corresponding data structures and type definitions.
Above that are pkg and sys, including the sys/net subdirectory. All external libraries and
respective patches reside inside the pkg directory. Following the micro-kernel architecture of
RIOT, sys contains all system modules that implement platform-independent functions besides
device drivers, such as cryptographic operations or the shell. The comprehensive generic (GNRC )
network stack of RIOT resides in its exclusive net subdirectory [33].

User applications are implemented on top of all four operating system layers but can access each
layer individually whenever required. The described components are further extended by example
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applications (examples), user documentation (doc), various automation scripts (dist), and
unit tests (tests). We extend the latter by porting the full set of existing low-level timer test
suites to uTimer as well as developing unit tests for all new API functions.

6.2 Low-level Timer Module

uTimer is implemented as a self-contained peripheral driver module, namely periph_utimer.
It can be included during build by adding it to the list of used modules via USEMODULE +=

periph_utimer in the application Makefile. Other low-level timer drivers can be used in
conjunction with it, but a single hardware timer should only be used through one of the interfaces
to avoid undefined behavior.

This section exclusively describes interface definitions and common code segments of uTimer,
placed inside the drivers/periph_common directory. First, the implementation of compile-
time module configuration is discussed. It is followed by datatype definitions and associated
defaults. The section finishes with all platform-independent aspects to both the hardware-facing
and user-facing APIs.

6.2.1 Compile-time Configuration Management

All uTimer settings, including the selection of timer peripherals, are performed via Kconfig and
thus blend seamlessly with the uniform configuration management of RIOT. The design and ca-
pabilities of this system are described in Section 5.2.6. This section focuses on its implementation
instead. Kconfig files are hierarchically structured, as illustrated in Figure 6.2.

Generic API settings are defined inside a designated Kconfig.utimer file that resides in the
drivers/periph_common directory. Entries include, for example, the global counter type
width overwrite or the exclusion of uAPI convenience functions. All definitions are automatically
sourced into the main peripheral Kconfig to fulfill the separation of concerns software design
principle. It in turn is loaded by the driver configuration file that finally is included inside the
root Kconfig.

Timer peripherals are defined within the CPU-specific configuration files. They list every hard-
ware timer that is part of a microcontroller family3 at a central location. Boards select these
definitions inside their board-specific Kconfig files to indicate the subset of actually available pe-
ripherals. The list of low-level timers that can be used by the application is then automatically
generated prior to compilation, based on the BOARD variable. This supersedes the cumbersome

3Some manufacturers use standardized peripheral names throughout all their device families. In such cases,
available peripherals are defined within a common package for the respective manufacturer.
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Kconfig

drivers/Kconfig

drivers/periph_common/ 
Kconfig.utimer

cpu/$(CPU)/periph/Kconfig.utimer boards/$(BOARD)/Kconfig

...

...

...

drivers/periph_common/ 
Kconfig

...

...

...

Figure 6.2: Hierarchical structure of the Kconfig definition files

and error-prone peripheral configuration via header files and relives application developers from
looking up available timers within vendor datasheets.

6.2.2 Datatype Definitions and Defaults

Common data types are defined inside the module header file drivers/include/periph/
utimer.h. It provides defaults for all types, which can be overwritten if necessary. However,
certain data types and enumerations should be defined individually by the platform-specific
implementations. Otherwise, limited fallback definitions will be used instead.

An unsigned integer is used as the standard peripheral identifier utim_t. Its maximum value
UINT_MAX is reserved by default to indicate an invalid device. The actual width of the unsigned
int type varies between processor architectures, but is at least 8 bits. This leaves more than
enough room to identify all timer peripherals. The counter value type utim_cnt_t should be
selected individually by the CPU implementations. If this is not the case, uint_fast32_t
is used as a fallback. When the corresponding compile-time option is set, both fallback and
platform-specific selections will be overwritten (see appendix Listing 11). Available clock sources
shall likewise be provided by the platform implementations. Otherwise, UTIM_CLK_DEFAULT
remains the only possible selection (see appendix Listing 12).

All attributes that are part of the flexible property interface are registered within the utim_-
prop_t type, as defined in appendix Listing 13. Each entry is identified by a distinct hexadecimal
value. The enumeration is split into peripheral-wide and channel-specific properties, as indicated
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by the most significant bit. If the MSB is set, the following five bits indicate the channel number
and all remaining bits define the respective channel property. Two examples of this encoding are
given in Listing 6. Example 1 encodes the Mode property of timer channel four and Example 2
encodes the Compare Match Pending status flag of timer channel two. The interface distinguishes
between 1024 properties and 32 individual channels. This even allows modeling all 12 channels of
the Texas Instruments LM4F120 (see Table A.13) and leaves enough room for future extensions.

/** Prefix indicating a channel property in utim_prop_t */
#define UTIM_PROP_CHAN_PFX 0x8000
/** Channel number bits in utim_prop_t */
#define UTIM_PROP_CHAN_NUM_Pos 10
#define UTIM_PROP_CHAN_NUM_Msk (0b11111 << UTIM_PROP_CHAN_NUM_Pos)
/** Channel property indicator bits in utim_prop_t */
#define UTIM_PROP_CHAN_PROP_Pos 0
#define UTIM_PROP_CHAN_PROP_Msk (0b1111111111 << UTIM_PROP_CHAN_PROP_Pos)

typedef enum {
// 8< -----
/** Example 1: Mode of timer channel 4

*
* -Prefix- -Channel 4- -Mode-

* ((0x8000) | (0x04 << 10) | (0x00 << 0)) = 0x9000

* = 0b 1001 0000 0000 0000

*/
UTIM_PROP_CHAN4_MODE = (

(UTIM_PROP_CHAN_PFX) |
(0x04 << UTIM_PROP_CHAN_NUM_Pos) |
(0x00 << UTIM_PROP_CHAN_PROP_Pos)

),

/** Example 2: Compare match status of timer channel 2

*
* -Prefix- -Channel 2- -CMP-

* ((0x8000) | (0x02 << 10) | (0x01 << 0)) = 0x8801

* = 0b 1000 1000 0000 0001

*/
UTIM_PROP_CHAN2_CMP_MATCH_PENDING = (

(UTIM_PROP_CHAN_PFX) |
(0x02 << UTIM_PROP_CHAN_NUM_Pos) |
(0x01 << UTIM_PROP_CHAN_PROP_Pos)

),
// 8< -----

} utim_prop_t;

Listing 6: Encoding of channel-specific properties within utim_prop_t
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6.2.3 Hardware-facing API

The hardware-facing API is likewise specified within the common module header file. The
utim_driver_t type encapsulates all function pointers that make up an hAPI driver. They
are listed in full detail within appendix Section B.2. Their implementation is entirely performed
by the platform-specific code inside the cpu directory, which is why utimer.h only defines the
generic hAPI interface.

It is extended by supplementary type definitions that provide named values for certain function
arguments, such as channel operation modes. The signatures for compare match and overflow
callbacks are also defined at this place, including a default interrupt context type for both events
(see appendix Listing 14). It facilitates implementations to bind the optional argument pointer
directly to the respective callback function.

6.2.4 User-facing API

All functions of the user-facing API are fully implemented by the common uTimer periph
module. The only exception to this is utimer_get_periph(). Since platform developers are
free to choose how they store peripheral instances, the corresponding access function must reflect
this accordingly. Its implementation is therefore left to the individual platforms themselves.

The signatures of all uAPI functions are defined in the module header file drivers/include/
periph/utimer.h. A complete list of these can be found in appendix Section B.3. Interface
specification, error handling, and documentation are either referenced from the corresponding
hAPI functions or defined here, as is the case with compound and unbundled functions. All
uAPI code resides inside the drivers/include/periph_common/utimer.c file.

6.3 Platform Implementations

To date we have implemented uTimer for six different microcontroller platforms. This makes
the novel low-level timer API already available on a total of 129 boards. All supported device
families are listed in Table 6.1. These were selected based on their timer hardware diversity,
popularity, and availability.

Each platform-specific uTimer implementation has to . . .

a) implement a utim_driver_t hAPI driver for every timer type that is available.
b) create and store the utim_periph_t instance structs for all selected timers.
c) implement the utim_get_periph() uAPI function for exposing available timer instances

to the user application.
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CPU Boards [#]
atmega 16 boards
efm32 14 boards
esp32 ≥ 10 boards

esp8266 ≥ 3 boards
msp430fxyz 4 boards

stm32 82 boards

129 boards
The esp32-wroom-32 and esp8266-esp-12x boards are designed to be used

with various generic ESP32/ESP8266 modules.

Table 6.1: Total number of boards with uTimer implementations

d) configure all necessary device interrupts and provide corresponding low-level ISRs.
e) provide the required platform-specific type definitions.
f) supply Kconfig peripheral mappings for supported boards.

Low-level hAPI drivers reside inside the cpu/$(CPU)/periph directory for each respective
CPU. The utimer.c source code file contains all hAPI functions, creates driver structs, and
sets up timer instances based on the Kconfig peripheral selection. The well-known UTIMER_-

NUMOF preprocessor macro, which indicates the total number of available timer instances, is also
automatically calculated by the latter. Whenever multiple MCUs have the same timer type, its
associated driver is shared among them and therefore implemented within a common module.

The remaining files are either placed inside the cpu or boards directory, depending on the
genericity of the respective platform. As long as an implementation does not require to distinguish
between boards, source code and system headers are preferably placed within the cpu folder.
The boards directory should only be used if inevitable to prevent unnecessary code duplication
and facilitate software maintenance. When used, it typically contains board-specific mappings of
interrupt vectors and peripheral base addresses. It is normally only required on large and highly
diverse platforms, such as the STM32 microcontroller series. Platform-specific type definitions,
such as available clock sources, are appended to the existing peripheral configuration header
files periph_cpu.h and periph_conf.h. Data structures for storing timer instances and all
available hAPI drivers are provided within the new periph_utimer_common.h header.

The remainder of this section briefly discusses each platform individually. In doing so, we will
go into details that stood out during development of the respective uTimer implementation as
well as certain aspects of existing low-level timer drivers. The platforms are discussed in their
lexicographical order.
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6.3.1 Atmel / Microchip ATmega AVR

The Microchip ATmega AVR series, formerly produced by Atmel, is the predominant processor
family on Arduino boards. It is therefore a popular choice among hobbyists, but ATmega MCUs
are also widely found in the industry due to their cost-efficient design. It is the only platform
that provides separate interrupt vectors for every compare channel4.

Low-level peripheral code is exclusively placed within the atmega_common package, which is
included by all ATmega CPUs during build. While implementing periodic timeouts for uTimer,
we noticed a problem within the existing periph_timer_periodicmodule. Periodic timeouts
can be configured to reset the counter value upon compare match, as indicated by the TIM_-
FLAG_RESET_ON_MATCH option. However, the existing implementation failed at restoring it
after timer restarts, causing an invalid counting mode, called CTC, to be set. As a result, the
counter value is not reset after the first compare match and the timer continues to count until it
overflows. In such cases, no periodic timeout events are generated until the counter value fully
wrapped around and reached the configured compare match threshold again. We contributed a
fix for this issue with pull request #173875.

We moreover identified a peripheral allocation conflict between the periph_rtt and periph_-
rtc modules. Both use TIMER2 to implement their APIs upon. This results in undefined timer
behavior when the conflict remains unnoticed by the developer and both modules are used within
the same application.

6.3.2 Espressif ESP8266 and ESP32

The ESP8266 and ESP32 microcontrollers, manufactured by Espressif, provide low-cost access to
Wi-Fi and Bluetooth communication. Compared to other devices, they possess a sophisticated
system architecture that is backed by an extensive vendor-provided software development kit
(SDK). However, their timer peripherals are very limited in both number and features.

Even though their peripheral drivers are separated within RIOT, timers of both MCUs are very
similar. The vendor SDK can be used to access general-purpose timers, but only exposes a small
feature set. We therefore implement all timer drivers via direct hardware register access instead.
During development of the clock configuration, we noticed that although prescalers are available
on all general-purpose timers, periph_timer only supports a fixed 1 MHz counting frequency.
This may be sufficient for many applications, but it drastically limits peripheral configuration
options. As on most other platforms, we found that some peripherals are simultaneously exposed
via multiple of the existing low-level APIs.

4The ESP8266 and ESP32 are excluded from this assertion because they only offer a single compare channel
and have no overflow interrupt support.

5See: https://github.com/RIOT-OS/RIOT/pull/17387 (Accessed: 04.01.2022)
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6.3.3 Silicon Labs EFM32

The Silicon Labs EFM32/EFR32 platform combines powerful Cortex processor architectures with
a comprehensive selection of timekeeping peripherals. It, for example, provides the designated
ultra low-power Cryotimer, which unfortunately is not usable via any of the existing peripheral
interfaces. Furthermore, despite the availability of a designated real-time counter, current APIs
expose solely the real-time clock through both periph_rtt and periph_rtc.

Timer chaining is implemented on this platform to test the virtual hAPI drivers of uTimer, as
introduced in Section 5.2.3. We use the general-purpose TIMER0 as a configurable prescaler
that is then fed into TIMER1. The combined peripherals are presented to the user application
as an atomic timer instance, which can be used interchangeably with other types. This structure
yields a greatly extended counter range and enables comprehensive fine-tuning of the counting
frequency. It likewise applies to the wide general-purpose timers WTIMER0 and WTIMER1,
allowing for counter ranges up to 264 ticks. The example in Listing 7 demonstrates the creation
of both regular and virtual timer instances. It is strongly recommended to use either the chained
timer instance TIMER01 or contained timers individually. Simultaneous use of both results in
undefined behavior. Such selections can either be completely prohibited via Kconfig definitions
or the application developer can be notified by a preprocessor warning as in our example.

During development, we noticed that periph_timer is able to expose two different timer types
on this platform, namely General-purpose and Low-energy. While this is desirable from a feature
perspective, it has one crucial consequence. The peripheral driver thereby needs to distinguish
between the two types within each function call individually. This not only impairs code main-
tainability but also lowers performance, as confirmed by our benchmarks in Section 7.4. uTimer
circumvents this explicit distinction by implicitly determining the peripheral type through the
associated hAPI driver.

6.3.4 STMicroelectronics STM32

The STM32 microcontroller family possesses the most comprehensive range of timer peripherals
among all targeted platforms. This implementation alone provides support for a total of 82
boards. Devices provide various general-purpose, advanced-control, basic, and low-power timers
as well as up to two real-time clock peripherals per MCU. All hAPI drivers are implemented
inside the common stm32 package and are selected accordingly within the individual board
mappings. Problems with the Kconfig files for the nucleo-l152re board, for example, could
be fixed during uTimer implementation by our pull request #169996.

6See: https://github.com/RIOT-OS/RIOT/pull/16999 (Accessed: 04.01.2022)
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const utim_periph_t timer_periphs[] = {
#if CONFIG_EFM32_PERIPH_UTIMER_USE_TIMER0
{

.dev=TIMERS_EFM32_TIMER0,

.driver=&UTIMER_DRIVER_GPTIMER,

.width=16,

.channels=3,

.int_ovf=true,

.int_cmp_match=true
},
#endif /* CONFIG_EFM32_PERIPH_UTIMER_USE_TIMER0 */

#if CONFIG_EFM32_PERIPH_UTIMER_USE_TIMER1
{

.dev=TIMERS_EFM32_TIMER1,

.driver=&UTIMER_DRIVER_GPTIMER,

.width=16,

.channels=3,

.int_ovf=true,

.int_cmp_match=true
},
#endif /* CONFIG_EFM32_PERIPH_UTIMER_USE_TIMER1 */

#if CONFIG_EFM32_PERIPH_UTIMER_USE_TIMER01
#if (CONFIG_EFM32_PERIPH_UTIMER_USE_TIMER0 || \

CONFIG_EFM32_PERIPH_UTIMER_USE_TIMER1)
#warning "TIMER0 or TIMER1 are exposed but TIMER01 is selected."

