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Kurzzusammenfassung

Das Internet of Things (IoT) ist eine sich schnell entwickelnde Technologie, die Endan-

wendern schon zur Verfügung steht. Die Sicherheit in diesem Bereich hat sich jedoch

langsamer entwickelt. Aktuelle Ansätze bleiben entweder proproietär oder folgen schw-

ergewichtigen Internetstandards, einschließlich aufwändiger Public-Key-Infrastruktur. In

dieser Arbeit stellen wir einen Ansatz für eine Sicherheitsarchitektur, aufbauend auf iden-

titätsbasierter Kryptographie und eingebetteter kryptographischer Informationen in IPv6-

Adressen, erlaubt Ende-zu-Ende-Authentifizierung in federierten IoT-Netzwerken vor.

Unser Prototyp basiert auf elliptischen Twisted Edwards Kurven und erlaub den Einsatz

auf schwachen Endgeräten. Die Tests zeigen, dass die Architektur sich für die Größe und

der Vielfalt des IoT eignet.
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Abstract

The Internet of Things (IoT) is a fast evolving technology with many devices already avail-

able to end-users. However, the security of the IoT is less evolved. Current approaches

either employ proprietary protocols, or use standard Internet protocols including the ex-

isting heavyweight and complex public-key infrastructure. In this thesis, we propose a

security architecture built on identity-based cryptography that embeds of cryptographic

information in IPv6 addresses, allowing end-to-end authentication of federated IoT net-

works. Our prototype using twisted Edwards curves allows deployment on constrained

IoT devices. Our evaluation shows performance characteristics suitable for the scale and

diversity of the IoT.
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1 Introduction

The idea of the Internet of Things (IoT) combines the flexibility and ubiquity of small

dedicated devices with the global addressability of the IPv6 Internet. Devices in the IoT are

highly diverse in their properties, especially processing power, memory and communication

abilities [1]. The same constrains are known from wireless sensor networks (WSNs), which

however are not globally interconnected. The application area of the IoT ranges from

domestic smart home and smart metering applications to national smart grids controlling

the energy flow [1].

Security and privacy are critical requirements for many IoT application scenarios [2]. As

IoT devices interact with the real world, these requirements extend to the communication

between devices, commonly occurring over uncontrollable and open media. This asks for

a protected network-layer, for which end-to-end authentication is an essential foundation.

Current solutions for securing communication between IoT devices include standards-

based proposals which build on optimized Datagram Transport Layer Security (DTLS)

implementations [3] providing end-to-end security. While the interoperability of standard

technology is essential for fast adoption, the recycling of certificate-based authentication

[4] brings along key management and revocation issues, known from theWorldWideWeb

(WWW) and its public-key infrastructure (PKI).

Instead, we aim for a security system that still leverages standard network and security

protocols, but provides easier key management, distributed authorities controlling their

devices and scales to both the high number of endpoints on the Internet and the diversity

of the IoT devices.

This work presents a security architecture for the IoT, enabling end-to-end authentica-

tion for the network layer based on federated identity-based cryptography (IBC) authorities.

IBC [5] is a public key cryptography mechanism allowing use of arbitrary identifies as pub-

lic keys, in our case IPv6 addresses, thereby eliminating the need to distribute them. We

validate our proposed architecture using a prototype implementation for a constrained

device, followed by evaluation in an interconnected local testbed with a border gateway

and another endpoint.

Organization: The rest of this thesis is organized as follows. In chapter 2 we first introduce

background on elliptic curve cryptography (ECC), specifically twisted Edwards curves, their

security, storage complexity and computational performance.

This leads to an overview of IBC and identity-based signature (IBS) in chapter 3. After

an introduction and definition of IBS, we define the specific IBS used for our architecture

and discuss major key management problems related to IBC. This includes the issue of

key escrow and key revocation, which need to be dealt with differently in IBC compared to
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traditional asymmetric cryptography.

Chapter 4 deals with the IoT and existing proposals to provide end-to-end security for

the communication between IoT devices.

The main part of this work is chapter 5. After posing the problem of end-to-end security

in the IoT and declaring our objectives, we list the requirements for the proposed federated

end-to-end security architecture for the IoT. Following this, the system components of

our architecture are introduced in section 5.4.1 and the proposed architecture based on

IBC and Crypto-based Identifier (CBID)-like IPv6 subnet addressing is described. The

remainder of this chapter describes each step of the end-to-end authentication procedure

in detail, including the revocation and the rollover of the trusted authority (TA).

In chapter 6 we discuss the compatibility with existing standard IPv6 and security

technologies and describe deployment scenarios which benefit from our proposed end-to-

end security architecture.

We describe our implementation, its software components and dependencies in chap-

ter 7. The three interacting programs to be deployed on three different devices for evalua-

tion are described at a high level.

Chapter 8 covers the security evaluation of the proposed federated end-to-end security

architecture and evaluates the performance of a prototype implementation for two different

deployment scenarios.

In the final chapter we draw our conclusion over the overall architecture and its previous

evaluation for security and practical performance. Final ideas on the continuation of the

proposed concept and its implementation are presented as part of the outlook.
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2 Elliptic Curve Cryptography

In the 1980s, Miller [6] and Koblitz [7], both independently suggested to use elliptic curves

defined over finite fields for cryptography, also known as elliptic curve cryptography (ECC).

The most popular uses today are Elliptic Curve DSA (ECDSA) and Elliptic Curve Diffie-

Hellman (ECDH). The primary advantage of ECC compared to classic arithmetic on prime

groups like they are used by RSA [8] or Digital Signature Algorithm (DSA) [9] is the

hardness of the mathematical problem behind it.

The hardness directly influences the security scalability properties of the cryptographic

primitives like RSA or ECC. That is ECC key sizes and operation run times are lower

compared to RSA at the same symmetric security level. In addition the key sizes and

run times scale linearly for ECC with increasing security level while for RSA they scale

super-linearly.

2.1 Twisted Edwards Curves

Originally the proposed form for elliptic curves in elliptic curve cryptography (ECC) were

Weierstrass curves, but over the time further forms of elliptic curves have been suggested.

The curve forms of particular interest are twisted Edwards curves [10]. They allow simple

and fast implementations which avoid the majority of security problems known from short

Weierstrass curves.

Elliptic curves can be defined over prime fields (i.e., Fp with prime p) or binary extension
fields (i.e., F2m). This work focuses on ECC using prime fields, because they have a stable

security history compared to binary fields and extension fields. The choice of field—prime

field (Fp) or binary extension field (F2m)—can have a crucial influence on the performance

depending on hardware architecture [11]. Bilinear pairings transfer supersingular curves

over Fq to F∗
qk
, where the discrete logarithm problem (DLP) is easier to solve compared

to the hard elliptic curve discrete logarithm problem (ECDLP). Fq is of prime (q = p) or
prime power (q = pk) order, where p is prime and k is a positive integer. This fact is used by
the MOV attack [12]. Some elliptic curves over Fqn transfer to hyperelliptic curves, where

the ECDLP is easier to solve [13]. Elliptic curves over Fp or F2p where p is a prime are not

vulnerable to this attack.

In 2007 Edwards [14] proposed a new form of elliptic curves over number fields that are

defined by the equation x2 + y2 = c2(1 + x2y2).
All elliptic curves over non-binary finite fields are transformable into the Edwards form

of elliptic curves. However this transformation sometimes requires the Edwards form to
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be defined over a field extension of the original field [15].

Building on Edwards proposal, Bernstein et al. [15] defined an expanded formula for

Edwards curves to include more curves for possible transformation to Edwards curves

without change of the underlying finite field. Their formula for Edwards curves is x2+y2 =
c2(1 + dx2y2) where cd

(
1− dc4

)
6= 0 holds.

They propose a formula for Edwards curves to include all curves x2+y2 = 1+dx2y2 and
proof that all elliptic curves with a point of order 41 are transformable to this Edwards curve

formula. The addition law for Edwards curves is unified, meaning that it can be used for

both addition and doubling. It is also complete, meaning it is valid for all possible inputs,

including the identity element. Neither of these properties apply to classic Weierstrass

curves and implementations need to handle special cases. Bernstein et al. also presented

fast addition and doubling formulas and showed their advantage for the performance of

ECC.

Having a unified and complete addition law not only enables compact implementations

but also reduces the attack surface on side-channels. ECC implementations using classic

Weierstrass curves commonly have a highly branched addition law handling various special

cases. Since not all branches are of equal computational complexity, the implementation

is subject to simple power analysis (SPA), timing attacks and other side-channel attacks.

In 2008, Bernstein et al. [10] proposed a generalization of the original Edwards curve

proposed by Edwards [14] in 2007, the twisted Edwards curve. A twisted Edwards curve

group, i.e. the group of points on a twisted Edwards curve, is defined as

ETE,a,d(Fp) :
{
(x, y) ∈ Fp

2 : ax2 + y2 = 1 + dx2y2
}

(2.1)

for curve parameters a, d ∈ Fp [10, p. 3].

If the group law on an elliptic curve is described by a single formula for point addition

and doubling, it is known to be unified. If a formula for group arithmetic is valid for all

elements of an ECC group, including the identity element, it is said to be complete.

Twisted Edwards curves have a complete and unified group arithmetic or group law that

can be described by the following formula using affine coordinates of two points (x1, y1)
and (x2, y2) on the twisted Edwards curve ETE,a,d(Fp):

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

)
[10, p. 11] (2.2)

In contrast, the group law for short Weierstrass curves is not unified and complete. Its

implementation comes with additional code to handle special cases like point doubling

or cases where one operant is the identity element. This increases the surface of the ECC

implementation for side-channel attacks like SPA and timing attacks [17].

Finally, Twisted Edwards curves are birationally equivalent to Montgomery curves [10,

1The order of point P is the smallest positive integer x with x · P = O, withO being the identity element of

the elliptic curve group [16, p. 20].
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p. 3], which hold the speed record for fastest Elliptic Curve Diffie-Hellman (ECDH) [18]

key exchange.

2.2 Curve Point Representations

Points on an elliptic curve can be represented in different forms. Each elliptic curve point

representation has its own advantage, e.g. small storage complexity ideal for long term

storage or communication, or a computationally efficient group law suitable for efficient

computations required for elliptic curve cryptography (ECC) algorithms and schemes.

The twisted Edwards curve formula given in equation (2.1) uses affine coordinates, i.e.

x- and y-coordinates, for its point representation. However, the addition formula asso-

ciated with this point format — seen in equation (2.2) — requires division or inversion

in Fp. Inversion of finite prime field elements is an expensive group operation on most

architectures. Its computation commonly uses the extended Euclidean algorithm which

has a high computational complexity, namely O(n3) for n-bit numbers [19, p. 937].

In order to avoid expensive computations of inversions and the extended Euclidean

algorithm, projective coordinates [20] have been suggested. Using projective coordinates,

i.e. x-, y- and z-coordinates, expensive inversions can be postponed until an elliptic curve

point in affine or compressed form is needed for storage or communication. The trick of

the group law for projective coordinates, i.e. the formulas for addition and doubling of

elliptic curve points, is to carry along the common denominator of the calculations on the

y- and x-coordinates for all group operations in the z-coordinate of a point. With that, the

projective point (x, y, z) is equal to the affine point (xz ,
y
z ). The conversion from a point in

projective coordinates to a point in affine coordinate requires inversions. For a survey on

methods with projective coordinates, see [21].

Building on projective coordinates, Hisil et al. [22] suggested to use a forth coordinate

(t) for their extended twisted Edwards curve point format. The idea behind this point

format is, to keep an intermediate result of the addition and doubling operations around

in a fourth t coordinate, to save the computation of this intermediate value in the next

operation. This results in a doubling formula for their group law which has a lower com-

putational complexity for consecutive doublings than the doubling formula for standard

projective coordinates. However, it requires specialized scalar multiplication algorithms

which optimize for consecutive doublings to take advantage of this feature.

The most storage efficient point representation is the compressed point format. Twisted

Edwards curves are symmetric with respect to the y-axis. This allows to represent a point
on the curve with nearly half the storage complexity of the affine coordinate representa-

tion, ideal for reducing the overhead for long term storage on memory constrained devices

or in communication protocols. Compressed coordinates contain a canonical, bit-by-bit,

description of the y-coordinate and a sign bit of the x-coordinate. The x-coordinate can
be recovered or decompressed using the curve formula for twisted Edwards curves and the

sign bit. The curve formula from equation (2.1) solved by x has two results. The sign bit is

used to distinguish between the two.
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ECC point format Storage Complexity Remarks

Compressed 1 sign bit + 1× Fp Ideal for storage or communication

Affine 2× Fp Slow due to inversions in group law

Projective 3× Fp Fast group law, ideal for ECC computations

Extended 4× Fp Requires special scalar multiplication for

faster group law

Table 2.1: Comparison of the memory/storage complexity of elliptic curve point formats

with remarks.

A comparison of the memory or storage complexity of all four elliptic curve point repre-

sentations can be seen in table 2.1. The ideal point representation for storage or communi-

cation to other parties is the compressed point format. It has the lowest storage complexity

among all four point formats and allows to encode an point on the curve used in this work,

Ed25519, in only 256 bit. Projective coordinates are the recommended representation for

computations, as it avoid expensive field inversions. While the extended coordinates allow

even faster computations, the added code complexity for a dedicated scalar multiplica-

tion algorithm and higher memory requirements are undesirable for memory constrained

Internet of Things (IoT) devices.

2.3 Scalar Multiplication

Scalar multiplication is the main operation that builds on the elliptic curve cryptography

(ECC) group law and is used by all protocols that build upon ECC, e.g., Elliptic Curve

Diffie-Hellman (ECDH) and Elliptic Curve DSA (ECDSA).

Scalar multiplication of the elliptic curve point P on the elliptic curve E by the natural

number n, is defined in [16, p. 271] as follows:

Definition 2.3.1. Take n ∈ N \ {0} and let us denote scalar multiplication by n on E by

[n], or [n]E to avoid confusion. Namely,

[n] :E −→ E (2.3)

P 7−→ [n]P = P + P + · · ·+ P︸ ︷︷ ︸
n times

. (2.4)

There are various algorithms to compute scalar multiplication which vary in their com-

putational complexity, ability to take advantage of precomputations and side-channel

resistance. The twisted Edwards curve implementation for RELIC [23], introduced in our

previous work [24], uses the LWNAF algorithm with non-unified addition and doubling
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formulas for projected coordinates on a twisted Edwards curve. For extended projective

coordinates on twisted Edwards curves, we also added the LWNAF_MIXED.
While both algorithms are among the fastest scalar multiplications available in RELIC,

neither is secure against timing side-channel attacks. In 2014, Benger et al. showed that by

observing the time behavior wNAF— the same algorithm as implemented by RELIC— on

a secret factor, i.e. a private key, the same factor can be recovered by a FLUSH+RELOAD

[25, 26] attack. By timing access to the memory, during the wNAF computation over

many runs, a secret factor can be recovered bit by bit. The access time to the memory can

fluctuate on CPU architectures that have a data cache.