#endif /* TIMER01 && (TIMER0 || TIMER1) */
{

.dev=TIMERS_EFM32_TIMER01,

.driver=&UTIMER_VDRIVER_GPTIMER_CHAINED,

.width=32,

.channels=3,

.int_ovf=true,

.int_cmp_match=true
},
#endif /* CONFIG_EFM32_PERIPH_UTIMER_USE_TIMER01 */

// 8< -----
};

Listing 7: Creation of regular and virtual timer instances. Their mutual exclusive use is encour-
aged by a respective preprocessor warning.
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Although most timer types behave identical, certain ones differ slightly between device sub-
series. An example for this is the real-time clock. Besides the usual variations in register names
and addresses, the STM32F1 series requires a different RTC driver code than others. On said
platform, a peripheral allocation conflict between periph_rtc and periph_rtt exists.

The large diversity of timers can also lead to false assumptions about the available hardware.
Existing timer APIs, for example, assume that ”all STM timers have 4 capture-compare chan-
nels”7. However, this is not the case as our hardware analysis revealed. General-purpose timers
can have between one and four, advanced-control timers either four or six, and low-power timers
only a single compare channel, see Table A.1 for full details. This prevents their exhaustive uti-
lization via existing interfaces and results in erroneous timer behavior whenever peripherals with
less than four channels are used. uTimer addresses this by binding static hardware properties to
each timer instance.

6.3.5 Texas Instruments MSP430

Hardware timers on the Texas Instruments MSP430x platform are rather simplistic. Besides its
watchdog, the microcontroller only offers two 16-bit general-purpose timers. These namely are
TIMER_A, which provides three compare channels, and TIMER_B, which provides a total of
seven channels. Neither of both supports range extension through timer chaining.

Existing low-level timer APIs are only capable of exposing TIMER_A via periph_timer.
TIMER_B remains unusable and none of the other low-level timer modules are implemented.
Since this uTimer implementation was straight forward on the one hand and the last one we
conducted on the other, no further noteworthy aspects stood out.

6.4 Validation

To validate our API implementations, all existing low-level timer test suites of RIOT were ported
to periph_utimer. This was accomplished by replacing each periph_timer call with the
corresponding uTimer function. Test concepts and procedures were left unchanged. Existing test
suites assess fundamental timer functions, one-shot timeouts on all channels, periodic timeouts,
and include a robustness test for very short timeouts. We developed additional test suites
for features that are unique to uTimer, such as counter register writes and overflow interrupt
handling. To validate advanced peripheral features, further device-specific tests were conducted.
These naturally only succeed on a subset of our targeted platforms, since hardware support for
the assessed feature is required. Virtual timer drivers, for example, were tested by exposing a

7See source code file cpu/stm32/include/periph_cpu.h: https://github.com/RIOT-OS/RIOT/blob/
2021.07-branch/cpu/stm32/include/periph_cpu.h#L104 (Accessed: 07.02.2022)
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pair of chained hardware timers as a single atomic timer instance to the user application, as
described in Section 6.3.3. Behavioral equivalence was verified by executing the identical test
suites on both the virtual and all other non-virtual timer instances of the assessed MCU.

Both types of tests revealed small implementation errors, which then could be fixed prior to
conducting our benchmarks, as described in Chapter 7. All test suites are platform-independent
and the provided Continuous Integration (CI) support allows their automated execution. uTimer
tests therefore integrate seamlessly into the existing development workflow of RIOT. They hereby
not only reveal errors during the initial driver implementation phase, but also allow regression
testing to detect bugs and possible side effects within nightly builds and pending pull requests.
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Proper behavior of our uTimer implementations was verified by unit tests in the previous section.
Within this chapter, we continue by assessing its performance and comparing it to the current
low-level timer APIs of RIOT. First, we provide a brief introduction to the applied concepts
and techniques, followed by a detailed description of our evaluation setup. We develop bench-
marks that quantify the performance of both uTimer and periph_timer. These assess basic
timer operations, compare channel timeouts, interrupt handling, and the platform-independent
abstraction overhead that is inherent to the APIs themselves. All measurements are conducted
in an automated fashion by using a hardware in the loop testbed with CI support. This chapter
finishes with a discussion of benchmark results, issues, memory requirements, and peripheral
diversity as well as qualitative aspects, including usability, code quality, and influence on the
systems development life cycle (SDLC).

7.1 Concepts

In this section, we briefly introduce the main concepts and techniques applied in our evaluation.
Their use and how we integrate them into our test setup is described in detail in Section 7.3.

7.1.1 Hardware in the Loop

Hardware in the Loop (HiL) testing is a technique where a programmable hardware controller
is used to stimulate a device under test (DUT). The HiL controller acts as an external reference
device and is capable of generating arbitrary input signals on the GPIOs of the DUT while
constantly monitoring their state. Any change in signal level is recorded and can be acted upon.
This allows to test embedded software directly on the target hardware, without having to connect
all external peripherals that would be present during normal operation. HiL controllers usually
run mathematical simulation models to emulate the sensors and actuators required by the specific
application of the DUT. They can moreover be used to drive signal buses, such as CAN, or solely
as automated logic analyzers. We use this technique throughout all our tests and benchmarks.
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7.1.2 Primitive Hardware in the Loop Integration Product

The Primitive Hardware in the Loop Integration Product (PHiLIP) [58] is a low-cost solution
for HiL testing. This open-source firmware1 is specifically designed to test hardware abstraction
layers and peripheral APIs of embedded applications and OSs. It runs on both the nucleo-f103rb
and the bluepill board. PHiLIP can be used either directly via a serial connection or via a
convenient python shell interface. Both interfaces support setting and clearing arbitrary GPIOs
and offer platform-independent mappings for specific functions, such as DUT reset or universal
asynchronous receiver-transmitter (UART) communication. This allows to develop abstract test
suites that can be run on a wide range of target devices. Moreover, a designated input capture
pin for precise timing measurements is available at all times. Recorded traces are stored in an
internal buffer and can be retrieved via the shell interface. Our test setup uses PHiLIP to conduct
all measurements in a hardware-independent fashion.

7.1.3 Robot Framework

The Robot Framework (RF) [49] is an open-source test automation framework that is written
in Python and released under the terms of the Apache License 2.0. It initially was developed by
Nokia Networks to test robotic process automation systems. Test cases are specified as human-
readable keywords in a tabular format. They can be executed both individually or as a part
of larger test suites. Open and extensible software interfaces foster the integration with other
tools, such as CI systems, wherefore a rich ecosystem exists around the framework. Test results
are output in both a rich HTML and a machine-readable XML format. The first provides quick
insight, while the latter facilitates data post-processing and allows further automated analyses.
The set of built-in functions is readily extended with additional libraries that can be written in
Python, Java, or many other programming languages. We use the Robot Framework to specify
and execute all our test cases as well as our performance benchmarks in an automated fashion.

7.2 Methodology

We evaluate uTimer on a total of 14 distinct boards, ranging from low-end to high-end devices.
Selected microcontrollers cover a comprehensive range of embedded hardware and are commonly
deployed within various IoT contexts. Table 7.1 lists all assessed boards including their MCU,
vendor, word size and CPU architecture. Table 7.2 extends this list by a quantitative overview
of available hardware timers and compare channels. Boards were selected to represent a diverse
spectrum of timer peripherals. They offer general-purpose timers between 8 and 64 bit, basic

1PHiLIP GitHub repository: https://github.com/riot-appstore/PHiLIP (Accessed: 18.01.2022)
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Board Microcontroller Vendor Word Architecture CI
arduino-mega2560 ATmega2560 Microchip Technology 8 bit AVR X
esp32-wroom-32 ESP32 Espressif Systems 32 bit LX6 X
esp8266-esp-12x ESP8266 Espressif Systems 32 bit LX106 X

nucleo-f103rb STM32F103RB ST Microelectronics 32 bit Cortex-M3 X
nucleo-f767zi STM32F767ZI ST Microelectronics 32 bit Cortex-M7 X
nucleo-g474re STM32G474RE ST Microelectronics 32 bit Cortex-M4 X
nucleo-l152re STM32L152RE ST Microelectronics 32 bit Cortex-M3 X

slstk3400a EFM32HG322 Silicon Labs 32 bit Cortex-M0+ X
slstk3401a EFM32PG1B200 Silicon Labs 32 bit Cortex-M4F X

stk3200 EFM32ZG222 Silicon Labs 32 bit Cortex-M0+ X
z1 MSP430F2617 Texas Instruments 16 bit MSP430 X

nucleo-f070rb STM32F070RB ST Microelectronics 32 bit Cortex-M0 ×
nucleo-l476rg STM32L476RG ST Microelectronics 32 bit Cortex-M4 ×

slstk3402a EFM32PG12B500 Silicon Labs 32 bit Cortex-M4F ×

Table 7.1: Overview of evaluated microcontroller boards. Their availability within our continuous
integration system is indicated by the CI column.
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z1 8 MHz - 2 10 X
arduino-mega2560 16 MHz - 6 16 X X

slstk3400a 24 MHz - 5 11 X X
stk3200 24 MHz - 4 8 X X

nucleo-f070rb 48 MHz - 10 14 X X X

nucleo-l152re 32 MHz ◦ 11 22 X X X
slstk3401a 40 MHz ◦ 6 11 X X X
slstk3402a 40 MHz ◦ 8 18 X X X

nucleo-f103rb 72 MHz ◦ 6 17 X X X
esp32-wroom-32 80 MHz ◦ 5 5 X X
esp8266-esp-12x 80 MHz ◦ 2 2 X

nucleo-l476rg 80 MHz + 15 32 X X X
nucleo-g474re 170 MHz + 14 47 X X X
nucleo-f767zi 216 MHz + 17 35 X X X

Product range is rated as: low-end (-), mid-range (◦), or high-end (+)

Table 7.2: Overview of hardware timers as available on the evaluated microcontroller boards.
Devices appear sorted by Product Range and CPU Clock.
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as well as feature-rich modules, and some provide even advanced ultra low-power timers. More-
over, three distinct interrupt handling techniques, various advanced counting modes, and timer
chaining capabilities are included. Our selection covers 10 different CPU architectures2 and all
predominant word sizes. Devices are produced by five manufacturers and incorporate MCUs
that are frequently used for resource-constrained applications in the Internet of Things.

We perform the following steps for each board:

1.) Executing timer test suites against all APIs on the target device. This happens prior to any
evaluative measurement, ensuring that assessed implementations meet their specifications.

2.) Conducting timer performance benchmarks and comparing the results of uTimer against
the existing periph_timer API.

3.) Assessing further quantitative aspects that are not covered by our benchmarks. These
include memory consumption and the availability of timer peripherals to user applications
and high-level OS modules.

4.) Examining qualitative aspects, such as user-friendliness, software quality, and compatibility.
5.) Investigating encountered problems and issues, if any.

Results and findings from the evaluated boards are compiled into individual summaries for all
assessed aspects. These are subsequently judged as part of a comprehensive discussion.

7.3 Test Setup

The setup we use to conduct all software tests and performance benchmarks is described in detail
in this section. At first, a comprehensive overview of its architecture is given. We highlight all
applied concepts and techniques, as well as individual components and their interaction. System
accuracy is subsequently quantified and hardware limits of our setup are discussed. We carry out
individual test series to determine the stability of all our measurements. This ensures reliable
and reproducible results. Last, we outline the integration of our evaluation setup into the current
CI system and hardware testbed of RIOT.

7.3.1 Architecture

Automation is a necessity for obtaining comparable measurement results from a large number of
target devices. We therefore combine generic test firmware and benchmark routines with Robot
Framework test suites to automate execution. Since we are assessing the timer subsystem of
the target device, we cannot rely on its own system clock for measuring execution durations.

2The Cortex-M0+ architecture supports the full instruction set of the Cortex-M0 architecture while having a
lower energy consumption and only a two-stage CPU pipeline.
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Incorporating HiL testing provides us with an external reference device that possesses a qualified
clock source, which is independent of the DUT. PHiLIP is used as a HiL controller that is able
to conduct all our measurements in a hardware-independent fashion. It integrates directly with
RF through a Python library that allows to control the DUT and exposes recorded GPIO event
traces to test suites. The architecture of our setup and the interaction of its components is
illustrated in Figure 7.1.

Figure 7.1: Architecture of our benchmark setup

Process flow is controlled by a computer that runs the Robot Framework software. Prior to suite
execution, the corresponding test firmware is flashed onto the DUT once (1). It implements all
benchmark routines and is controlled through a simple shell interface, which is exposed to the
host via UART. The corresponding RF test suite subsequently starts. It initializes the PHiLIP
device (2), issues control commands via the DUT shell (3) and uses PHiLIP to record GPIO
event traces (6–7). DUTs signal begin and end of time periods via their GPIOs during execution
of the requested operations (4–5). Measurements are evaluated by processing the captured event
traces within the RF test suite (8). All results are exported as machine-readable XML files in
the xUnit format3. These are further processed into CSV files that combine the results from all
assessed platforms.

Prior to any measurement, the DUT firmware version and board timing parameters, such as
oscillator frequencies, are verified. In case of mismatch, test suite execution is aborted to obviate
erroneous results. Each test case starts by resetting the DUT, flushing the trace buffer, and
configuring DUT interrupt requests (IRQs). That follows a short pause to surpass PHiLIPs
minimum hold-off time. During test teardown, GPIOs are cleared and IRQ state is restored.
Every benchmark is repeated 500 times to ensure accurate results. Certain microbenchmarks
additionally repeat the executed function calls 10 times per benchmark pass to safely exceed
the required hold-off time. We quantify the minimum hold-off time of PHiLIP and discuss
appropriate sample sizes for all our benchmarks in detail within the next section.

3The xUnit.net v2 XML Format: https://xunit.net/docs/format-xml-v2 (Accessed: 20.01.2022)
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7.3.2 Accuracy and Hardware Limits

Start and stop of measured time durations is indicated by consecutive rising and falling edges on a
GPIO pin. The accuracy of this measurement therefore depends on both the signaling overhead
of the DUT and the input capture performance of PHiLIP. The first is accounted for during
trace post-processing, as quantified by our GPIO overhead measurements that are described in
Section 7.4.1. The latter depends on the selected trigger mode. We use the interrupt-based dual-
edge trigger mode of PHiLIP for all our tests. This mode is rated to require at least 1 µs hold-off
time between two consecutive edges and faces 200 ns timestamp jitter [58, p. 14]. However,
we found its accuracy to improve when using a Nucleo-F103RB instead of the smaller Blue Pill
board. We hereby were able to obtain accurate and stable results with as little as 600 ns hold-off
time and only 45 ns jitter. When undercutting this limit, however, samples start to get lost,
what ultimately results in erroneous measurements. A hold-off time of at least 1 µs is therefore
enforced throughout all our test and benchmark routines to provide a reasonable safety margin
and to preserve board compatibility.

The temporal resolution of captured traces is limited by the CPU operation frequency of the
MCU that runs PHiLIP. As both supported boards operate at 72 MHz, 14 ns quantization steps
can be observed within our measurements.

Each test or benchmark pass may generate multiple GPIO events and can be repeated multiple
times. PHiLIP records each event occurrence within a circular trace buffer that can hold up to
128 events at once. All our test and benchmark suites therefore fetch captured event traces not
later than after every 50 consecutive measurement periods. Traces from multiple runs may be
combined to reduce their total execution time. This is accounted for within the corresponding
RF suites, whenever applied.

7.3.3 Measurement Stability

The wall-clock time that an operation takes to fully execute can vary due to multiple factors.
These include task scheduling, concurrency control, and interrupt servicing. Repeating the set of
measured operations is therefore required to achieve stable benchmark results. Choosing a sample
size that is too small yields inaccurate and unreliable results. Simply selecting a superfluously
large sample size may reliably produce accurate results, but skyrockets benchmark execution
time. We ran all benchmark suites using sample sizes ranging from 50 to 1000 with a step size
of 50 to determine an appropriate value for our measurements. Result stability over full suite
executions was verified by repeating the described procedure within batches of five consecutive
benchmark suite runs on three different days.
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Figure 7.2: Comparison of GPIO overhead on all boards using different sample sizes. Error bars
indicate the standard deviation of each sample set. Note that the vertical axis scales
differ to improve the readability of error bars.
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Figure 7.2 shows the results of GPIO overhead measurements (see Section 7.4.1) on all boards
for a subset of the assessed sample sizes. Results are stable on all boards at a sample size of
at least 250. The basic timer operations benchmark (see Section 7.4.2) becomes stable at much
lower sample sizes, compared to other benchmarks. This is due to the fact, that the measurement
routine itself already executes each operation 10 times per benchmark pass. It produces stable
results after no more than 50 repetitions across all boards. Benchmarks that assess various types
of timeouts (see Section 7.4.3) produce stable results on 82 % of the boards with 100 samples.
They become stable on all boards when at least 200 repetitions are conducted.

Our analysis identified a sample size of 250 to be the absolute common minimum across all
benchmarks and devices. Therefore, we repeat all our measurements 500 times to provide a
sound safety margin while keeping benchmark execution times as short as possible.

7.3.4 Continuous Integration and Benchmark Automation

Comprehensive software tests and benchmarks are especially important when dealing with a
diverse and ever-changing hardware landscape. RIOT therefore actively fosters automated cross-
platform testing by combining Hardware in the Loop (HiL) testbeds with Continuous Integration
(CI). Its HiL system is operated by the RIOT developer community, currently features 30 different
boards, and is being further extended right now. All devices are arranged within racks, such
as the one depicted in Figure 7.3. DUTs are connected to STM32 Blue Pill boards that fulfill
the role of the HiL controllers by running the PHiLIP firmware. Each device pair possesses an
individual Raspberry Pi control node that executes all tests using the Robot Framework. A
Jenkins automation server4 executes unit tests and performance benchmarks for every nightly
build and pull request. In addition, any existing as well as custom test suites can manually be
run against arbitrary RIOT firmware versions.

We leverage this system to execute the developed test suites and performance benchmarks. Our
evaluation setup therefore seamlessly integrates with this solution and can easily be extended
to include additional microcontroller boards in the future. OS and application developers are
provided with ready-to-use unit tests and benchmarks, hereby encouraging and guiding the
development of performant API implementations.

7.4 Benchmarks

Within this section, we develop benchmarks to quantify the performance of both uTimer, inter-
nally referred to as periph_utimer, and the current periph_timer API. These assess basic

4Jenkins Project Website: https://www.jenkins.io/ (Accessed: 21.01.2022)
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Figure 7.3: A single rack from the HiL testbed of the RIOT community

timer operations (see Section 7.4.2), different types of timeouts (see Section 7.4.3), interrupt
handling (see Section 7.4.4), and the platform-independent abstraction overhead that is inherent
to the API itself (see Section 7.4.5). Before that, we quantify the board-specific GPIO overhead
(see Section 7.4.1), allowing its compensation within subsequent measurements.

As we conduct all measurements using the HiL testbed of RIOT, performance evaluation is
limited to the available boards. Table 7.1 lists the 11 of our total of 14 targeted boards that
are integrated into the CI system. Including the remaining three boards would be possible by
manually executing the benchmarks on these. We nonetheless decided against this approach,
since using different test architectures can potentially yield incomparable results.

7.4.1 GPIO Overhead

The time that is required to set and clear a GPIO pin varies between MCUs due to differences
in CPU architecture, operation frequencies, and low-level peripheral code. As we signal start
and stop of measurements by these events, knowing the board-specific GPIO overhead OGPIO is
essential for achieving accurate results. We measure it according to pseudocode Listing 7.4a.

Active waiting, also referred to as spinning, is used to represent a set of executed operations.
The spin() function is inlined to avoid any function call overhead. Subtracting its calibrated
execution time from the recorded trace yields the GPIO overhead OGPIO. It is calculated
individually for each board within our measurement setup according to Equation (7.1). We
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Setup
REPEAT 500 times:
gpio_set(GPIO_IC);
spin(SPIN_DURATION);
gpio_clear(GPIO_IC);
spin(PHILIP_HOLDOFF_TIME);

Teardown

(a) Benchmark pseudocode

∆t = tgpio_clear() − tgpio_set() (7.1a)

OGPIO = 1
N

∑N
i=1 [∆ti − tspin] (7.1b)

(b) Evaluation rules

Figure 7.4: Definition of the GPIO overhead benchmark
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Figure 7.5: GPIO overhead for all boards within our CI setup

tested spin durations up to 1 s and found results to be stable for periods between 1 µs and 1 ms.
Longer spins were increasingly affected by clock drift and CPU pipelining artifacts, which is why
we decided to use a spin duration of 1 µs for all our measurements.

Figure 7.5 illustrates the measured GPIO overhead on all boards. On nine of the 11 assessed
boards, OGPIO is in the nanosecond range. On the remaining two boards, GPIO overheads of
5.01 µs ± 21 ns and 7.86 µs ± 25 ns were observed. This is due to the significantly lower CPU
frequencies of 16 MHz on the arduino-mega2560 and 8 MHz on the z1. Our measurements
also confirmed the expected independence of OGPIO from the used timer API.
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7.4.2 Basic Timer Operations

Accessing the counter value and configuring compare channels are the most essential operations
a hardware timer can perform. We measure their execution time according to pseudocode List-
ing 7.6a. Because the assessed operations can complete very quickly, each function is invoked
ten times per measurement period to ensure that the required hold-off time is reliably exceeded
on all devices. Function calls are textually repeated via preprocessor macros to avoid any form
of loop overhead. Repetitions are factored out during evaluation, according to Equation (7.2).
Recorded execution durations top are converted from wall-clock time to equivalent CPU cycles.
This allows comparison across MCUs despite their different clock frequencies. uAPI and hAPI
driver calls are assessed separately. The latter is executed solely as the desired driver operation,
e.g., driver->read() instead of the equivalent uAPI function utimer_read().

Setup
REPEAT 500 times:
START Measurement
timer_operation();
timer_operation();
// ... repeated 10 times
timer_operation();

STOP Measurement
spin(PHILIP_HOLDOFF_TIME);

Teardown

(a) Benchmark pseudocode

∆t = tSTOP − tSTART (7.2a)

top = 1
N

∑N
i=1

[
1
10 (∆ti −OGPIO)

]
(7.2b)

(b) Evaluation rules

Figure 7.6: Definition of the timer base operation benchmark

Figure 7.7 provides an overview of the number of CPU cycles that are consumed by read, write,
set, and clear operations. Each board is represented by a radar chart in which the performance
of all base operations is plotted for the different APIs. Counter value access is shown on the
horizontal axis and timer channel usage is shown on the vertical axis. Spikes and large surface
areas indicate long execution times. The standard deviation is less than 0.1 CPU cycles for all
measurements and is therefore not explicitly stated.

Observed execution times vary between timer operations and target hardware. Eight boards
complete all benchmarked operations within approximately 100 CPU cycles or less. The other
three MCUs take no more than 200 cycles to complete all operations except set(). On two of the
boards, arming a compare channel takes up to 275 cycles, where uTimer outperforms periph_-
timer on the ESP32 but is inferior on the arduino-mega2560. Read and write operations are
on average three times faster than setting and clearing timer channels, while arming a single
channel takes on average about 50 % longer than clearing it.

Each assessed operation is individually discussed in the remainder of this section. Before that,
however, it can be noted that all observed performance differences, both positive and negative,
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Figure 7.7: CPU cycles consumed by read, write, set, and clear operations. Write operations are
not supported by periph_timer and are therefore not shown in the plot.
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are negligibly small for most use cases. As CPU frequencies are typically at least ten times higher
than timer base frequencies, multiple instructions are executed within a single timer tick period.
Minor increases in computational overhead therefore do not noticeably affect timer performance.
With 1 MHz timers on the ESP32, for example, the processor executes 80 instructions per timer
tick, hereby virtually eliminating the difference in CPU cycles regarding timer behavior.

Reading the Counter Value

Direct reads of the raw counter value are usually performed only when the user application
needs to obtain a current system timestamp or during relative timer arming. Actively polling
the counter register at a high frequency becomes superfluous when using compare channels to
generate timeouts. Our extensive hardware analysis confirmed their general availability on all
assessed microcontrollers, hence active polling is never required (see Section 4.3.3).

All boards except the z1 show an increase in execution time by less than a factor of two, when
compared to periph_timer. The z1, however, faces an increase by a factor of 3.57 while
uTimer slightly outperforms the existing API on the slstk3410a. On average, uTimer increases
the CPU cycles that are consumed by timer read operations by a factor of 1.69.

Writing the Counter Value

Manually writing the raw counter value can be required when operating a timer in one-shot mode
or during initialization. It moreover allows to align multiple counters and enables high-level
timer subsystems to perform certain optimizations. As this feature is currently not supported
by periph_timer it could only be assessed for our proposed API. With uTimer, writing the
counter register is as fast as reading it. This applies to all platforms and is explained by the fact
that both read and write operations usually only require a single register access to complete.

Timer Reloading

The auto-reload feature allows handling counter reloading in a CPU-independent fashion. It can
remove any overhead that is caused by timer write operations upon counter overflows and thereby
relieves the CPU from overflow maintenance. At least one type of auto-reloading is supported
by all timer peripherals (see Section 4.3.3).

Writing the counter register requires between 16 and 71 CPU cycles among the assessed boards.
Eliminating manual counter register writes via the auto-reload features therefore allows saving
at least 129 ns and up to 4 µs per counter overflow5. It moreover removes any overhead that

5CPU cycles are converted to wall-clock time t based on the CPU frequency as t = cycles · fCPU
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is caused by interrupt servicing, as quantified in Section 7.4.4, allowing to additionally save
between 870 ns and 29 µs. This benefits high-level timer subsystems in particular and improves
the precision of long-running or periodic timeouts.

Compare Channel Arming

Initializing a timer channel is required once per timeout. While this means that the set()

function is invoked prior to every one-shot timeout, consecutive periods of periodic timeouts do
not require its repeated execution. Compare channel arming performance is therefore primarily
relevant for one-shot timeouts.

Observed uTimer overhead is below a factor of two on nine of the boards and caps off at a worst-
case increase by a factor of 2.28 on the z1. On the ESP32, uTimer outperformed periph_-

timer by more than 20 %. As the number of required CPU cycles is stable (σ ≤ 0.1), the
static computational overhead that is inherent to the set() function can easily be compensated
for during timer arming. Automated execution of the developed benchmarks readily provides
developers with all the required parameters and allows their convenient verification.

Compare Channel Disarming

With one-shot timeouts, compare channels are automatically disarmed upon compare match.
Periodic timeouts require manual channel disarming instead. Whenever a timer channel is cleared
prior to timeout expiry, all actions to be executed upon expiry become null. We therefore consider
this a non time-critical operation. The maximum number of processor cycles that are required
for clearing a channel is 142 cycles with periph_timer and 151 cycles with uTimer.

7.4.3 Timeouts

The latency of a timeout Lτ is the difference between the expected and the actually observed end
of a time period. It can be used as an indicator for the abstraction and maintenance overheads of
timeout handling. Negative values for Lτ may occur due to oscillator inaccuracies (e.g., constant
frequency offsets, jitter, and drift), faulty driver code6, or a combination of both. Its standard
deviation is referred to as timeout jitter Jτ . The timeout error Eτ puts timeout latency in
relation to the expected timeout duration τ . Keeping it within application appropriate limits is
crucial. Our benchmarks assess the performance of one-shot and periodic timeouts. Both types
are discussed individually in the remainder of this section.

6A significant proportion of the timeout latency is constant. Some peripheral drivers therefore try to compensate
it by subtracting a fixed value from all timeout durations during channel arming. If this value is larger than
the actual overhead, timeout durations will be shorter than expected, resulting in negative timeout latencies.
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One-shot Timeouts

One-shot timeouts are used to model nonrecurring and independent time periods. They are
automatically disarmed at their first compare match event, hence trigger only once. We measure
the performance of one-shot timeouts according to pseudocode Listing 7.8a. First, a timer is
initialized and stopped. It is then armed to a counter value that corresponds to the desired
timeout duration τ at the configured counting frequency f . Relative arming is required due
to the missing support for writing the counter register via periph_timer. Using absolute
arming instead would lead to unpredictably inaccurate results, since no assertion regarding the
counter value after peripheral initialization can be made with the existing API. Elapsed time
∆t between the subsequent timer start tSTART and the awaited callback execution tSTOP then is
measured (7.3a). Results for all assessed parameters of a complete benchmark pass are calculated
according to Equation (7.3b-d).

Setup
REPEAT 500 times:

timer_init(frequency, callback);
timer_stop();
cnt = timer_read() + timeout;
timer_set(cnt);

timer_start();
START Measurement
WAIT for callback execution

STOP Measurement
spin(PHILIP_HOLDOFF_TIME);

Teardown

(a) Benchmark pseudocode

∆t = tSTOP − tSTART (7.3a)

Lτ = 1
N

∑N
i=1 [∆ti − τ −OGPIO] (7.3b)

Jτ = σ(Lτ ) (7.3c)

=
√
σ(∆t)2 + σ(OGPIO)2

Eτ = abs

(
Lτ
τ

)
(7.3d)

(b) Evaluation rules

Figure 7.8: Definition of the one-shot timeout latency benchmark

Evaluated timer frequencies vary between 10 kHz and 10 MHz while timeout durations vary
between 10 µs and 1 s. Results show that compared to periph_timer, uTimer suffers an
increased timeout latency on 90 % of all boards. This behavior reveals the inevitable drawbacks
of abstraction and was observed throughout all tested timeout durations alike. Changing the
counting frequency had no effect on benchmark results. The increased latency is caused by a
combination of resolving the timer type dependent low-level ISR upon IRQ occurrence and the
now supported timer overflow handling7. Whether this overhead is tolerable depends on both
the timeout duration and the application requirements. The respective timeout error therefore
must be considered when judging performance impacts. Figure 7.9 compares the performance
of both APIs for common 1 ms one-shot timeouts. For all but one boards, the absolute timeout
error increased by between 0.04 % on the nucleo-g474re (best) and 0.34 % on the esp8266-esp-12x
board (worst). On the arduino-mega2560, periph_utimer outperformed periph_timer by

7This effect is not present on platforms with independent interrupts for both compare match and overflow events.