As the attack depends on the availability of a data cache on the architecture, not all

platforms vulnerable to it. For example on of our three evaluation platforms (see table 8.1),

namely the SAM R21 board, does not have any data cache for the RAM.

2.4 Security and Hardness of ECC

There exist algorithms for solving the RSA-problem or the discrete logarithm problem

(DLP) in finite fields that have subexponential-time complexity [27, Chapter 2].

Definition 2.4.1. The discrete logarithm problem is defined as finding element x for a

given a, g and p, p being a large prime, in the formula:

a ≡ gx mod p (2.5)

The corresponding problem in elliptic curve groups is called elliptic curve discrete

logarithm problem (ECDLP).

Definition 2.4.2. The elliptic curve discrete logarithm problem is defined as finding n ∈ Z
given P,Q ∈ E(Fq) in the following function. E is describing the elliptic curve function

and Fq the finite field used for the coordinates.

Q = nP (2.6)

The index-calculus algorithm for solving DLP in Fq has a time complexity given in L-

notation [27, p. 60] of Lq

[
1
2 , c

]
with constant c > 0 [27, p. 112]. The L-notation is defined

as

Lq[α, c] = O
(
e(c+o(1))(ln q)α(ln ln q)1−α

)
with the positive constant c and 0 < α < 1 [27, p. 60, Eqn. 2.3].
However, until now the best known algorithm to solve the ECDLP on elliptic curves over

prime fields has exponential-time complexity. For general elliptic curves the best known

algorithm to solve ECDLP is Pollard’s rho algorithm for logarithms [28]. This algorithm has

polynominal-time complexity of O(
√
p) in the size of the elliptic curve group. However,

the input of complexity descriptions of algorithms is commonly defined in the number of

bits. With p being a number of n bits, testing all values of p would take a time of O(2n).
Thus the runtime complexity of Pollard’s rho algorithm for general elliptic curves with
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p = O(2n) becomes O(
√
2n) = O(2n

1
2 ) = O(2

n
2 ). This describes an exponential-time

complexity algorithm.

Symmetric Asymmetric (RSA / DLOG) Asymmetric (Elliptic Curve)

64 bit 816 bit 128 bit
80 bit 1,248 bit 160 bit

112 bit 2,432 bit 224 bit
128 bit 3,248 bit 256 bit
160 bit 5,312 bit 320 bit

Table 2.2: ECRYPT II comparison of key sizes (in bits) at the same security level between

symmetric, asymmetric (RSA) and elliptic curve [29].

Due to the hardness of the ECDLP, one can use smaller groups in elliptic curve cryptogra-

phy (ECC)-based schemes with the same equivalent symmetric security level as compared

to schemes based on RSA or DLP. This leads to smaller key sizes and smaller signatures,

which is especially beneficial in low-power computing environments. A comparison of key

sizes of equal security in symmetric, traditional asymmetric and the elliptic curve setting

can be found in Table 2.2 and takes latest hardware advances and the best algorithms for

the cryptographic problems into account.
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3 Identity-based Cryptography

In 1985, Shamir [5] proposed a new asymmetric cryptographic system, identity-based

cryptography (IBC) that compared to classic public-key cryptography allows arbitrary bit-

strings to be used as public key. This flexibility comes with the key escrow constraint,

meaning the key issuing party, the trusted authority (TA), knows the private key of all

members of the system. The free choice of public key enable to use already existing

identifiers (IDs) of communication protocols as public key, and thereby saving storage and

transmission cost for additional public keys.

Like in traditional asymmetric cryptography, there are IBC-variants of the major known

asymmetric schemes, e.g. identity-based signature (IBS), identity-based encryption (IBE)

and ID-based key exchange protocols. The first IBS schemewas already proposed by Shamir

[5] based on the RSA cryptosystem in his original proposal. However, it was not until 2001

that Boneh et al. [30] proposed the first specific IBE scheme based on pairing-based

cryptography (PBC) introduced just shortly before in 2000 by Joux [31].

3.1 Identity-based Signatures

There are identity-based signature (IBS) designed using the RSA cryptosystem, elliptic

curve cryptography (ECC) and pairing-based cryptography (PBC). On a higher level they

are all provide the function interface and provide similar functionality, but with different

performance, memory and storage characteristics.

Definition 3.1.1. An IBS is defined using four functions:

Setup (sec_level) −→ (TASK ,TASP) (3.1)

KeyExtract (TASK ,TASP, ID) −→ (IDkey) (3.2)

Sign (TASP, IDkey,m) −→ (σ) (3.3)

Verify (TASP, ID,m, σ) −→ true/false (3.4)

Initially, a setup phase is run where the secret key and system parameters, including the

public key (TASK , TASP) of the trusted authority (TA) is generated for a desired security

level (sec_level).
After the setup, private keys (IDkey) can be extracted from bit strings essentially binding

the private key to a specific identity (ID). The signatures generated using this private key

are only valid signed for the specific identity used during the key extraction.

During the normal operation, the signing and verification functions are very similar to

those in classic public-key infrastructure (PKI). The only difference is that instead of the

public key, an arbitrary identity bit-string is used for verification.
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3.2 IBS for the Internet of Things

In our previous work [32] we analyzed different identity-based signatures (IBSs), across

several cryptographic primitives. The evaluation covered the following three IBSs:

SH-IBS The original IBS proposed by Shamir [5] is based on the RSA cryptosystem. The

signature size is relative large compared to pure elliptic curve cryptography (ECC)

based solution at a symmetric security level of 128 bit.

vBNN-IBS Cao et al. [33] described an IBS based on ECC. Compared to SH-IBS, it is faster

and has smaller signatures at the 128 bit symmetric security level.

TSO-IBS We also evaluated an IBS based on the more recent area of pairing-based cryp-

tography (PBC) [30, 31]. However, the IBS proposed by Tso et al. [34] has both a

larger signature size and higher computational complexity compared to the purely

ECC-based IBS.

Our analysis concluded that an IBS based on basic ECC would be best suited as security

primitive for constrained devices. RSA-based cryptographic schemes show a bad scalability

in storage and computational complexity as the security parameters increases.

3.2.1 vBNN-IBS (ECC-based IBS)

vBNN-IBS is a ID-based signature scheme described by Cao et al. as part of IMBAS [33]. It

is based on BNN-IBS [35], the first provable secure identity-based signature (IBS) based

on elliptic curve cryptography (ECC).