83



7 Evaluation

ard
uin

o-m
eg

a2
56

0

esp
32

-w
roo

m-32

esp
82

66
-es

p-1
2x

nu
cle

o-f
10

3rb

nu
cle

o-f
76

7z
i

nu
cle

o-g
47

4re

nu
cle

o-l
15

2re

sls
tk3

40
0a

sls
tk3

40
1a

stk
32

00 z1

Board

10 7

10 6

10 5
Ti

m
eo

ut
 L

at
en

cy
 [s

]

periph_utimer periph_timer

Figure 7.9: Latencies of 1 ms timeouts at the platform-default timer frequency

0.23 %. Jitter remained stable on all boards except the esp8266-esp-12x where it increased from
160 ns to 495 ns.

Timeout latency is of no concern for long-running timeouts (τ ≥ 1 s), as other factors, such
as oscillator accuracy, become increasingly dominant. Negative performance impacts, however,
are problematic with very short timeouts (τ ≤ 10 µs), as even just a slight increase in latency
contributes significantly to the total timeout error. In such cases, unnecessary indirection should
be avoided at any cost. Directly using the hAPI or active waiting, i.e., spinning, is therefore
recommended. Most applications, however, do not require such very short timeouts, as confirmed
by our timer use case analysis in Section 4.4. A slightly increased latency is therefore negligible
when put into perspective to the timeout durations that are common with typical IoT use cases.

Our benchmarks showed that the timeout latency is generally independent of the selected count-
ing frequency. However, a significant increase was observed for certain timeout and frequency
combinations when using periph_timer. On the nucleo-f070rb, for example, generating a
1 s timeout using a timer that runs at 10 kHz base frequency resulted in a timeout latency of
11.5 µs. This corresponds to a timeout error of less than 0.01 %. Requesting the same 1 s timeout
from a peripheral that is configured to 1 MHz instead, increased timeout latency to 983.0 ms.
This constitutes an abnormally high timeout error of 98.30 %. Since system behavior for in-
valid parameters is not explicitly specified by the API, implementations usually neither verify
the requested frequency nor timeout duration. An established convention is to select the closest
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achievable timer frequency or compare channel value. This leads to unpredictable inaccuracies if
parameters are not chosen carefully by the developer, as required for each MCU and its current
clock configuration individually. Both erroneous cases result in the observed timeout latency
increase. uTimer is not affected by this problem, because it requires implementations to signal
an error if a requested frequency is invalid or a desired timeout is out of range.

Periodic Timeouts

Periodic timeouts trigger compare match events at a fixed time interval until manually disarmed
by the application. Repeating a periodic timeout only once, effectively results in a one-shot
timeout. Any subsequent cycle, however, can potentially outperform one-shot timeouts in terms
of timeout latency. This is due to the fact that the compare channel only needs to be armed
once, and therefore only one initial API call is performed. All necessary timer maintenance
tasks can moreover be executed solely within hardware, as supported by 85 % of all timer types
we analyzed within our large-scale hardware analysis (see Section 4.3.3). This reduces timeout
latency to the execution time of the low-level ISR that needs to be executed prior to callback
invocation8. Drivers can also implement periodic timeouts exclusively in software if no adequate
hardware support is available. However, this has a negative impact on performance compared
to in-hardware solutions.

The periph_timer API requires the additional module periph_timer_periodic to be
loaded to generate periodic timeouts. It is available for five of the 11 assessed boards. The
proposed uTimer API instead provides native support for periodic timeouts. We have currently
implemented it on eight boards, as this is sufficient for our comparative evaluation. These are all
five boards that offer periph_timer_periodic support, as well as three additional boards to
demonstrate the ease of implementing this feature with uTimer.

With periodic timeouts, we likewise assess timeout latency, jitter, and error. In contrast to
one-shot timeouts, periodic timeouts can be repeated multiple times prior to disarming. Our
benchmarks account for this by decrementing a volatile loop counter during each compare match
callback execution, as shown in pseudocode Listing 7.10a. Elapsed time is measured in the form
of a combined time period ∆t (7.4a) and timeout latency Lτ is calculated as the mean value of all
timeout cycles, i.e., the number of times a timeout is repeated prior to disarming (7.4b). Timeout
jitter and timeout error are calculated the same way as for one-shot timeouts (7.4c–d).

Prior to all measurements, we examined if clearing the GPIO_IC pin, which signals the end of
a time measurement, within the ISR context vs clearing it within the control loop affects our
results. We found no significant impact on measured time durations within both our periodic
timeouts and parallel callbacks (see Section 7.4.4) benchmarks.

8Timeout latency can further be affected by other high-priority system tasks and pending IRQs.
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Setup
REPEAT 500 times:

timer_init(frequency, callback);
timer_stop();
timer_set_periodic(cnt, RST_MATCH);
cycles_left = cycles;

timer_start();
START Measurement

WHILE cycles_left > 0:
WAIT for callback execution
cycles_left--;

STOP Measurement
spin(PHILIP_HOLDOFF_TIME);

Teardown

(a) Benchmark pseudocode

∆t =
tSTOP − tSTART

cycles
(7.4a)

Lτ = 1
N

∑N
i=1 [∆ti − τ −OGPIO] (7.4b)

Jτ = σ(Lτ ) (7.4c)

=
√
σ(∆t)2 + σ(OGPIO)2

Eτ = abs

(
Lτ
τ

)
(7.4d)

(b) Evaluation rules

Figure 7.10: Definition of the periodic timeout latency benchmark

We assessed periodic timeouts between 1 and 1000 repetitions. On all boards except two, any
differences in timeout latency vanished after 100 timeout cycles at the latest. This behavior
was, for example, observed on the nucleo-f103rb board and is illustrated in the left chart of
Figure 7.11. The two exceptions to this are the arduino-mega2560, where uTimer suffers a
constant increase in timeout error by 0.39 %, and the nucleo-g474re, where uTimer outperforms
periph_timer after no more than 10 timeout cycles. This second case is illustrated in the
right chart of Figure 7.11.

7.4.4 Interrupt Handling

Interrupt handling is an important performance indicator for low-level timer drivers. It affects
timeout accuracy and timer maintenance to a significant extent. In this section, we discuss
various aspects of both compare match and overflow interrupts. We develop a benchmark suite
that assesses timer performance under stress and compare the scaling behavior of uTimer and
periph_timer within such situations.

Compare Match Interrupts

Compare match (CMP) interrupts are issued whenever an armed timer channel expired. A
low-level interrupt service routine (ISR) is executed first upon event occurrence. It performs
all necessary maintenance tasks before the user-defined callback function is invoked. ISRs are
executed within a special interrupt context and should always be kept as short as possible. Their
efficient design becomes particularly important whenever multiple interrupt requests (IRQs) are
pending simultaneously. As only a single function can be executed by the CPU at any point in
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Figure 7.11: Latencies of periodic 1 ms timeouts after different numbers of timeout cycles

time, sequential processing of system events is inevitable9. Hence, the longer the execution of a
single ISR takes and the more IRQs are pending, the poorer the reactivity of the entire system
becomes. The latency of timeouts in particular therefore is directly affected by the number of
currently elapsed but still unhandled compare match events.

Our parallel timeouts benchmark provides a quantitative indicator for the timeout performance
under stress. It measures the callback execution delayDcb for different numbers of simultaneously
expiring timeouts. This is the time it takes between the raise of compare match IRQs and the
invocation of all associated user-callback functions. The callback execution delay hereby indicates
the best-case reactivity of the firmware application under the respective stress conditions. Our
benchmark measures it according to pseudocode Listing 7.12a. At first, a timer is initialized
and the desired number of compare channels is armed to the same absolute counter value. To
reduce the influence of other system events, all maskable INTs that are not required during
suite execution are disabled. The number of armed channels is stored in a volatile counter
variable. After starting the timer, the counter variable is decremented every time a user callback
is executed. Measurement stop is signalled right after the last callback was invoked (7.5a). The
callback execution delay is then determined by subtracting the timeout duration τ and the GPIO
overhead OGPIO (7.5b) from the measured time period ∆t. Its standard deviation is referred to
as callback execution jitter Jcb and calculated according to Equation (7.5c).

9Some interrupt controllers prioritize certain interrupt vectors. Execution of a low-priority ISR can therefore
get interrupted by a high-priority ISR. This potentially induces priority inversion problems within complex
systems [55]. Timer interrupts, however, are usually within the same priority class and therefore always
processed one after the other.
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These steps are repeated for timeouts from one up to the maximum number of available compare
channels on every board. Since uTimer provides this information via its static property interface,
as described in Section 5.2, the peripheral-specific value range can automatically be determined
by the benchmark firmware. Likewise to the periodic timeouts benchmark (see Section 7.4.3), we
found no difference in results whether measurement end is signaled directly within the interrupt
context or the control loop.

Setup
REPEAT 500 times:

timer_init(frequency, callback);
timer_stop();
cnt = timer_read() + timeout;

channels_left = channels;
FOR chan = 0 to (channels-1):
timer_set(chan, cnt);

timer_start();
START Measurement
WHILE channels_left > 0:

WAIT for callback execution
channels_left--;

STOP Measurement
spin(PHILIP_HOLDOFF_TIME);

Teardown

(a) Benchmark pseudocode

∆t = tSTOP − tSTART (7.5a)

Dcb = 1
N

∑N
i=1 [∆ti − τ −OGPIO] (7.5b)

Jcb = σ(Dcb) (7.5c)

=
√
σ(∆t)2 + σ(OGPIO)2

(b) Evaluation rules

Figure 7.12: Definition of the parallel callbacks benchmark

We benchmarked callback execution delays with up to four simultaneously expired timeouts.
The board-specific limit depends on the number of compare channels that are available on the
respective microcontroller. Scaling behavior of all MCUs, including their channel counts, is
illustrated in Figure 7.13. The two Espressif devices (18 %) both only have a single compare
channel, which is why no more than one compare match IRQ can be pending at any point in
time. Scaling behavior can therefore only be assessed on the nine remaining MCUs. Those
possess timers with at least three (46 %) or even four channels (36 %).

Both APIs show a virtually identical scaling behavior. Differences in callback execution delay
gradient ∇Dcb are less than 1 % on all boards. However, on six of the nine MCUs, uTimer
performed interrupt servicing slightly faster than periph_timer was able to. This speed
advantage is due to uTimers support for separate handling of overflow and compare match
events. Although its effect is only marginal within our isolated test system (≤ 0.1 %), it can
become relevant for real-world systems. Whenever multiple IRQs, including those from other
peripherals and components, are pending, even small reductions in ISR execution time improve
reaction time in busy situations and benefit overall system performance.
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Figure 7.13: Delay of compare match callback execution with simultaneously expiring timeouts

With only a single IRQ pending on the nucleo-f767zi, periph_timer outperforms uTimer by
0.9 µs, explaining the kink within Figure 7.13. This is consistent with the results of the one-shot
timeouts benchmark (see Section 7.4.3), but this superiority disappears as soon as at least one
additional IRQ is pending simultaneously.

Overflow Interrupts

Overflow (OVF) interrupts are issued whenever the internal counter register of a timer reached
its maximum value and wraps around10. They can also occur prematurely, when an arbitrary
auto-reload value is configured. Although overflows can be utilized to generate periodic timeouts,
they are predominantly used to trigger timer maintenance tasks. High-level timer subsystems,
for example, use them to maintain their software timeouts and to support timeout durations
beyond a full overflow period.

uTimer provides access to counter overflow events via a designated timer status flag and a
respective callback function can furthermore be invoked upon occurrence. periph_timer, on
the other hand, does neither exposes overflow status flags nor allows a callback to be attached.
Overflow handling performance therefore cannot be compared between the two APIs.

10Timers can also underflow depending on the selected counting mode and direction. For the sake of simplicity,
we refer to both cases as timer overflows.
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7.4.5 Abstraction Overhead

The two-layered design of uTimer inevitably causes some computational overhead because of its
higher abstraction compared to periph_timer. We previously looked at this from a software-
design point of view in Section 5.4 and now continue by quantifying the exact overhead that is
inherent to the uniform API.

Execution times of all function calls are composed of the device-specific driver code and the
generic API logic itself. To isolate the latter, we replaced the driver implementations of counter
read and write operations with no operations (NOPs)11 and measured their execution time.
Listing 8 shows the disassembly of a timer_read() function after replacing its body. The two
remaining instructions move a fixed value to the first general-purpose register of the CPU and
return immediately afterwards. Because the periph_timer interface does not support write
operations, only its read function was assessed. Measurement procedure and result calculation
are mostly identical to our basic timer operations benchmark, described in Section 7.4.2. The
recorded time duration ∆t includes resolving the hAPI driver, invoking the respective function,
executing the NOP, and returning a dummy result to the application. We evaluate it for using
the full user-facing API as well as using the hardware-facing API directly and compare both
results to periph_timer.

;-- unsigned int timer_read(tim_t dev);
;-- timer.c:257
0x0000297E nop
0x00002980 movs r0, 0
0x00002982 bx lr

Listing 8: Disassembly of the timer_read() function (NOP version)

Our measurements confirmed that the uAPI inevitably introduces computational overhead on all
platforms due to its additional abstraction layer. The exact amount was found to be platform-
dependent and varies between six and 21 CPU cycles. All results are stable with a standard
deviation of less than 0.1 cycles. Figure 7.14 illustrates the performance of NOP calls via the
different interfaces across all boards. Directly using the hardware-facing API requires a similar
amount of CPU cycles12 compared to periph_timer on six boards (55 %). On the remaining
five boards (45 %), the hAPI surprisingly outperforms periph_timer, hereby even almost
compensating for the additional abstraction overhead of the uAPI. This observation is explained
by the fact that on those boards, periph_timer explicitly distinguishes between different timer
types inside each function call. The underlying implementation problem is in detail described
in Section 6.3.3. With uTimer, on the other hand, hAPI drivers implicitly specify the timer

11No operations (NOPs) are processor instructions that have no effect on the processor state. They take a
well-defined number of CPU cycles to execute and are unaffected by compile-time optimizations. If NOP is
not implemented as a specific instruction, the assembler treats it as a pseudo-instruction and generates an
alternative instruction that does nothing.

12A deviation of up to two cycles is considered as similar, due to the influence of CPU pipelining artifacts.
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type, whereby this distinction is transparently performed by its abstraction layers. Therefore,
the performance differences disappear as soon as different timer types are made available via a
common interface.
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Figure 7.14: CPU cycles consumed by NOP calls via APIs with different degrees of abstraction

In any real-world scenario, execution times of API operations are influenced by a multitude of
extrinsic factors. These include task scheduling, pending interrupts, external events, and CPU
pipelining. Taking their possible impact into account, the hardware-facing uTimer API and
periph_timer can be considered to perform alike. Nonetheless, making use of the platform-
independent uAPI inevitably consumes additional CPU cycles. The observed overhead ranges
from 14 ns (best-case) to 500 ns (worst-case). However, when put into perspective to common
timeout durations, as identified in Section 4.4, even the worst-case overhead affects timeout
latency by only less than 0.05 %. This minimal increase can furthermore remain unnoticed by
applications, depending on the ration between CPU speed and timer frequency, as previously
explained in Section 7.4.2. Therefore, all low-level timer interfaces are considered valid choices
for every-day applications. The only exception to this are cases where ultra-short timeouts
(τ ≤ 10 µs) with high precision are required. Then it is recommended to either use the hAPI
directly or perform active waiting, i.e., spinning.
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7.5 Discussion

This section first summarizes our benchmark results and breaks down factors that contribute to
the abstraction overhead of the user-facing API. What follows is an evaluation of both memory
footprint and the set of exposed timer peripherals. Qualitative aspects, such as usability and
code quality, are assessed and the suitability of uTimer for high-level timer APIs is discussed.
We end with an overview of issues that are inherent to our evaluation or were revealed by it.

7.5.1 API Performance

We evaluated the performance of uTimer and compared it to periph_timer with respect to
various aspects of low-level hardware timers. Prior to any measurement, a sample size of 500
benchmark passes was confirmed to reproducibly yield stable results and our test setup was
parameterized individually for each target board.

Basic timer operations, namely read(), write(), set(), and clear(), were assessed by
measuring their execution times via all available APIs. periph_timer outperformed uTimer
in most cases, but performance differences were marginal and remained mostly unnoticed by user
applications. In our benchmarks, the auto-reload feature moreover reduced overflow maintenance
time by at least 1 µs and up to 33 µs on the assessed boards.

The accuracy of timeouts was determined for durations between 10 µs and 1 s as well as counter
frequencies between 10 kHz and 10 MHz. One-shot timeouts suffered an absolute worst-case
increase in timeout error Eτ of 0.34 % while lowering it by 0.23 % in the best case. Periodic
timeouts produced similar results when repeated only once. However, after 100 timeout cycles
at the latest, the performance differences between APIs disappeared on 82 % of all boards. On
the remaining devices, one or the other API performed better.

Performance under stress was characterized by measuring the callback execution delay Dcb with
up to four simultaneously expiring timeouts. Both timer interfaces showed nearly identical scaling
behavior, with all differences being less than 1 %. uTimer serviced compare match interrupts
slightly faster than periph_timer was able to on 66 % of all boards. Although this advantage
was only marginal within our isolated test scenario (≤ 0.1 %), it can become beneficial for time-
critical real-world applications.

In summary, uTimer generally scored slightly worse than periph_timer within most of our
benchmarks. However, all observed performance differences were found to have little to no impact
on typical use cases within the IoT or WSNs. Only ultra short timeouts (τ ≤ 10 µs) that require
high precision were identified as problematic. However, these are just rarely used and leveraging
the hAPI directly or performing active waiting is suggested instead. We therefore consider
uTimer a valid drop-in replacement to existing APIs from a performance point of view.
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7.5.2 Abstraction Trade-off

We isolated the computational effort inherent to the timer APIs themselves within Section 7.4.5.
Results showed that the user-facing API requires between six and 21 additional CPU cycles.
Using the hardware-facing API directly yielded comparable performance to the existing API
on about half of all boards. On the other half, the hAPI of uTimer outperformed periph_-

timer by an amount that nearly offset the additional uAPI overhead. However, all performance
differences, both positive and negative, were found negligible when taking extrinsic factors of
real-world scenarios, differences in CPU and timer frequency, and the impact on typical timeouts
into account. A closer look at the uAPI overhead was taken nonetheless. The user-facing API
constitutes an additional layer of functions that abstract from the underlying device-specific
driver. To identify the different factors that contribute to the observed overhead, firmware
binaries of our uTimer benchmark suite were disassembled and analyzed.

Invoking uAPI functions naturally produces additional branching instructions. These can po-
tentially be eliminated by declaring the respective functions as inline. While this could make
a function faster, its impact on code size is hard to predict because it depends on the number of
invocations and their individual contexts13. Our performance benchmarks confirmed uTimer to
perform sufficiently well for typical applications, even with compiler size optimizations enabled.
In addition, microcontrollers are usually more limited in terms of available ROM than CPU
power. We therefore decided against the small performance gains from inlining uAPI functions
in favor of valuable flash memory.

Besides the branching instructions, resolving the corresponding hAPI driver function was found
to be another source of overhead. We analyzed the executed processor instructions for multiple
consecutive timer function calls to identify potential optimizations. Despite the timer instance
as well as its driver being constant and the executed operation remained identical, dereferencing
of the driver function pointer was repeated prior to every branch instruction. Building with
different gcc optimization levels (-Os, -O[0-3]) yielded identical results at all times, while
the const pointer dereferencing was never optimized. Even though there are solutions to this
problem, their effect heavily depends on the used compiler toolchain and selected optimization
level [59]. Both can greatly differ between MCU platforms in RIOT. We therefore consider the
observed dereferencing overhead as inevitable at a generic level. Application developers can
nonetheless fine-tune such aspects, for example, by instructing the compiler to perform certain
optimizations via the CFLAGS_OPT variable inside the application Makefile.

Remaining instructions are predominantly caused by either compound or convenience uAPI
functions, as explained in Section 5.2.4. Since they contribute new functionality, they naturally
introduce a number of additional processor instructions for performing their tasks.

13Inline Functions - gcc documentation: https://gcc.gnu.org/onlinedocs/gcc/Inline.html (Accessed:
08.02.2022)
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7.5.3 Binary Size and Memory Usage

The additional abstraction layers and time-memory optimizations both contribute to the overall
memory footprint of applications. With uTimer, each exposed timer instance is represented by
one utim_periph_t struct. It consists of two pointers and one 16-bit field, requiring a total
of 12 bytes on 32-bit devices14. Each utim_driver_t hAPI driver struct consists of seven
pointers, hence requires 28 bytes on 32-bit devices. However, drivers are only included in the
final binary if used by at least one active timer, as selected during compile-time via Kconfig. The
size of uTimer data structures sutim therefore can be calculated according to Equation (7.6).
Here, ntimers indicates the number of exposed timer instances, ndrivers indicates the number of
required hAPI drivers, and sptr specifies the pointer size of the target device in bytes. Additional
struct padding p may occur on CPUs with a word size other than 16 bit. Using four timers of
two different types requires a total of 104 bytes to store timer instances and driver structs on
32-bit MCUs. The absolute minimum memory requirement for a single timer is 20 bytes and
increases by only 6 bytes for every additional timer instance of the same type.

sutim = ntimers · [2 · sptr + 2 byte + p] + ndrivers · [7 · sptr] (7.6)

Besides the generic API footprint, the platform-dependent driver code largely affects memory
consumption as well. The more timer types are used, the more driver code has to be stored.
Having only a single unified API, in turn, potentially frees up memory that previously was
consumed by multiple timer-type specific APIs. The final ROM requirement is therefore highly
dependent on both the individual application and the target platform implementation. RAM
use remained constant throughout all our evaluations.

Since we found no significant differences between gcc optimization levels with respect to timer
performance, optimizing for binary size (-Os) is generally suggested. This is already by far the
most frequently used optimization level within RIOT. Additional flash memory can be required
if the developer explicitly instructs the compiler to make extensive use of function inlining, as
described in the previous subsection. However, this is not the default case and its impact must
be weighed against the individual application requirements and available hardware resources.

7.5.4 Peripheral Availability

One of the main goals of the proposed API design is allowing application developers to choose
the best suiting timers from the full range of peripherals the target board has to offer. Table 7.3
compares the total number of available hardware timers and their channels between a combined
use of all three existing low-level interfaces (periph_timer/rtt/rtc) and the exclusive use

14Two additional bytes are added due to struct padding. This effect is not present on 16-bit architectures.
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Timers (Channels)
Board Available Existing APIs uTimer Increase

arduino-mega2560 6 (16) 3 (7) 6 (16) +3 (+9)
esp32-wroom-32 5 (5) 4 (4) 4 (4) 0 (0)
esp8266-esp-12x 2 (2) 1 (1) 2 (2) +1 (+1)

nucleo-f070rb 10 (14) 2 (5) 9 (14) +7 (+9)
nucleo-f103rb 6 (17) 3 (9) 5 (17) +2 (+8)
nucleo-f767zi 17 (35) 3 (6) 16 (35) +13 (+29)
nucleo-g474re 14 (47) 3 (6) 13 (47) +10 (+41)
nucleo-l152re 11 (22) 2 (5) 10 (22) +8 (+17)
nucleo-l476rg 15 (32) 3 (6) 14 (32) +11 (+26)

slstk3400a 5 (11) 3 (4) 4 (11) +1 (+7)
slstk3401a 6 (11) 4 (6) 5 (11) +1 (+5)
slstk3402a 9 (18) 4 (9) 8 (18) +4 (+9)

stk3200 4 (8) 3 (4) 3 (8) 0 (+4)
z1 2 (10) 1 (3) 2 (10) +1 (+7)

Table 7.3: Exposure of timer peripherals and channels: Combined use of existing APIs compared
to uTimer. The Increase column indicates the number of timers that are only usable
via uTimer. Watchdog timers are excluded from this overview.

of uTimer. Results confirm that our novel API makes nearly all timers and channels available
to the application. It is capable of exposing up to 13 additional timers on 86 % and up to 41
additional compare channels on 93 % of all boards. This not only mitigates resource conflicts
between user applications and operating system modules, but also allows utilizing the available
peripherals to their full extent.

Besides their sheer number, the types of available timers are equally important. With STM32
based boards, existing APIs only expose one Low-power Timer, leaving further peripherals of
this type unusable. Advanced-control Timers require manual configuration, including changes to
system header files, and Basic Timers remain fully unsupported. SysTick Timers, commonly
found on all ARM Cortex MCUs, are left unexposed by all APIs. However, these are usually
exclusively occupied by the scheduler or other OS modules, hence are neither exposed via existing
APIs nor uTimer. On the ESP32, all available timers are exposed, except one general-purpose
timer that is reserved for the OS. Its predecessor, the ESP8266, offers a real-time clock, but the
required driver is currently not provided. The MSP430x possesses two general-purpose timers,
of which only the smaller TIMER_A is exposed by periph_timer. uTimer additionally allows
using the more powerful TIMER_B. Finally, none of the existing APIs allows using EFM32 ultra
low-power Cryotimer peripherals or Pulse Counters. This common lack of support for advanced
timer types impedes low-power optimizations in particular. Using uTimer, developers are able
to select the best suited timers for their specific applications among the full range of available
peripherals and utilize their full set of features.
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7.5.5 Virtual Timer Drivers

The concept of virtual drivers is described in Section 5.2.3. They introduce hierarchical structures
to the hardware-facing API, allowing to inherit certain functionality from other base drivers. The
feasibility of this concept was put to the test using the example of timer chaining on the EFM32
platform. Details of the respective implementation are described in Section 6.3.3.

Applying virtual hAPI drivers, we were able to expose two distinct hardware timers as an atomic
timer instance to the application. It possessed a greatly extended counter range and allowed for
comprehensive fine-tuning of the timer frequency. All virtual timer instances could transparently
be interchanged with regular ones. The reusable driver could moreover successfully be used to
control the larger timers on that device, hereby yielding counter ranges of up to 264 ticks. Both
configurations were interactively selectable and their mutual exclusive use was ensured. We
therefore consider virtual drivers as a beneficial part of our proposed API design.

7.5.6 Code Quality and Usability

Besides the pure performance of an application programming interface stands its usability and
maintainability. We have found current interfaces to have a great potential for optimization
regarding both. This section discusses the most important qualitative aspects and how they are
addressed by uTimer.

Individual timer peripherals are simultaneously exposed via at least two of the existing low-level
APIs on almost all platforms. This frequently results in resource allocation conflicts, which in
turn can lead to undefined behavior if remained unnoticed. uTimer eliminates this problem
by managing timer selection inherently and providing a uniform interface that is independent
of the underlying timer type. Moreover, on some platforms, as for example all EFM32 based
devices, different timer types are exposes via the same low-level API. This forces developers to
combine multiple timer-type specific implementations within a single function, making distinction
between them necessary during every function call. This not only degrades performance, but also
lowers code quality and hides information about the peripheral type from the user. Some drivers
furthermore require error-prone workarounds to determine timer properties, again impairing
maintainability. During initialization of EFM32 timers, for example, the peripherals internal
memory base address is evaluated to determine the timer type. It is then used to deduce the
maximum counter width and set the auto-reload register accordingly. uTimer instead natively
supports multiple timer types, and timer properties can dynamically be accessed during run-time.
User applications, peripheral drivers, and other OS modules can directly use this information
without error-prone workarounds.
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Timeout τ Frequency f Latency Lτ Error Eτ
1 s 10 kHz 11.5 µs < 0.01 %
1 s 100 kHz 655.4 ms 65.54 %
1 s 1 MHz 983.0 ms 98.30 %
1 s 10 MHz 996.8 ms 99.68 %

Table 7.4: Timeout latencies and timeout error with unsupported parameters using
periph_timer on the Nucleo-F070RB

Existing low-level timer modules are very similar in terms of the functions they expose, their
interfaces nonetheless differ largely. Neither can available timer features thereby be compre-
hensively exposed to the user, nor can peripherals be addressed in a uniform way. Developers
therefore often find themselves required to (re-)implement certain hardware features. This leads
to inconsistent and hard to maintain timer code within user applications, high-level OS modules,
and peripheral drivers. With uTimer, multiple timer types are natively supported and enabled
timers can be addressed both explicitly (e.g. STM32_LPTIM2 ) and platform-independent (e.g.,
Timer 0 ). Ready to use peripheral mappings and their convenient selection relieve application
developers from modifying OS code and deep-diving into vendor datasheets or SDKs. A common
pattern for device configuration is established and existing APIs are streamlined into a single
interface, fostering uniformity of timer code throughout the whole RIOT ecosystem.

During our benchmarks we noticed irregularities with certain parameter combinations. The lack
of specification regarding behavior for invalid timer configurations and inconsistent error handling
were identified as their cause. Table 7.4 shows an example in which the performance of 1 s one-
shot timeouts via periph_timer is measured for varying counter frequencies. Generating
a timeout on a 10 kHz timer results in a timeout error of less than 0.01 %. Instructing the
API to configure the same timer to 1 MHz instead, skyrockets the timeout error to 98.30 %.
Since behavior for invalid parameters is not explicitly specified, implementations usually neither
verify requested frequencies nor timeout durations. An established convention is to select the
closest achievable timer frequency or compare channel value. Both cases lead to unpredictable
timeout lengths, resulting in the observed failure. uTimer addresses this problem by requiring
implementations to signal an error if the requested frequency is invalid or the desired timeout
is out of range. A uAPI method to determine the closest achievable frequency is provided and
counter limits can be determined by the static properties within every timer instance struct.

All the above highlighted measures significantly benefit the API usability and foster uniform
timer code that is easy to maintain. Therefore, we likewise consider uTimer to be a user-friendly
and future-proof complement to the existing low-level timer interfaces in RIOT from a qualitative
point of view.
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7.5.7 Automation

The developed unit tests and benchmark suites integrate seamlessly with the CI and HiL in-
frastructure that is operated by the RIOT community15. Its architecture is described in detail
within Section 7.3.4. Test suites are executed every night on the main branch as well as for each
individual pending pull request. Figure 7.15 shows a summary of the basic timer test suite.

Figure 7.15: Screenshot of a HiL unit test report

Detailed reports are automatically generated for unit tests and performance benchmarks alike.
Results are made available online and can interactively be explored down to their individual
instructions for each board. All test and benchmark suites can also be executed at home using
arbitrary hardware, requiring only a PHiLIP HiL controller board and the desired device under
test. The data that is produced by tests and benchmarks provides developers with crucial
insights and guidance. It encourages the development of performant driver implementations and
simultaneously allows for comprehensive regression testing to ensure the reliability of RIOT OS
across supported boards. We consider the broad and effortless availability of such information
to be fundamental to providing a high-quality embedded operating system.

15RIOT HiL test results overview: https://hil.riot-os.org/results (Accessed: 09.02.2022)
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7.5.8 Integration

Various components of an embedded operating system interact with hardware timers. Among
these, high-level timer subsystems place the highest demands on the low-level timer API and
the underlying peripheral drivers. Although a great variety of such systems exist, our analysis
identified common requirements, which we therefore accounted for within the design of uTimer.