Setup

To initialize the system for security parameter k, take the following steps:

1. Chose an elliptic curve with the parameters E/Fq, P and p satisfying the security
parameter k.

2. Generate random master secret key x ∈ Zp and set the master public key, P0 = xP .

3. Define two cryptographic hash functions, H1 and H2:

H1 : {0, 1}∗ ×G→ Zp (3.5)

H2 : {0, 1}∗ × {0, 1}∗ ×G×G→ Zp (3.6)

4. Publish public system parameters:

〈E/Fq, P, p, P0,H1,H2〉 (3.7)
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Key Extraction

To generate the private key, sID, for a user with the identity ID, carry on with the following

steps:

1. Calculate a random r ∈ Zp and compute R = rP .

2. Using the master secret key x, calculate:

c = H1(ID, R) (3.8)

s = r + cx (3.9)

3. The private key for the user with the identity ID is sID = (R, s).

Signature Generation

For generating the signature σ for messagem ∈ {0, 1}∗ do:

1. Generate random y ∈ Zp and compute Y = yP .

2. Compute the following:

h = H2(ID,m,R, Y ) (3.10)

z = y + hs (3.11)

The final signature for messagem is σ = (R, h, z).

Signature Verification

To verify if message m from a user with the identity ID is correctly authenticated by

signature σ = (R, h, z), proceed with:

1. Compute the following:

c = H1(ID, R) (3.12)

T = zP − h(R+ cP0) (3.13)

2. To verify the signature, check whether the following equation holds:

h
?
= H2(ID,m,R, T ) (3.14)

Complexity Overview

Signature generation comes with the cost of one scalar multiplication in E(Fq) from step 1

and signature verification costs 3 scalar multiplications in E(Fq) from equation 26. The

signature size, with σ = (R, h, z), is one element of E(Fq) and two elements of Zq.
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3.3 KeyManagement in ID-based Cryptosystems

There are two major issues with identity-based cryptography (IBC) which result from the

inherent binding between identity and public key, and the fact that the trusted authority

(TA) issues all private keys. The following sections will discuss the topics of key revocation

and key escrow in IBC systems in more depth.

3.3.1 Key Escrow

In contrast to classical public-key cryptography (PKC), the private keys need to be gener-

ated by the commonly trusted third party, called trusted authority (TA), key-generation

center (KGC) or key-generating server (KGS) in identity-based cryptography (IBC). This

outsourcing of private key generation to a trusted party is called key escrow and is a critical

property of simple IBC systems.

A third party knowing the private keys of other users is able to decrypt all messages in

an identity-based encryption (IBE) scheme and is able to forge signatures for any message

and any user in an identity-based signature (IBS) scheme. Thus IBS cannot offer real

non-repudiation. In addition, this third party is an attractive target for attacks because

access to it discloses all private information of the crypto system.

Key escrow has been active topic in the research community in the mid-1990s. It was

a suggested method for integration in all cryptographic devices mandated by the US

government, as it would provide both secure communication for users and easy access to

the clear text by the government for lawful interception [36]. A survey about a broad range

of issues around key escrow is provided in [37].

There are proposals to mitigate the key escrow problem in IBC systems. Boneh et al. [30]

suggest distributing the KGC over multiple servers where each server only holds part of

the master secret key. To gain access to the full master secret key multiple servers need

to collude. Distributed KGCs are widely discussed and proven secure in [38]. Another

proposal by Al-Riyami et al. is certificateless public-key cryptography (CL-PKC) [39]. In

CL-PKC the final private key is generated by the user based on secret information from the

KGC and secret information of the user. This way the KGC cannot forge signatures and

the system is free of key escrow. However, the system is not ID-based anymore, because

public keys are no longer derivable from IDs.

3.3.2 Key Revocation

Traditional public-key cryptography (PKC) has the key revocation phenomenon. If a private

key is compromised in any way, the owner can revoke the corresponding public key at

the certificate authority (CA). There are two categories in which a private key can be

compromised:

1. direct local access to the storage or memory where the private key is held

2. remotely via errors in the protocol [40] or side-channels in the implementation of

algorithms involving the private key [41]
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Thereby the issuer can revoke the previous binding between his identity and his public

key. The CA provides public access to all key revocations in its realm via two ways: certifi-

cate revocation lists (CRLs), an offline and asynchronous method that provides verifying

parties with a list of revoked public keys, signed by the CA, and Online Certificate Status

Protocol (OCSP), an online and synchronous method where the verifying party can ask a

service at the CA, whether a certificate has been revoked or continues to be valid.

A more extensive overview about revocation in the public-key infrastructure (PKI) can

be found in our previous work [32].

Revoking a public key in identity-based cryptography (IBC) also revokes the identity,

because they are basically equivalent in IBC systems. Boneh et al. [30] proposed in 2001 to

use automatic key renewal to avoid revoking the identities themselves and themaintenance

cost of revocation lists. They suggest to extend the identity with temporal information,

e.g. use identity + week as identity passed to the IBC functions.

The process demands each user to renew her private key from the trusted authority (TA)

once per time period (e.g. year) and the TA will stop issuing new private keys for users

which are known to be compromised. The reliability of signature verification using this

identity construct depends on rough synchronization of clocks among the communicating

devices. Furthermore it requires an active and online TA in the network and a secure

channel between it and the devices for them to renew their keys.

Hoeper et al. [42] proposed an ID format that allows explicit revocation of keys before

their expiration time. They add a version number to the identity so that the final ID is

defined as ID = H(identity‖time‖version). Their revocation scheme is designed for mobile

ad-hoc networks (MANETs) and builds heavily on pairing-based IBC and non-interactive

key establishment. The method proposed by Hoeper et al. handles explicit revocation

inside the network without the help of a third party and can be summarized as follows:

1. Neighborhood watch: Each node monitors its one-hop neighbor nodes for suspicious

behavior and handles explicit revocation requests (i.e. harakirimessages), distributed

by other node. Examples for suspicious behavior are extreme traffic patterns or

sending invalid messages. A node accumulates the accusations in an accusation

matrix (AM), containing a row for each neighbor node and columns for ID, current

version and accusation value.

2. Accusation and its propagation: Every time the AM is updates by a node, it securely

propagates the new accusation value to its one-hop neighbors using accusation

messages. Other nodes receiving an accusation message update their key revocation

list (KRL) to reflect that the sending neighbor node accuses another node. Each

node computes its KRL based on accumulated accusations and harakiri messages

received from itsm-hop neighbors.

3. Revocation: If the sum of all accusations for a public key Qi with expiration ti and
version vi for neighbor node with IDi exceeds a threshold, the public key with exactly

these expiration and version numbers is considered as revoked.
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Boneh et al. [30] Hoeper et al. [42]

ID format identity‖time identity‖time‖version
revocation method expiration expiration, explicit revocation

regular key renewal no yes

pre-expiration key revocation no yes

communication-free revocation yes no

management cost for revocation low high

Table 3.1: Overview of key revocation concepts proposed for IBC.

4. Key renewal: Nodes with revoked or expired keys can request a new private key from

the off-line TA, after correct authentication with an increased version number. The

version number for an identity IDi limited to a maximum value within a specific

time period, to protect the network from malicious nodes that request new private

keys over and over again.

Table 3.1 shows an overview of the two approaches and compares their properties.

14



4 The Internet of Things

4.1 Overview of the Internet of Things

Compared to the classic Internet the Internet of Things (IoT) has a higher diversity of

participating devices. In particular some IoT devices are energy critical, like smart watches

and wireless thermostats. There are even smaller sensor devices which are highly con-

strained in their computation power and memory capacity. In [43, sec. 3] the authors

provide three device classes for constrained devices of which the least constrained class

describing systems with 50 KiB data storage and 250 KiB code storage capacities.

With some devices being completely autonomous from the environment and communi-

cating wireless with other devices or a router.

The special constraints of the IoT demand a different network protocol stack that is

optimized for the memory, power, energy and computational properties. Table 4.1 show

the classic Internet network protocol stack compared to the protocol of the IoT.

Classic Web Internet of Things

Application HTTP

=⇒

CoAP

Security TLS DTLS

Transport TCP UDP

Network IP IP, RPL

Data link Ethernet, WLAN IEEE 802.15.4 [44]

Table 4.1: Classic protocol stack compared to the Internet of Things protocol stack.

The use of the Constrained Application Protocol (CoAP) [45] protocol instead of the

Hypertext Transfer Protocol (HTTP) protocol andDTLS [46] instead of TLS are of particular

interest to us. CoAP provides a Representational State Transfer (REST)-ful protocol like

HTTP however with much smaller header overhead and lower paring complexity. In

addition it defined DTLS to be used as optional security layer. DTLS is similar to TLS, but

based on unreliable datagrams as transport method and unlike TLS it comes with support

for multicasting.

4.1.1 IPv6 in the Internet of Things

Due to the huge number of devices in the Internet of Things (IoT)—multiple billions of

connected computers[47]—and their communication over the Internet with other IoT
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devices and backend services the network-layer protocol of choice is IPv6 [48].

A common wireless media protocol for low-power devices in the IoT is IEEE 802.15.4

[44]. With its maximum transmission unit (MTU) of 127 bytes it poses multiple challenges

on IPv6 usage, like the IPv6 minimum MTU of 1280 bytes and the size of the IPv6, UDP

and TCP headers.

Starting with the IEEE 802.15.4 MTU of 127 bytes and its minimum header of 25 bytes

without layer 2 security, the network layer is left with 102 bytes. Further, the minimal IPv6

header alone already occupies 40 bytes, and the UDP header with 8 bytes this leaves just

54 for the application layer content.

6LoWPAN [49, 50] addresses, among others, the MTU and header size issues.
0 48 64 127

Global Prefix Subnet ID Interface ID︸ ︷︷ ︸
Network Prefix

Figure 4.1: Standard IPv6 unicast address format.

Among other things, 6LoWPAN allows to compress the standard IPv6 header and the

UDP [51] header. The compression works by eliding common IPv6 header options that

are predefined by 6LoWPAN, local-link address that can be derived from the the 802.15.4

layer and network prefixes that are compressed to a 2 byte context ID. Depending on

communication scenario, 6LoWPAN can reduce the standard IPv6 header of 40 bytes to

2 bytes in the best case and 20 bytes in the worst case [52, p. 7f]. As soon as 6LoWPAN

packets leave their local network, e.g. at a border router, they are converted to standard

IPv6 packets.

4.2 Security Protocols for the Internet of Things

In this section we will discuss relevant related work on the topic of secure communication

protocols designed for the Internet of Things (IoT). This includes approaches based on

standard Internet protocols, the application of identity-based cryptography (IBC) in the

IoT, and enhancements for the specialties of the IoT.

4.2.1 Modifications of TLS Protocol Handshake using IBC forWSN

In [53], Mzid et al. propose two modified TLS handshake protocols to reduce the security

management overhead of classic certificate-based solutions and the handshake latency of

the traditional TLS handshake. They incorporate identity-based cryptography (IBC) for

authentication to reduce the management overhead in wireless sensor network (WSN) ap-

plications and describe adapted handshake protocols based on elliptic curve cryptography

(ECC), Elliptic Curve Diffie-Hellman (ECDH) and pairing-based cryptography (PBC).

Their two proposed TLS handshake adjustment work as follows:

1. This proposed TLS handshake uses still ECDH as a key exchange mechanism but

skips the certificate transfers from the traditional TLS handshake. Instead each side
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sends its IBC signed ECDH value along with the clear ECDH value which can then be

used for authentication. The specific identity-based signature (IBS) algorithm used

in their evaluation is not mentioned. Using these adjustments the TLS handshake

is shortened to 10 messages, compared to the 13 messages of the traditional TLS

handshake with full authentication.

2. The second proposal goes further by using an identity-based key establishment

protocol instead of ECDH and Elliptic Curve DSA (ECDSA). They use an ID-based

key establishment protocol with takes advantage of PBC [54]. A key establishment

protocol allows to parties to establish a shared secret key without any interaction at

all. This allows the TLS handshake to be further reduced to only 7 messages.

Both protocols can skip the transfer of certificates and public keys, as they use IBC

with the IPv6 addresses of each end-point being their ID, i.e. their public key. From an

architecture perspective their proposed system requires a single trusted 3rd party, the

trusted authority (TA). This only allows application scenarios where client and server have

a preset trusted third party, the TA. The TA securely distributes the private keys for all

participating parties in the system in the pre-deployment phase.

The two protocols in comparison show a trade off between latency and energy efficiency.

According to their evaluation, the first proposed handshake protocol provides lower latency

as it does not have to execute expensive pairing operations. The pairing-based protocol

however, is more energy efficient as it saves the communication for the ECDH key exchange

by using ID-based key-establishment.

4.2.2 DTLS-based Security and Two-way Authentication

Kothmayr et al. [55, 56] proposed the first application layer end-to-end security architec-

ture for the Internet of Things (IoT) completely based on established Internet standards.

They aim for high interoperability between IoT devices and existing servers on the Internet,

and propose to reuse present security infrastructure for authentication. As an application

layer end-to-end solution, it can provide security in cases where there is no complete

control over the underlying transmission media or in multi-hop communication scenarios

with uncontrolled intermediaries.

They choose DTLS [57] for providing end-to-end security and rely on classic X.509 public-

key infrastructure (PKI) certificates using RSA for authentication. DTLS can provide the

same security properties known from standard TLS used to secure Internet traffic, i.e.

authenticity, integrity and confidentiality. However, in comparison to TLS, DTLS can deal

with message loss which is common in wireless network protocols found in the IoT.

Certificate-based authentication requires trusted certificate authority (CA) certificate to

be configured in the device before deployment. Based on these trusted root CA certificates,

other party’s certificates can be verified for integrity and trust during the DTLS handshake.

They test and evaluate their implementation using an OPAL sensor node with a 48 MHz

Atmel CPU with added hardware support for RSA operations and secure key storage in

form of a trusted platform module (TPM). The software run on the Opal nodes is TinyOS
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with a custom DTLS implementation. The evaluation covers the computation time, energy

use and memory requirements of their DTLS handshake implementation.

4.2.3 Authenticated Node toMulti-user Communication in Sensor Networks

In [58], Oliveira et al. analyze and discuss the authentication of the communication

between a shared sensing node and its multiple users.

They cover an application scenario, where deployed sensor nodes have sensing capabili-

ties which are of interest to different, not directly related, users from independent authori-

ties. By avoiding intermediary gateways, they allow direct communication of low-power

sensor nodes to multiple users over the public Internet. Various signature mechanisms are

compared within a setup of a Secure-TinyWebService / IP stack on two different sensor

node hardware platforms.

Their design analysis includes consideration for both symmetric and asymmetric sig-

natures. However, approaches using symmetric signatures are discarded due to the key

distribution and synchronization problems associated with existing symmetric protocols,

e.g. µTESLA [59], which are not well suited for a scenario of a changing set of users sharing

some sensor nodes over the public Internet.