High-level timer modules usually multiplex virtual software timeouts onto a number of hardware
timers and their channels. Exposing all provided compare channels improves the performance of
timer maintenance by allowing the separation of virtual timeouts based on duration or priority.
It furthermore can reduce the number of hardware timers that are required to generate all desired
timer ticks down to a single low-power peripheral. This leaves more peripherals available to the
operating system and user applications, while also significantly lowering energy consumption
for common IoT use cases, such as autonomous sensor nodes. Reliable determination of timer
characteristics and capabilities, as comprehensively provided by uTimer, further aids the dynamic
utilization of available peripherals. It permits the implementation of heuristic solutions to high-
level timeout management.

Certain peripheral maintenance must be performed by a timer subsystem whenever a hardware
timer overflows. Exposing the corresponding OVF interrupts hugely benefits the performance
of this recurring task. Otherwise, periodically polling the respective status flag is inevitable.
The separation of overflow and compare match interrupts within uTimer furthermore decouples
the low-priority maintenance of the underlying timer hardware from the high-priority task of
servicing running timeouts. This enables timer subsystems to prioritize the signaling of expired
timeouts over the non time-critical peripheral maintenance.

Most high-level timer APIs require timer features beyond the generation of just a monotonic
clock tick. uTimer comprehensively exposes even advanced timer features while allowing to
determine their availability during run-time. Timer subsystems can thereby dynamically adjust
their behavior based on the hardware they are given. However, benefits are not limited to
timekeeping tasks. The access to power-gating features and the run-time reconfigurability of
clock sources, for example, can be leveraged by power saving frameworks. The uniform timer
identifiers, to give another example, allow the management of timer peripherals by an external
allocator module.

Considering the above, it can be concluded that uTimer constitutes a sound base to build high-
level timer subsystems on. The novel API easily integrates with other modules of the operating
system and can dynamically be utilized by user applications.
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7.5.9 Issues

uTimer was implemented and evaluated to the best of our knowledge, nonetheless some issues
naturally remain. This section exclusively discusses problems that are related to our evaluation
or were revealed by it. All implications and trade-offs that arise from the API design itself were
previously discussed in Section 5.4.

Some platforms are still missing implementations for advanced timer features and types. This
issue is not inherent to uTimer itself, but rather caused by a sheer lack of time. Driver support
for such device-specific features is desired nonetheless. However, the primary goal of this work
is not to provide fully-featured peripheral drivers for every MCU that RIOT targets, but the
contribution of a design for a sound low-level timer API and its evaluation instead. We have
therefore decided against striving for most complete driver implementations in favor of a com-
prehensive evaluation. As a consequence, platform-specific features are not yet covered by the
automated unit tests.

Conflicting clock configurations are not dynamically determined by uTimer, as explained within
Section 5.2.6. Driver developers instead specify a fixed set of applicable clocking options for each
timer type during platform implementation. However, in the course of our evaluation we have
found this approach to exclude clock configurations whose feasibility depends on the configuration
of other peripherals during run-time. We intentionally decided against performing clock-tree
evaluations within uTimer, but suggested implementing clock management on a system-wide
scale instead. This nonetheless currently prevents the described clock configurations despite
their potential feasibility.

Unused timer drivers are automatically excluded during build to preserve flash space. An analysis
of the memory footprint of uTimer revealed that such compiler optimizations only happen on a
per-driver basis. This means that whenever only a single function from a driver is used, its whole
set of hAPI functions is included into the firmware binary. We assume this issue to be a side
effect of the function pointer approach and that it relates to the const pointer optimization
described in Section 7.5.2. Unfortunately, we were unable to solve this problem in a timely
manner, wherefore it is still present.
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Peripheral APIs should expose underlying hardware to its fullest extent. A low-level timer API
in particular must also contain its computational overhead to maintain timeout accuracy and
ensure system responsiveness. Tight resource constrains of target devices and the heterogeneous
spectrum of boards supported by modern embedded OSs render this a complex problem. The
challenge in designing a sound and future-proof low-level timer API lies therefore in choosing
an appropriate amount of abstraction to extensively expose timer hardware while achieving
portability and maintaining performance at the same time.

With this work, we contributed four detailed analyses of various aspects of timekeeping tasks
on embedded devices, including a large-scale survey of hardware timers on 43 microcontroller
platforms. Gathered insights enabled us to develop a comprehensive and sustainable design for
a uniform low-level timer API. The proposed uTimer was implemented for RIOT and already
supports six device families on 129 boards in total. Cross-platform timer test suites verified the
proper behavior of all our implementations in an automated fashion. We developed extensive
timer benchmarks and compared the performance of uTimer to the existing low-level timer APIs
of RIOT. Results confirm uTimer to be a sound alternative to existing APIs from a performance
point of view. Its hardware-facing API is as fast as periph_timer, while its uniform user-facing
API adds between six and 21 CPU cycles overhead due to the extra layer of abstraction. Once
at least two timer types are available, the uAPI and periph_timer perform alike. Even the
worst-case uAPI overhead increases the timeout error by no more than 0.05 %, thus is negligible
for typical IoT use cases. If ultra-high performance is required, the hAPI can optionally remove
any abstraction overhead at the cost of deliberately narrowing application portability.

uTimer expands the set of hardware timers that are made available to user applications and
high-level OS modules in both number and diversity. On average, it triples the amount of timers
and channels, while also exposing numerous timer types, including ultra low-power peripherals,
which previously remained unexposed by all three existing APIs. The novel uTimer allows
to use all timers transparently interchangeable via its platform-independent interface, hereby
fostering portability and uniformity of timer code throughout the whole RIOT ecosystem. Its
flexible design enables high-level system modules and timer subsystems in particular to base
their generic solutions on uTimer. Application developers, on one hand, are provided with an
encompassing and reliable timer hardware abstraction that relieves them from writing low-level
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driver code. OS developers, on the other hand, benefit from the contributed unit tests and
performance benchmarks, encouraging the development of sustainable API implementations and
permitting their profound evaluation.

To conclude, the proposed uTimer API is a performant, user-friendly, and future-proof addition to
the existing low-level timer interfaces of RIOT. Our comprehensive analyses and the contributed
evaluation methods moreover provide developers with valuable insights and guidance throughout
the entire systems development life cycle.

8.1 Future Work

This work constitutes a solid foundation for future enhancements to the timekeeping features
of RIOT. First, we aspire to develop a uTimer backend for the high-level ztimer API. This
integration makes uTimer usable with all hard- and software timeouts throughout RIOT. After
laying this ground, we suggest leveraging the timer types and features that are now available to
improve the existing higher-level timekeeping solutions. This includes, for example, using ultra-
low power peripherals as tick sources, class-based timeout multiplexing, and dynamic peripheral
reconfiguration. In parallel to this, current driver implementations and the range of supported
microcontrollers shall be extended.

Conceptually, the definition of abstract timer classes is aspired. These shall group timer types
that provide a certain set of features, allowing application developers to select peripherals based
on the required properties in a platform-independent fashion. The exploration of compile-time
optimizations may reveal additional opportunities to further reduce the memory footprint. More-
over, an in-depth analysis of timer clocking options will yield valuable information to base the
design of a generic clock-management module on. Last, the feasibility of integrating peripheral
interconnect systems into the API design shall be evaluated, as those possess the potential to
obviate CPU wake-ups during timer maintenance.
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A Hardware Analysis Results

Detailed results from the conducted timer hardware analysis are found in this chapter. Each
table contains the analyzed timer types and their respective properties for a set of MCUs, as
indicated by the table captions.

A.1 Column Key for Analysis Criteria

All analysis criteria that are listed in the result tables are defined in this section.

A.1.1 Timer Type

Name of a timer type. Generic timer modules are grouped under the type name ”General-
purpose” across all platforms to allow for easy identification throughout the results. Names of
special purpose timers are adopted from naming conventions in the corresponding datasheets.

A.1.2 Counter Width

Width of the internal counter register in bits. If different counter widths are available for a single
timer type, these are listed below each other inside a single cell. Can be omitted if timer does
not provide a raw counter value, e.g., real-time-clocks.

A.1.3 Compare Channels

Number of compare channels available in a single timer module of the given type. Can be a
single number, a range, or multiple discrete values.
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A.1.4 Prescaler Type

Availability of a prescaler that can divide the timer clock. Can be one of the following:

× No prescaler available.
E Prescaler can be continuously selected as powers of 2 (e.g., 1, 2, 4, 8, . . . , 2n).
F Prescaler can be selected from fixed values with different intervals (e.g., 1, 16, 64, 512).
R Prescaler can be continuously selected as discrete integer (e.g., 1, 2, 3, 4, . . . , 65536).

A.1.5 Max Prescaler

Maximum value that can be selected as a prescaler with respect to Prescaler Type. This is the
largest configurable clock divider, hence resulting in the longest time to over- or underflow. Can
be omitted when Prescaler Type is ×.

A.1.6 Chaining Support

Indicates if chaining timers of the given type is possible. This feature can be used to combine
small counters into a single larger one, e.g., combining two 16-bit timers into one 32-bit timer.
Can be one of the following:

× No support for timer chaining available. Chaining by routing signals through additional
peripherals is counted as not available.

X Combination of multiple timer modules is possible.

A.1.7 Compare INT

Type of the interrupts that are generated on a compare channel match event. Can be omitted if
Compare Channels is 0. Can be one of the following:

× Non-existing. Compare channel matches cannot generate any kind of interrupt.
◦ Available but shared with other timer events. Applies if only a single interrupt per timer

module is available.
� Available but shared with other compare channels. Applies if a single timer module has

one interrupt that exclusively services all its compare matches.
X Available and offering unique interrupts for each compare channel. No status bit or event

flag read is necessary to identify the triggered compare channel.
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A.1.8 Overflow INT

Type of the interrupt that is generated on a counter register over- or underflow. Can be one of
the following:

× Non-existing. A counter over- or underflow cannot generate any kind of interrupt.
◦ Available but shared with other timer events. Applies if only a single interrupt per timer

module is available.
X Available and offering a unique interrupt. No status bit or event flag read is necessary to

distinguish it from compare matches.

A.1.9 Event Flags

Availability of status bits that indicate if an event, e.g., compare match or overflow, was observed
by the timer hardware. These flags need to be updated independently of the generated interrupts
and must be available even if the corresponding interrupt is currently masked. Can be one of
the following:

× No event status bits or flags available.
X Event status bits or flags are available and updated even if the corresponding interrupt is

masked.

A.1.10 Auto-reload

Availability and type of the auto-reload function. Can be one of the following:

× Not available (i.e., one-shot mode).
◦ Timer reloads only at counter over- or underflow (i.e., full width free-running mode).
� Auto-reload at arbitrary value is available but sacrifices one compare channel (i.e., limited

width free-running mode).
X Auto-reload at arbitrary value is available. An exclusive auto-reload value register is pro-

vided (i.e., limited width free-running mode).

A.1.11 PWM Generation

Indicates if a timer module can directly generate and output pulse-width modulation (PWM)
waveforms. Can be one of the following:

× Not available. PWM generation through additional peripherals counts as not available.
X PWM generation available.
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A.1.12 Internal CLKs

The number of internal clocks the timer is able to run of. A single clock is categorized as internal,
if it can be driven by an internal oscillator in at least one configuration. If it is able to run from
either an internal or external oscillator, it is categorized as both internal and external clock.

Listed clocks are based on their scope and potential side effects on other peripherals. Given a
timer clock, e.g., TIMx_CLK, can be selected among three different clock sources, e.g., CLK_-
A, CLK_B, CLK_C. If TIMx_CLK can be selected among all clock sources individually for each
timer module, available Internal CLKs are: CLK_A, CLK_B, CLK_C. However, if using CLK_A

as a source clock for TIMx_CLK implies this choice for multiple peripherals, only TIMx_CLK is
counted as Internal CLK. In other words: Within the hierarchical clock tree, only clocks starting
from the timer peripheral up to the first branch that leads to other peripherals are listed here.

A.1.13 External CLKs

The number of external clocks the timer is able to run of. A single clock is categorized as external,
if it can be driven by an external oscillator in at least one configuration. If it is able to run from
either an external or internal oscillator, it is categorized as both external and internal clock.

Listed clocks are based on their scope and potential side effects on other peripherals. See Sec-
tion A.1.12 for details.

A.1.14 Low-power CLK

Indicates if the timer module can be operated with a low-power clock source, either internal or
external. A low-power clock is defined as allowing the CPU and high-frequency peripheral clocks
to be turned off while the low-power clock is still operational, i.e., the timer can be operated in
lower power-states. Can be one of the following:

× No low-power clock source available.
X Timer can be driven by a low-power clock source, hence is operational in lower power states.
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A.1.15 Deep-sleep Active

Indicates whether the timer is operational in the lowest power states of the MCU, as typically
found with real-time-clocks. Very low power modes are characterized by the power-down of the
CPU, nearly all peripherals, and oscillators. Modules of this category are often among the only
sources that can wake the device from deep sleep states. Can be one of the following:

× Timer is never active in the lowest power states.
X Timer can be operated in the lowest power states.

A.1.16 Unresolved or Not-applicable Items

Occasionally one of the above described properties does not apply to a timer module, e.g., counter
width for some real-time-clocks. It can also be currently unknown or require further confirmation.
In such cases, one of the following values can be used for any of the above properties:

- Not applicable
? Unknown / Documentation unclear / Needs confirmation
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A.2 Timer Comparison Matrices (TCMs)

Timer comparison matrices for all analyzed device families are listed below.
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General-purpose 16 bit 1-4 R 216 X ◦ ◦ X X X 2 3 × ×32 bit

Advanced-control 16 bit 4, 6 R 216 X ◦ ◦ X X X 2 3 × ×
Basic 16 bit 0 R 216 X × ◦ X X × 1 1 × ×

Low-power 16 bit 1 E 27 × ◦ × X X X 3 3 X ×
SysTick 24 bit 0 F 23 × × Xb X X × 1 1 × ×

Real-time clock - 1-2c Re 27+15 × ◦ ◦d X - × 1 2 X X

Independent WDG 12 bit 0 E 28 × × × - × × 1 0 Xe X

System window WDG 7 bit 0 E 212+3 × × × - × × 1 1 × ×

Table A.1: Timer Comparison Matrix: STMicroelectronics STM32

aWhen enabled
bSystem Tick Interrupt
cRTC Alarm(s)
dFrom periodic wakeup timer
eIndependent oscillator
fFor internal calibration only
gRequires two hardware timer modules
hIncremented on every RTC count pulse
iAdditional 8-bit repeat register
jReference manual does not provide details
kPossible via events and another TCC utilized as event counter
lClocked by SysClk which may use any available oscillator

mOnly available in RTC-mode with external clock
nSupports masking of individual bits
oModule contains multiple timer peripherals. Values shown refer to a single counter
pOnly pre-defined intervals are selectable
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Asynchronous 8 bit 2 F 210 × X X Xa � X 1 3 X X

High-speed 10 bit 3 E 214 × X X Xa � X 2 2 × ×

Watchdog - 0 E 210 × × X X × × 1 0 Xe X

Table A.2: Timer Comparison Matrix: Microchip / Atmel megaAVR
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General-purpose 16 bit 1 F 28 X X × X X × 1 1 × ×32 bitg

Asynchronous 16 bit 1 F 28 × X × X X × 1 2 X X

Real-time clock - 1 × - × X × X - × 0 1 X X

Watchdog 25 bit 0 E 220 × × X X × × 1 0 X X

Table A.3: Timer Comparison Matrix: Microchip PIC32MX/MZ
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Timer Counter (TC)o 16 bit 3 F 27 X ◦ ◦ X � X 2 5 X ×
Pulse Width Modulation (PWM)o 16 bit 0 E 210 × × X X X X 1 1 X ×

SysTick 24 bit 0 F 23 × × X X X × 1 1 X ×

Real-time timer (RTT) 32 bit 1 R 216 × ◦ × X ◦ × 1 1 X X

Real-time clock (RTC) - 1 F 215 × ◦ × X ◦ × 1 1 X X

Watchdog (WDT) 12 bit 0 F 27 × × X X × × 1 1 X ×

Table A.4: Timer Comparison Matrix: Microchip / Atmel SAM3
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08 bit

2 F 210 X ◦ ◦ X X X 1 1 X X16 bit
32 bitg

General-purpose for Control 16 bit 4 F 210 ×k ◦ ◦ X X X 1 1 X X24 bit

SysTickj 24 bit 0 ? ? × × Xb ? X × 1 1 × ×

Real-time counter 32 bit 1 E 210 × ◦ ◦ X X × 3 1 X X

Watchdog - 2 - - - ◦ - X - × 2 1 X X

Table A.5: Timer Comparison Matrix: Microchip / Atmel SAMD21
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General-purpose (FRC1) 23 bit 0 F 28 × × X ? ◦ X 0 1 × ×
General-purpose (FRC2) 32 bit 1 F 28 × X × ? ◦ × 0 1 × ×

Real-time clock 32 bit ? × - × ? ? ? - × 0 1 X X

Watchdog - 0 × - × × × - × × 0 1 ? ?

Table A.6: Timer Comparison Matrix: Espressif ESP8266
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General-purpose 64 bit 1 R 216 × X × ? � × 1 1 × ×

Real-time clock 48 bit 1 × - × X × ? - × 1 1 X X

Main System Watchdog 32 bit 0 × - × × X ? × × 1 1 × ×
RTC Watchdog 32 bit 0 × - × × X ? × × 1 1 X X

Table A.7: Timer Comparison Matrix: Espressif ESP32
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General-purpose 16 bit 3-4 E 210 X ◦ ◦ X X X 2 2 × ×32 bit

Pulse counter 8 bit 0 × - × × ◦ X X × 1 2 X X16 bit

Low-energy 16 bit 2 E 215 × ◦ ◦ X � X 1 1 X X

Cryotimer 32 bit 1 E 27 × X × X ◦ × 2 1 X X

SysTickj 24 bit ? ? ? ? ? ? ? ? ? ? ? ? ?

Real-time-counter 24 bit 2 E 215 × ◦ ◦ X � × 1 1 X X32 bit

Real-time clock 32 bit 3 E 215 × ◦ ◦ X - × 2 1 X X

Watchdog - 1 E 217 × ◦ ◦ X × × 3 2 X X

Table A.8: Timer Comparison Matrix: Silicon Labs EFM32/EFR32
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General-purpose 16 bit 3 E 210 X ◦ ◦ X X X 1 1 × ×
Low-energy 16 biti 2 E 215 × ◦ ◦ X � X 1 1 X ×

SysTickj 24 bit ? ? ? ? ? ? ? ? ? ? ? ? ?

Real-time counter 24 bit 2 E 215 × ◦ ◦ X � × 1 1 X ×
Backup Real-time counter 32 bit 1 E 27 × ◦ × X X × 2 1 X X

Watchdog - 0 F 218 × ◦ × X X × 2 1 X ×

Table A.9: Timer Comparison Matrix: Silicon Labs EZR32
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General-purpose (GPTM) 16 bit 2 R 28 X X ◦ X X X 1 1 × ×32 bitg

AUX Timer 0 16 bit 0 E 215 X × X X X × 1 1 X ×AUX Timer 1

AUX Timer 2 16 bit 4 R 28 X X × X X X 3 2 X ×
Radio Timer 32 bit 3 × - × ◦ × X ◦ × 1 0 × ×

SysTick 24 bit 0 × - × - X X X × 1 1 × ×

Real-time clock (RTC) 70 bit 3 × - × X × X ◦ × 1 1 X X

Watchdog (WDT) 32 bit 0 F 25 × × X X ◦ × 1 1 × ×

Table A.10: Timer Comparison Matrix: Texas Instruments CC13x2 / CC26x2
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General-purpose 16 bit 2 R 28 X ◦ ◦ X X X 1 1 × ×32 bitg

MAC Timer 16 bit 2 × - × ◦ ◦ X ◦ × 1 1 X X

Sleep (SM) Timer 32 bit 1 × - × X × X ◦ × 1 1 X X

SysTick 24 bit 0 × - × - X X X × 1 1 × ×

Watchdog 15 bit 1p × - × × × - × × 1 1 X X

Table A.11: Timer Comparison Matrix: Texas Instruments CC2538
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Timer_A 16 bit 7 F 26 × ◦ ◦ X � X 2 4 X X

Real-time clock A (RTC_A)

8 bit

1 E 28 × ◦ ◦ X ◦ × 2 2 X X
16 bit
24 bit
32 bit

Real-time clock D (RTC_D)

8 bit

1 E 28 × ◦ ◦ X ◦ × 0 1 X X
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Table A.12: Timer Comparison Matrix: Texas Instruments CC430
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Table A.13: Timer Comparison Matrix: Texas Instruments LM4F120
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Table A.14: Timer Comparison Matrix: Texas Instruments MSP430x1xx / MSP430x2xx
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Table A.15: Timer Comparison Matrix: Nordic Semiconductor nRF51x/52x
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Table A.16: Timer Comparison Matrix: SiFive FE310-Gx
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4 3

X ×Timer/PWM Module (TPM) 1 2

Quad Timer (TMR)o 16 bit 2 E 27 X ◦ ◦ X X X 1 1 X ×
Periodic Interrupt Timer (PIT) 32 bit 2-4 × - X X × X � × 1 1 × ×

Low-power PIT (LPIT) 3 1 X X

Pulse Width Timer (PWT) 16 bit 0 E 27 × - ◦ X ◦ × 1 2 X ×
Low-power Timer (LPTMR) 16 bit 1 E 216 × X × X � × 4 2 X X

Real-time counter 16 bit 1 E 211 × X × X � × 3 3 X X

Real-time clock 32 bit 1 × - × ◦ ◦ X ◦ × 1 3 X X

Watchdog 16 bit 1 F 28 × X × X × × 3 2 X X

Table A.17: Timer Comparison Matrix: NXP Semiconductors Kinetis
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SysTick 24 bit 1 × - × X × X � × 1 1 × ×

Real-time clock - 2 × - × � × X - × 0 1 X X

Watchdog 32 bit 0 F 22 × - × - - × 2 2 X X

Table A.18: Timer Comparison Matrix: NXP Semiconductors LPC176x/5x
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Table A.19: Timer Comparison Matrix: NXP Semiconductors LPC2387
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Header definitions of the uTimer API, i.e., periph_utimer, are listed in this chapter. Code
listings are split into type definitions (see Section B.1), hardware-facing API (hAPI) (see Sec-
tion B.2), and user-facing API (uAPI).

The full interface definition can be found in /drivers/include/periph/utimer.h.

B.1 Type Definitions

Type definitions that are used by both the hAPI and the uAPI are listed in this section.

/**
* @brief Default timer device identifier type

*/
typedef unsigned int utim_t;

/**
* @brief Default timer definition macro

*
* Overwrite this in your CPUs periph_cpu.h file if needed

*/
#ifndef UTIMER_DEV
#define UTIMER_DEV(x) (x)
#endif

/**
* @brief Value for utim_t to indicate an invalid device

*
* Needs to be redefined if a custom utim_t is used

*/
#ifndef UTIMER_DEV_INVALID
#define UTIMER_DEV_INVALID (UINT_MAX)
#endif

Listing 9: Definition of the internal device identifier type utim_t. Additional preprocessor
macros to represent an invalid device and for optional type conversions are provided.
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/**
* @brief Type for timer peripheral instances available on a MCU

*
* Each exposed hardware timer is represented as an instance of this struct.

*/
typedef struct utim_periph {

const utim_t dev; /**< Timer device identifier */
const utim_driver_t *const driver; /**< Timer class driver */

const uint16_t width :8; /**< Counter register width in bits */
const uint16_t channels :4; /**< Number of available compare channels */
const uint16_t int_ovf :1; /**< Overflow interrupt availability */
const uint16_t int_cmp_match :1; /**< Compare match interrupt availability */

} utim_periph_t;

Listing 10: Definition of the utim_periph_t struct. It maps drivers to exposed hardware
timers and provides information about static timer properties.

/**
* @brief Counter value type

*
* The selected type must be wide enough to hold the maximum counter width

* among all used timers on a MCU.

*/
#ifdef CONFIG_UTIMER_OVERWRITE_MAX_WIDTH

#ifdef CONFIG_UTIMER_OVERWRITE_MAX_WIDTH_8
typedef uint_fast8_t utim_cnt_t;

#endif

#ifdef CONFIG_UTIMER_OVERWRITE_MAX_WIDTH_16
typedef uint_fast16_t utim_cnt_t;

#endif

#ifdef CONFIG_UTIMER_OVERWRITE_MAX_WIDTH_24
typedef uint_fast32_t utim_cnt_t;

#endif

#ifdef CONFIG_UTIMER_OVERWRITE_MAX_WIDTH_32
typedef uint_fast32_t utim_cnt_t;

#endif

#ifdef CONFIG_UTIMER_OVERWRITE_MAX_WIDTH_64
typedef uint_fast64_t utim_cnt_t;

#endif
#else

#ifndef HAVE_UTIMER_COUNT_T
typedef uint_fast32_t utim_cnt_t;

#endif
#endif

Listing 11: Default definition of the counter value type utim_cnt_t. It usually is automatically
inferred from the selected timer peripherals within the board specific configuration,
as indicated by HAVE_UTIMER_COUNT_T. If not, a default value is used. It can also
be overwritten by the optional Kconfig setting UTIMER_OVERWRITE_MAX_WIDTH.
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/**
* @brief Type for timer clock sources

*
* All available timer clocks are identified by a systemwide unique id

*/
#ifndef HAVE_UTIMER_CLK_T
typedef enum {

UTIM_CLK_DEFAULT, /**< Default clock source for the peripheral.
Unspecified or don't care. */

} utim_clk_t;
#endif

/**
* @brief Operation mode of a timer peripheral

*/
typedef enum {

UTIM_DISABLED = 'D', /**< Timer is disabled / not counting */
UTIM_CONTINUOUS = 'C', /**< Timer is counting continuously (autoreload) */
UTIM_ONESHOT = 'O' /**< Timer is counting in one-shot mode */

} utim_mode_t;

/**
* @brief Operation mode of a timer compare channel

*/
typedef enum {

UTIM_CHAN_DISABLED = 'D', /**< Timer channel is disabled */
UTIM_CHAN_ONESHOT = 'O', /**< Timer channel is armed in one-shot mode */
UTIM_CHAN_PERIODIC = 'P', /**< Timer channel is armed in periodic mode */
UTIM_CHAN_PERIODIC_RESET = 'R' /**< Timer channel is armed in periodic mode.

Counter value is automatically reset after
each compare match */

} utim_chan_mode_t;

/**
* @brief Counting direction of a timer

*/
typedef enum {

UTIM_CNT_DIR_UP = 'U', /**< Timer is counting up */
UTIM_CNT_DIR_DOWN = 'D', /**< Timer is counting down */
UTIM_CNT_DIR_UPDOWN = 'C' /**< Timer counts up to max value,

than counts down to min value. */
} utim_cnt_dir_t;

Listing 12: Definition of enumeration types for timer properties: utim_clk_t, utim_mode_t,
utim_chan_mode_t, utim_cnt_dir_t. These types are used in conjunction with
the respective timer property defined in Listing 13.
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/**
* @brief Type for timer property values

*/
typedef unsigned int utim_propval_t;

/** Prefix indicating a channel property in utim_prop_t */
#define UTIM_PROP_CHAN_PFX 0x8000
/** Channel number bits in utim_prop_t */
#define UTIM_PROP_CHAN_NUM_Pos 10
#define UTIM_PROP_CHAN_NUM_Msk (0b11111 << UTIM_PROP_CHAN_NUM_Pos)
/** Channel property indicator bits in utim_prop_t */
#define UTIM_PROP_CHAN_PROP_Pos 0
#define UTIM_PROP_CHAN_PROP_Msk (0b1111111111 << UTIM_PROP_CHAN_PROP_Pos)

/**
* @brief Properties and flags a timer peripheral can have

*/
typedef enum {

UTIM_PROP_RESERVED = 0x00, /**< Reserved for future use */

/* Basic timer peripheral properties */
UTIM_PROP_MODE = 0x01, /**< Timer counting mode (utim_mode_t) */
UTIM_PROP_CNT_DIR = 0x02, /**< Counting direction (utim_cnt_dir_t) */
UTIM_PROP_INT_CMP_MATCH = 0x03, /**< IRQ generation on compare match */
UTIM_PROP_INT_OVF = 0x04, /**< IRQ generation on counter overflow */

/* Status and event properties */
UTIM_PROP_OVF_PENDING = 0xF0, /**< Overflow flag is set */
UTIM_PROP_CMP_MATCH_PENDING = 0xF1, /**< At least one compare match flag set */

// 8< -----

/* Compare channel specific properties */
/**
* MSB indicates that this is a channel property. The next 5 bits hold the

* channel number, followed by n bits that determine the addressed channel

* property.

*
* Example:

* -Prefix- -Channel 3- -Mode-

* ((0x8000) | (0x03 << 10) | (0x00 << 0))

*/
UTIM_PROP_CHAN0_MODE = ((UTIM_PROP_CHAN_PFX) |

(0x00 << UTIM_PROP_CHAN_NUM_Pos) | (0x00 << UTIM_PROP_CHAN_PROP_Pos)),
UTIM_PROP_CHAN0_CMP_MATCH_PENDING = ((UTIM_PROP_CHAN_PFX) |

(0x00 << UTIM_PROP_CHAN_NUM_Pos) | (0x01 << UTIM_PROP_CHAN_PROP_Pos)),
// 8< -----
UTIM_PROP_CHAN7_MODE = ((UTIM_PROP_CHAN_PFX) |

(0x07 << UTIM_PROP_CHAN_NUM_Pos) | (0x00 << UTIM_PROP_CHAN_PROP_Pos)),
UTIM_PROP_CHAN7_CMP_MATCH_PENDING = ((UTIM_PROP_CHAN_PFX) |

(0x07 << UTIM_PROP_CHAN_NUM_Pos) | (0x01 << UTIM_PROP_CHAN_PROP_Pos)),
} utim_prop_t;

Listing 13: Definition of the hAPI property interface types and their encoding. Each property
possesses a unique identifier within utim_prop_t. Its value depends on the respec-
tive property but is limited by the utim_propval_t type.
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/**
* @brief User-defined compare match interrupt callback function

*
* @param[in] arg optional context for the callback

* @param[in] channel timer channel that triggered the interrupt.

* -1 if channel is unknown.

*/
typedef void (*utim_cmp_cb_t)(void *arg, int channel);

/**
* @brief User-defined overflow interrupt callback function

*
* @param[in] arg optional context for the callback

*/
typedef void (*utim_ovf_cb_t)(void *arg);

/**
* @brief Default interrupt context entry holding compare match callback

* and argument.