In their further analysis of asymmetric digital signatures, they decided against certificate-

free schemes, including identity-based cryptography (IBC). They argument that the trusted

authority (TA) in an IBC system always knows everybody’s private key and can impersonate

any user in the system. This concept is also known as key escrow. In single self-contained

sensor networks it might be acceptable that there is one entity which escrows everybody’s

private key. However, in a public shared network with different and changing parties, key

escrow is unacceptable.

Certificate-free schemes, i.e. IBC schemes but without having the TA escrowing users’

private keys, have been proposed before [39], but are also disqualified due to their very

high computational complexity by the authors.

Which leads to their conclusion that certificate-based schemes are further analyzed,

where Oliveira et al. include not only classic Digital Signature Algorithm (DSA) [9] and

its elliptic-curve counterpart Elliptic Curve DSA (ECDSA) [60] but also more recent short-

signature schemes, BLS [61] and ZSS [62].

For their usage scenario, a changing set of external users accessing an optimized web

service on sensor nodes, they conclude that Schnorr signatures [s-esgsc-91] or, if broader

compatibility is needed, ECDSA is used. A Schnorr signature is digital signature scheme

similar to ECDSA, however in comparison it is more efficient since it does not require

expensive computations of the modular inverse in the finite field.

The measurements results Oliveira et al. [58, p. 392] provide, show that the additional

energy required for the short-signatures using pairing-based cryptography (PBC), has little

influence on the communication cost on their evaluation platforms. The additional cost for

shorter signatures does not result in huge energy savings on the radio communication side.

However, on platforms where radio usage is more energy heavy, e.g. underwater commu-

nications, operation lifetime improvements could be gained from using short.signatures
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like BLS and ZSS.

Their recommendation to use elliptic curve cryptography (ECC) as a signature scheme for

constrained platforms coincides with our choice of an ECC-based identity-based signature

(IBS). Our use of IBC and its key escrow problem is not as critical as in their scenario, as

there is not a single global TA in our architecture outlined in chapter 5.
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5 Federated Authentication for Internet of

Things

Objective of this work is to provide a solution to the problem of end-to-end authentication

in the Internet of Things (IoT). Common with the classic Internet, the IoT is characterized

as a network of computers communicating with each other in a multi-hop and multi-path

fashion.

Special to the IoT is the actuators or sensing devices may also carry out network sup-

porting tasks, acting as routers for traffic of other nearby devices. It is the exception that

the whole communication path between two devices in the IoT is in complete control of a

single party. The properties of Things are highly diverse. Examples go from constrained

battery powered environment monitoring systems to smart home appliances with steady

power supply.

5.1 Problem Statement

The Internet of Things (IoT) is part of the globally interconnected Internet. An authentica-

tion mechanism for the IoT needs to work on devices that are typically constrained in their

computational and physical properties. They have CPUs with simpler instruction sets,

lower clock frequency compared to mobile handsets and desktop systems, and are highly

limited in runtimememory (RAM) as well as programmemory (ROM). Furthermore, some

Things are limited in their energy resources and communication capabilities.

A security solution for the IoT needs to follow a lightweight design with these char-

acteristics in mind. This means it has to come with little runtime overhead in terms of

additional processing time, communication, memory consumption and code size.

End-to-end secure communication on the traditional Internet is enabled by transport

layer security (TLS) and external third party certificate authoritys (CAs). End-to-end

security does not require control of all intermediary parties, but only the two end points

require control. Many IoT scenarios interact with the real world in private and security

sensitive manner, that requires protection against an invasion of the privacy of end users

and theft of business critical data. Thus, a security solution for the IoT needs to include the

same standard security properties like message integrity, authenticity and confidentiality.

Modern security protocols are facedwith a large attack surface, including globalmonitoring

institutions, remote attackers trying to circumvent the security and local attackers.

IoT applications can collaborate with other IoT applications and classic Internet services

to provide a location independent service. Finding a commonly trusted third party is

not feasible, because the Internet is a distributed network of subnetworks controlled by
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independent authorities. Finding an entity, equally trusted by all authorities in play, is

unrealistic. This rules out the reliance on a single authority controlling the security of all

devices.

A viable solution for the authentication in the IoT needs to scale to millions of devices

and provide sufficiently secure authentication in the absence of commonly trusted external

authorities. It needs to enable end-to-end secured communication between independently

managed networks of devices that can establish a secure federated communication channel

between each other.

5.2 Objectives

Our core objectives are:

Independent secure authentication We aim for a security solution that is independent of the

support of intermediate routing devices on the path between devices of two different

edge-level networks. The authority controlling an edge-network, controls the trust

configuration of the devices within the network.

While terminating security at border gateways takes computational load from con-

strained Internet of Things (IoT) devices, it turns the gateway into a high-value target

for attackers. Thus, the security of the designed architecture should terminate at

the constrained IoT devices, with them sending and receiving authenticated mes-

sages. However, the border gateway can still provide non-critical support to the

authentication process.

Localized trust management Unlike the traditional handling of trust in the public-key in-

frastructure (PKI) for the World Wide Web (WWW), we aim for a solution without

external parties, such as certificate authoritys (CAs) that control the trust and are

hard to control. Trust in the devices of a local IoT network should be managed by

the authority of the local network.

Target constrained hardware IoT scenarios like home automation controlling lights and

switches, or environmental monitoring need small devices with little power and

computational capabilities. RFC 7222 [43] lists available, RAM, processing power,

energy and accessibility as the constrained properties of devices in constrained-node

networks, like the IoT.

5.3 Requirements

Given these objectives in the view of the problem statement, we identify the following

requirements for our security architecture:

End-to-End Authentication The security of the authentication should ultimately depend on

the network endpoints of the communicating devices. No control about intermediate

devices is required to ensure security.
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Multiple Independent Authorities An Internet of Things (IoT) users or providers should be

the only authority over the security of their devices. A single central authority is not

feasibly and would introduce a single point of failure.

Secure Trust Federation IoT devices of different users and different authorities need to be

able to easily communicate with each other in a secure fashion.

Lightweight Protocol and Implementation The architecture needs to be a viable solution for

small constrained devices, with little power and memory, which represent a large

part of the IoT. Small protocol overhead, and small and efficient implementations

are made possible by the use of lightweight cryptography, in the sense of having

a low computational complexity for operation and adding a small overhead to the

payload to be secured.

Identity Revocation IoT devices are rarely hardened against physical attacks as this would

increase the cost per unit. For this reason the identities of compromised devices need

to be revoked to limit its attack capabilities. Further, as control over compromised

devices is regained and it is reset to a secure state, it can rejoin the system under a

new identity.

5.4 Identity-based Security Architecture for the IoT

We propose to use identity-based cryptography (IBC) to reduce communication and man-

agement overheads of classic asymmetric public key cryptographic systems. The goal is

to provide flexible trust, lightweight and secure authentication of things based on their

owners. We utilize the address structure of IPv6 to enable an inherent relation between

the device and its owner.

After describing the system entities and roles a short overview over the overall authen-

tication process in the proposed architecture is given. Further, each step during the

authentication process within the system is defined in detail.

5.4.1 System Components

Our architecture encompasses the following entities:

Internet of Things (IoT) service An unconstrained computer at an Internet Service Provider

(ISP), providing data collection or controlling services to many constrained and

distributed IoT devices.

IoT device A constrained device—functioning as actuator or sensor—that is connected

to the Internet. This connection can be either direct via standard network routers

and switches or via IoT specific border gateways that bridge between different data

layers.
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Border gateway A dedicated network gateway that, compared to the IoT device, is usually

less constrained in memory, processing power and energy supply. It provides IoT

devices that communicate via specialized protocols, e.g. IEEE 802.15.4 [44], access

to the global Internet.

Authentication support server A piece of software that can be deployed on already existing

or dedicated hardware and provides supportive functions required for federated

authentication. This can include responding to lookup requests for trusted authority

(TA) parameters and accusation or revocation requests.

Hardened security device A specialized security device, comparable to a hardware security

module (HSM) that is hardened and secured against physical attacks. It provides crit-

ical cryptographic operations related to very private keys, which if publicly exposed,

cause a huge damage.

These entities can act as the following roles:

Signature receiver A receiver of amessagewith a identity-based signature (IBS). If the signer

belongs to the same local network only the local TA parameters are required. These

are usually received alongside the private identity key during device initialization (

section 5.4.4 ).

If the signer is from a federated remote network, the remote TA parameters are

required to verify the signature. The TA parameters can be obtained by a TA lookup

client.

Signature sender The only security critical information it holds is its private identity key.

Anybody with access to this identity key can generate valid signatures for the corre-

sponding ID.

Accusation and revocation server This server receives and collects accusations and handles

revocations for devices in the local network. It is also the role that kicks off the TA

rollover procedure.

Dynamic configuration client A client sending a secure dynamic configuration request to the

dynamic configuration server during the device initialization phase. The request send

by the client and the replied response from the server are secured using pre-shared

symmetric keys and a 128 bit symmetric Authenticated Encryption with Associated

Data (AEAD) cipher.

Dynamic configuration server This server handles dynamic initialization requests from a

dynamic configuration client. This could be IoT devices and servers. It responds

with the public system parameters of the local TA and the identity key for the device.

These requests are sent either when new devices or servers are added to the local

network, or during a TA rollover.

During the device initialization phase and a TA rollover this server securely commu-

nicates with the TA to request the new identity keys. Only for this procedure the TA

has to be online. During normal operation it can remain offline.
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In order to stop handing out new identity keys to revoked devices, it consults the

accusation and revocation server about the revocation state of a requesting device.

TA The TA generates the private identity keys for all the devices in the local network. It

is highly security critical and it is not required to be online during the whole time.

Access to the TA is only required when a) new devices are added to the local network

and an identity key needs to be generated for them, or b) a TA rollover procedure is

started.

It is recommended to deploy the TA on a hardened security device, as it represents

a high value target to attackers. Exposing the TA private key to attackers results in

compromising the security of all future communications with devices of the network

corresponding to the TA.

TA lookup client The role queries the TA responder of a remote federated IoT network for

its TA parameters and verifies the response. Correctly verified responses are cached

locally by the lookup client.

TA lookup responder This role is part of every IoT network and enables secure federated

authentication with other IoT networks. It is the communication endpoint of the TA

lookup client. As per convention, the TA lookup responder is always reachable under

the node ID of 1 within a subnet.

Furthermore the TA lookup responder does not process highly security critical infor-

mation, as it only need the public parameters of the local TA to function.

Pinning TA lookup cache This role optimizes the authentication process and improves the

overall security. It is required for the gateway-based remote TA lookup procedure

described in section 5.4.6. The caching and injecting of remote TA system parameters

provides the following advantages:

1. Simply injecting TA lookup responses in front of incoming authenticated mes-

sages eliminates the need for a signature receiver to request the remote TA

system parameters on its own. Thereby, it reduces the overall message verifica-

tion time.

2. Caching TA system parameters on the gateway essentially pins the system pa-

rameters from a TA lookup reply — only protected by the 64 bit hash embedded

in the subnet prefix, to the full 112 bit subnet prefix. This way the risk of man-

in-the-middle (MitM) attacks in the Internet on further TA lookups for pinned

remote networks is eliminated for all IoT devices behind the gateway.

Depending on the deployment environment and the application scenarios some entities

can play multiple roles in the architecture. For example, in a constrained IoT scenario

the border gateway can take the roles of accusation and revocation server, dynamic con-

figuration server and TA lookup client and TA lookup responder. In a server environment

at an ISP, the role of the TA lookup client is played by the server itself which verifies the

signatures. In this case a dedicated authentication support server is deployed in the local
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network for the roles of accusation and revocation server, dynamic configuration server

and TA lookup responder.

5.4.2 System Architecture Overview

This section the continuation of our work on “Federated End-to-End Authentication for

the Constrained Internet of Things using IBC and ECC” presented in [63]. In order to

satisfy the requirements set out in section 5.3, our architecture combines identity-based

cryptography (IBC) and Crypto-based Identifiers (CBIDs).

An administrative domain in the Internet of Things (IoT) is an edge-network of the public

Internet. With the help of IBC each domain can run an independent trusted authority (TA)

and have it generate private identity keys for constrained IoT devices in the edge-network.

The entire IPv6 address of a device is also its ID used for the IBC operations. The ID and

the identity key is securely delivered to a device with a dedicated secure dynamic device

initialization protocol. Using IBC and the entire IPv6 address as ID, allows us to reduce

the system management overhead for public key and certificate distribution present in

classic public key architectures.

However, communication in the IoT is not limited to a single administrative domain.

Authenticating messages from a device of a remote domain, requires the public parameters

and the public key of the TA of the remote domain. The system of the remote system TA

parameters can be requested from a service running in the remote edge-network. These

system parameters are sent unencrypted and could be modified in transit by an attacker.

Utilizing lightweight CBIDs in form of subnet IDs equal to a 64 bit cryptographic hash
of the public TA parameters, modification of the exchanged public TA parameters can

be detected by the receiver. However, as a 64 bit cryptographic hash does not provide a

collision resistance of current standard Internet security (256 bit), the use of key pinning
is highly recommended, to elevate the lightweight trust from the embedded CBID to a

strong trust relationship between subnet prefix and its public system parameters.
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Figure 5.1: Authentication process of IBC-based federated message authentication minimal

IoT deployment.

Figure 5.1 shows a minimal deployment scenario describing the process of a federated

end-to-end authentication for messages coming from remote administrative domains.

Starting with the IoT deployment domain, i.e. an edge-level network, with a single

authority, an IBC-based subnet can be configured. Using the global routing prefix and a

compact hash of the system parameters of the TA of the domain, an edge-level network can

be configured. This embedding of the hash, shown at 1 in figure 5.1, essentially binds the

explicit TA to the subnet and allows independent secure verification of TA parameters that

are associated to a network prefix. The security of this autonomous verification depends

on the size of the embedded hash, i.e. 64 bit as shown in figure 5.1.

A cryptographic hash of 64 bit is rather small for an architecture designed for 128 bit
symmetric security level. This increases the risk of an attacker finding a TAwith parameters

colliding with the 64 bit embedded hash the attacker aims to compromise. However, this

risk only exists during the TA lookup procedure described in section 5.4.6. Once remote TA

parameters are looked up and correctly verified against the embedded hash, the complete

parameters are pinned to the full 112 bit subnet prefix used during the lookup by the

endpoint, i.e. a border gateway, server or IoT device. This risk is further discussed in

section 8.1.

The concept of using cryptographically hashed public key material as building block

for communication identifiers has already been demonstrated with CBIDs [64, 65] and

Cryptographically Generated Addressess (CGAs) [66].