*/
typedef struct {

utim_cmp_cb_t cb; /**< callback executed at compare match interrupt */
void *arg; /**< optional argument given to the callback */

} utim_cmp_isr_ctx_t;

/**
* @brief Default interrupt context entry holding overflow callback and

* argument

*/
typedef struct {

utim_ovf_cb_t cb; /**< callback executed at overflow interrupt */
void *arg; /**< optional argument given to the callback */

} utim_ovf_isr_ctx_t;

Listing 14: Definition of timer callback function signatures and ISR contexts. Callbacks of the
types utim_cmp_cb_t and utim_ovf_cb_t are combined with their optional ar-
guments into the ISR context types utim_cmp_isr_ctx_t and utim_ovf_isr_-
ctx_t.
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B.2 Hardware-facing API

Data types and functions of the hAPI are listed in this section. Listing 15 gives an overview of
all functions that are available. It is followed by detailed definitions of all its functions.

/**
* @brief Driver type that groups driver functions for a timer type

*
* One such driver must be provided for every timer type. It is mapped within

* the respective utim_periph_t structs.

*/
typedef struct utim_driver {

int (*const init)(/* timer, freq, clk, cmp_cb, cmp_args, ovf_cb, ovf_args */);
utim_propval_t (*const get_property)(/* timer, prop */);
int (*const set_property)(/* timer, prop, value */);
int (*const enable)(/* timer, run */);
utim_cnt_t (*const read)(/* timer */);
int (*const write)(/* timer, count */);
int (*const set_channel)(/* timer, channel, mode, count */);
#ifndef CONFIG_UTIMER_USE_REDUCED_API
int (*const is_valid_freq)(/* timer, clk, freq */);
#endif

} utim_driver_t;

Listing 15: Definition of the utim_driver_t struct. One such struct exists for every timer type
and contains pointers to its respectively implemented hAPI functions. All functions,
including their arguments, are described in detail in the remainder of this section.
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/**
* @brief Initializes the timer module

*
* @param[in] tim The timer device to operate on

* @param[in] freq Requested frequency (number of timer ticks per second)

* @param[in] clk Clock source to select for the timer

* @param[in] cmp_cb Callback to be executed on compare match interrupt

* @param[in] cmp_arg Optional arguments passed to CMP callback function

* @param[in] ovf_cb Callback to be executed on overflow interrupt

* @param[in] ovf_arg Optional arguments passed to OVF callback function

*
* @retval 0 on success

* @retval -1 if frequency not applicable

* @retval -2 if clock source invalid

* @retval -3 if OVF interrupt requested but not supported by the timer

*/
int (*const init)(

utim_periph_t *const tim,
unsigned long freq,
utim_clk_t clk,
utim_cmp_cb_t cmp_cb,
void *cmp_cb_arg,
utim_ovf_cb_t ovf_cb,
void *ovf_cb_arg

);

Listing 16: Definition of the hAPI function: init()

/**
* @brief Retrieves information about a specific timer property

*
* @param[in] tim The timer device to operate on

* @param[in] prop Desired property

*
* @return Value of the property. Undefined if property is not supported

* by the timer.

*/
utim_propval_t (*const get_property)(

utim_periph_t *const tim,
utim_prop_t prop

);

Listing 17: Definition of the hAPI function: get_property()

127



B uTimer API Definition

/**
* @brief Modifies a specific timer property

*
* @param[in] tim The timer device to operate on

* @param[in] prop Desired property

* @param[in] val Value to set the property to

*
* @retval 0 on success

* @retval -1 if property update failed

* @retval -2 if property is unsupported or read-only

*/
int (*const set_property)(

utim_periph_t *const tim,
utim_prop_t prop,
utim_propval_t val

);

Listing 18: Definition of the hAPI function: set_property()

/**
* @brief Enables or disables the timer, thus starting or stopping

* incrementing the internal counter of the hardware peripheral.

*
* @param[in] tim The timer device to operate on

* @param[in] run if true, the timer is started

* if false, the timer is stopped

*
* @retval 0 on success

* @retval -1 if timer device failed to start or stop

*/
int (*const enable)(

utim_periph_t *const tim,
bool run

);

Listing 19: Definition of the hAPI function: enable()

/**
* @brief Reads the current raw counter value of the internal counter

* register.

*
* @param[in] tim The timer device to operate on

*
* @return Current raw value of the internal counter register

*/
utim_cnt_t (*const read)(

utim_periph_t *const tim
);

Listing 20: Definition of the hAPI function: read()

128



B uTimer API Definition

/**
* @brief Sets the current raw counter value of the internal counter

* register.

*
* @param[in] tim The timer device to operate on

* @param[in] cnt Counter value to write

*
* @retval 0 on success

* @retval -1 if counter write failed or unsupported

*/
int (*const write)(

utim_periph_t *const tim,
utim_cnt_t cnt

);

Listing 21: Definition of the hAPI function: write()

/**
* @brief Configures a timer channel to either generate a timeout event

* exactly at the given counter value or disables it.

*
* @param[in] tim The timer device to operate on

* @param[in] channel Timer channel to (dis-)arm

* @param[in] mode Desired channel operation mode (e.g. disabled,

* one-shot, periodic, ...).

* @param[in] cnt Absolute counter value to arm for

*
* @retval 0 on success

* @retval -1 if channel invalid

* @retval -2 if cnt value invalid (e.g. higher than max counter value)

* @retval -3 if mode invalid or not supported by timer

*/
int (*const set_channel)(

utim_periph_t *const tim,
unsigned int channel,
utim_chan_mode_t mode,
utim_cnt_t cnt

);

Listing 22: Definition of the hAPI function: set_channel()
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#ifndef CONFIG_UTIMER_USE_REDUCED_API
/**
* @brief Indicates if the timer can run at the given frequency

*
* @param[in] tim The timer device to operate on

* @param[in] clk Clock source to decide frequency validity for

* @param[in] freq Frequency (number of ticks per second) to check

*
* @retval 0 if frequency is valid for the timer

* @retval -1 if frequency not applicable for the timer

*/
int (*const is_valid_freq)(

utim_periph_t *const tim,
utim_clk_t clk,
unsigned long freq

);
#endif

Listing 23: Definition of the optional hAPI function: is_valid_freq()
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B.3 User-facing API

All public functions of the uAPI are listed in this section. They are split into five categories:
B.3.1) Peripheral Management, B.3.2) Basic Timer Functions, B.3.3) Compare Channels and
Timeouts, B.3.4) Dynamic Property Interface, and B.3.5) Helper Functions.

B.3.1 Peripheral Management

/**
* @brief Provides the timer instance struct for a given timer

*
* @param[in] dev Timer device identifier

*
* @return On success: Corresponding timer peripheral struct

* @return If timer device not found: Timer peripheral struct with

* .dev = UTIMER_DEV_INVALID and .driver = NULL

*/
utim_periph_t utimer_get_periph(utim_t dev);

Listing 24: Definition of the uAPI function: utimer_get_periph()

/**
* @brief Initializes the timer module.

*
* @param[in] tim The timer device to operate on

* @param[in] freq Requested frequency (number of timer ticks per second)

* @param[in] clk Clock source to select for the timer

* @param[in] cmp_cb Callback to be executed on compare match interrupt

* @param[in] cmp_arg Optional arguments passed to CMP callback function

* @param[in] ovf_cb Callback to be executed on overflow interrupt

* @param[in] ovf_arg Optional arguments passed to OVF callback function

*
* @retval 0 on success

* @retval -1 if frequency not applicable

* @retval -2 if clock source invalid

* @retval -3 if OVF interrupt requested but not supported by the timer

*/
int utimer_init(

utim_periph_t *const tim,
unsigned long freq,
utim_clk_t clk,
utim_cmp_cb_t cmp_cb,
void *cmp_cb_arg,
utim_ovf_cb_t ovf_cb,
void *ovf_cb_arg

);

Listing 25: Definition of the uAPI function: utimer_init()
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B.3.2 Basic Timer Functions

/**
* @brief Enables the timer, i.e., starting to increment the internal

* counter of the hardware peripheral.

*
* @param[in] tim The timer device to operate on

*
* @retval 0 on success

* @retval -1 if timer device failed to start

*/
int utimer_start(utim_periph_t *const tim);

Listing 26: Definition of the uAPI function: utimer_start()

/**
* @brief Disables the timer, i.e., stopping the internal counter

* of the hardware peripheral.

*
* @param[in] tim The timer device to operate on

*
* @retval 0 on success

* @retval -1 if timer failed to stop

*/
int utimer_stop(utim_periph_t *const tim);

Listing 27: Definition of the uAPI function: utimer_stop()

/**
* @brief Reads the current raw counter value of the internal counter

* register.

*
* @param[in] tim The timer device to operate on

*
* @return Current raw value of the internal counter register

*/
utim_cnt_t utimer_read(utim_periph_t *const tim);

Listing 28: Definition of the uAPI function: utimer_read()
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/**
* @brief Sets the current raw counter value of the internal counter

* register.

*
* @param[in] tim The timer device to operate on

* @param[in] cnt Counter value to write

*
* @retval 0 on success

* @retval -1 if counter write failed or unsupported

*/
int utimer_write(utim_periph_t *const tim, utim_cnt_t cnt);

Listing 29: Definition of the uAPI function: utimer_write()

B.3.3 Compare Channels and Timeouts

/**
* @brief Arms a timer channel to generate a timeout event after the given

* time.

*
* The specified timeout value is relative to the current internal counter

* value of the timer.

*
* @param[in] tim The timer device to operate on

* @param[in] channel Desired timer channel to arm

* @param[in] timeout Relative timeout value (number of ticks) to set

*
* @retval 0 on success

* @retval -1 if channel invalid

* @retval -2 if timeout invalid

*/
int utimer_set(

utim_periph_t *const tim,
unsigned int channel,
unsigned int timeout

);

Listing 30: Definition of the uAPI function: utimer_set()
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/**
* @brief Arms a timer channel to generate a timeout event exactly at the

* given counter value.

*
* @param[in] tim The timer device to operate on

* @param[in] channel Desired timer channel to arm

* @param[in] cnt Absolute counter value to arm for

*
* @retval 0 on success

* @retval -1 if channel invalid

* @retval -2 if cnt invalid (e.g. higher than max counter value)

*/
int utimer_set_absolute(

utim_periph_t *const tim,
unsigned int channel,
utim_cnt_t cnt

);

Listing 31: Definition of the uAPI function: utimer_set_absolute()

/**
* @brief Arms a timer channel to periodically generate timeout events

* exactly at the given counter value.

*
* @param[in] tim The timer device to operate on

* @param[in] channel Desired timer channel to arm

* @param[in] cnt Absolute counter value to arm for

* @param[in] flags Flags to control counter reset behavior

*
* @retval 0 on success

* @retval -1 if channel invalid

* @retval -2 if cnt invalid (e.g. higher than max counter value)

*/
int utimer_set_periodic(

utim_periph_t *const tim,
unsigned int channel,
utim_cnt_t cnt,
uint8_t flags

);

Listing 32: Definition of the uAPI function: utimer_set_periodic()
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/**
* @brief Disarms a timer channel.

*
* The specified timer channel is disarmed regardless of its current state.

*
* @param[in] tim The timer device to operate on

* @param[in] channel Desired timer channel to disarm

*
* @retval 0 on success

* @retval -1 if channel invalid

*/
int utimer_clear(

utim_periph_t *const tim,
unsigned int channel

);

Listing 33: Definition of the uAPI function: utimer_clear()
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B.3.4 Dynamic Property Interface

/**
* @brief Retrieves information about a specific timer property

*
* @param[in] tim The timer device to operate on

* @param[in] prop Desired property

*
* @return Value of the property. Undefined if property is not supported

* by the timer.

*/
utim_propval_t utimer_get_property(

utim_periph_t *const tim,
utim_prop_t prop

);

Listing 34: Definition of the uAPI function: utimer_get_property()

/**
* @brief Modifies a specific timer property

*
* @param[in] tim The timer device to operate on

* @param[in] prop Desired property

* @param[in] val Value to set the property to

*
* @retval 0 on success

* @retval -1 if property update failed

* @retval -2 if property is unsupported or read-only

*/
int utimer_set_property(

utim_periph_t *const tim,
utim_prop_t prop,
utim_propval_t val

);

Listing 35: Definition of the uAPI function: utimer_set_property()
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B.3.5 Convenience Functions

#ifndef CONFIG_UTIMER_USE_REDUCED_API
/**
* @brief Indicates if the timer can run at the given frequency

*
* @param[in] tim The timer device to operate on

* @param[in] clk Clock source to decide frequency validity for

* @param[in] freq Frequency (number of ticks per second) to check

*
* @retval 0 if frequency is applicable for the given timer

* @retval -1 if frequency not applicable

*/
int utimer_is_valid_freq(

utim_periph_t *const tim,
utim_clk_t clk,
unsigned long freq

);
#endif

Listing 36: Definition of the optional uAPI function: utimer_is_valid_freq()

#ifndef CONFIG_UTIMER_USE_REDUCED_API
/**
* @brief Calculates the nearest possible frequency the timer is

* capable of running at.

*
* @param[in] tim The timer device to operate on

* @param[in] clk Clock source to decide frequency validity for

* @param[in] freq Target frequency (number of ticks per second)

*
* @return Nearest achievable frequency with respect to the

* specified clock

*/
unsigned long utimer_get_nearest_freq(

utim_periph_t *const tim,
utim_clk_t clk,
unsigned long freq

);
#endif

Listing 37: Definition of the optional uAPI function: utimer_get_nearest_freq()
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API Well-defined software interface between user applications and system components. APIs
specify a set of functions and provide their implementations. Peripheral APIs are a subset
of these, used to access the hardware peripherals of an MCU. See Section 2.2.

Benchmark A set of test routines that assess the performance of software. Quantitative results
allow for comparison between different implementations.

Hardware Abstraction Layer Software layer between device hardware and application firmware
or other OS modules. See Section 2.2.

Hardware in the Loop Testing Technique where a programmable hardware controller is used to
stimulate a device under test. See Section 7.1.1.

Hardware-facing API Part of the uTimer API. A minimal device-specific set of functions. It
contains all low-level driver code for a timer type. See Section 5.2.3.

MCU Platform A set of microcontrollers that share most of their properties, such as CPU and
peripheral types. Also referred to as device family. See Section 2.1.

Microcontroller Unit Integrated circuit (IC) that combines a CPU, memory, and on-board pe-
ripherals within a single chip package. See Section 2.1.

periph_timer The current generic low-level timer API of RIOT. See Section 4.2.

PHiLIP The Primitive Hardware in the Loop Integration Product (PHiLIP) [58] is a low-cost
solution for HiL testing. See Section 7.1.2.

Regression Testing The process of re-running software tests to ensure that imminent changes
does not cause the software to behave incorrectly.

RIOT An open-source embedded OS for resource constrained devices in the IoT and WSNs. See
Section 2.3.
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Robot Framework The Robot Framework (RF) [49] is an open-source test automation frame-
work. See Section 7.1.3.

Timer Microcontroller peripheral that is used for timing and counting. Runs asynchronously to
the main program flow, i.e., independent of the CPU. Also referred to as hardware timer
or low-level timer. See Section 2.1.

Timer Type Specific class or version of hardware timers, such as general-purpose timer, low-
power timer, or real-time clock. All peripherals that belong to one timer type can be
controlled by the same low-level driver code..

Unit Testing Testing a specific section of code for proper behavior.

User-facing API Part of the uTimer API. A uniform set of functions that is independent of
underlying timer types. See Section 5.2.4.

uTimer The novel low-level timer API we contribute with this work. The corresponding RIOT
OS module is internally referred to as periph_utimer. See Chapter 5.
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