Devices of the user are then assigned node IDs in the subnet of the border gateway. The

dynamic configuration server —with the help of the TA — generates the identity keys for

the devices and securely delivers them during device initialization (see section 5.4.4). These

identity keys are IBC private keys bound to the identity, i.e., the IP address, of the device.
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This allows a verifier to build a secure trust verification chain from the identity-based

signature (IBS) of a received message to the corresponding TA parameters that issued the

private identity key of the sender. The TA parameters can be verified against the compact

hash within the prefix on first contact.

After the first contact verification, a signature verifier and a TA lookup client can cache

the complete TA public parameters for a prefix an essentially strongly pin this association.

This is similar to Public Key Pinning Extension for HTTP (HPKP) [67] and prevents attacks

from third parties that could inject false TA public parameters for a subnet prefix that

create a hash collision to the compact hash in embedded in the prefix.

Figure 5.1 shows the abstract protocol flow of sending an authenticatedmessage to an IoT

device, connected to the Internet via a border gateway. In this figure, the border gateway

plays the TA lookup client and signature receiver roles.

As soon as the border gateway receives an IBC signed message over the Internet targeted

at a local device, it will attempt to lookup the TA public system parameters corresponding

to the prefix in the local cache of pinned TAs. In case of a cachemiss, a TA lookup is initiated

by requesting the public TA system parameters at the remote TA lookup responder, shown

as 2 in figure 5.1. The response of remote TA lookup responder is verified by the TA lookup

client, which initiated the request, see 3 in figure 5.1. This, and an alternative client only

lookup method, are detailed in section 5.4.6.

The original signed message and the now available public TA system parameters are

then forwarded to the final routing endpoint, see 4 .

The remaining sections of this chapter go into detail of each step of the authentication

process, including key management tasks like key revocation and TA rollover, to assure

continuous security and trust of the system.

5.4.3 System Initialization

Before the administrator of an edge-level network can add devices to the Internet of Things

(IoT) network, the cryptographic system parameters need to be initialized and system com-

ponents need to be configured. The following steps are required:

First, the trusted authority (TA) is initialized using the Setup(sec_level) function of the

chosen identity-based signature (IBS) scheme, which generates the system secret key

(TASK), the public system parameters (TASP) for the specified security level. The public

system parameters are required for signing and verification and need to be made available

to the local devices within the edge-network. Furthermore, they need to be distributed to

remote networks on demand that need to verify signatures from local IoT devices.

The TASK is securely stored by the TA and only required for generating an IDkey for de-

vices added to the local network. A compromise of the system wide private key means that

communication related to this key is no longer secure and can be imitated by an attacker.
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After cryptographic initialization has been completed, the subnet ID can be generated

and the IoT border gateway can be initialized. For this, the border gateway assigns itself

the IP with the node ID of 1 according the format described in figure 5.2 and configures its

network interface with this IP address. This allows a TA lookup responder to run on the

border gateway and as per convention all TA lookup responders shall be reachable at the

node ID of 1.
0 48 112 127

Routing Prefix H(Routing Prefix+ TASP) Node ID

︸ ︷︷ ︸
Subnet ID︸ ︷︷ ︸

IoT Device ID

Figure 5.2: IPv6 address format with embedded TA hash

TheH-function in figure 5.2 is a cryptographic hash function which outputs a 64 bit hash
value. We require H to be preimage resistant [27, § 9.2.2], meaning it is computationally

infeasible to find any input that hashes to a given hash value.

Possible candidates for the hash function H are the standard SHA2-256 [68] or BLAKE2

[69, 70], trimmed to the first 64 bit. BLAKE2 is a particular interesting option for con-

strained IoT environments, because it comes in a variant optimized for 32-bit architectures

common for IoT devices.

The corresponding private key for the gateway is generated by the TAusing theKeyExtract
function of the specified IBS. From now on, the gateway can verify messages received from

other local parties and sign messages.

After the border gateway has been configured for with the subnet cryptographically

anchored to the TA, IoT devices IoT devices or server can be regularly added on the IP

level. The secure distribution of the IDkey for additional devices is described in more detail

in section 5.4.4. As a last step of system initialization secret shared keys can be loaded on

the dynamic configuration server to enable secure online device configuration.

Verification of signatures requires the complete canonical identity of the signature sender.

In constrained IoT networks the application of 6LoWPAN is common to space optimize

protocol headers to increase available application data per packet. It allows to elide known

prefixes between two routing points which share a predefined context. IPv6 addresses that

are used as identities in this architecture, need to be decompressed before they can be

used as input for signature verification.
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5.4.4 Device Initialization

For signing messages, devices need to be equipped with an IDkey. The IDkey is implicitly

bound to the ID of the device, its IP address.

Conceptionally there are two strategies to deliver the IDkey to a device:

1. Static Initialization (Offline): This strategy configures the network address and the

associated IDkey during the flashing time of a new Internet of Things (IoT) device.

The network parameters, the public trusted authority (TA) parameters and the IDkey
are written to the device storage.

This allows the device to immediately start signing messages using identity-based

cryptography (IBC) and enable secured end-to-end communication. However, static

initialization requires knowledge of the current configuration of the target deploy-

ment network and binds the device to the current state of the TA before deployment.

2. Dynamic Initialization (Online): In this case, the final network and security initial-

ization is delayed to the time of device deployment. The finalization of the network

and security configuration is secured by symmetric encryption and two one-time

keys,KConfReq andKConfRsp.

The pairs of securely random generated one-time keys, i.e. (KConfReq,KConfRsp), are
loaded in the configuration of the border gateway during system initialization. When

the administrator of an IoT network wants to add a device, one (KConfReq,KConfRsp)
pair is loaded on the device. Afterwards, the device can be deployed into the field.

During deployment the two keys are used to dynamically and securely setup network

and cryptographic long term key material.

The protocol for dynamic initialization, based on the two symmetric keys,KConfReq and

KConfRsp, uses authenticated encryption to request the key material and network config-

uration from the gateway in a secure manner. The detailed protocol flow for dynamic

initialization or dynamic device configuration is shown in figure 5.3 and works as follows.

First, the nonce N is generated and the request for key material and network configura-

tion, i.e. the string ”REQ”, is encrypted using an Authenticated Encryption with Associated

Data (AEAD) [71] symmetric cipher scheme, resulting in ReqC. ReqC alongside with the

nonce N forms the request message (ReqMsg) and is send over to the border gateway,

playing the role of the dynamic configuration server.

Definition 5.4.1. RFC 5116 [72, sec. 2.3] defines the high-level interface for a symmetric

AEAD cipher scheme as follows:

Enc (Key,Nonce,Plaintext,Associated data) −→ Ciphertext (5.1)

Dec (Key,Nonce,Ciphertext,Associated data) −→ Plaintext or FAIL (5.2)

After the gateway received the request message from a device, it splits it up into nonce

and ReqC and then decrypts it with theKConfReq. This can be looked up in a database using
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the layer 2 address of the device ( DevMAC ). An attacker sending device initialization

requests from a false layer 2 address also has to know the corresponding KConfReq and

KConfRsp to successfully acquire an identity key.

After verifying the decrypted message is equal to the string ”REQ”, a local NodeID is gen-

erated and the full IPv6 address, i.e. DevID, is constructed. Using the KeyExtract function
of the chosen identity-based signature (IBS) scheme, the IBC private key is generated. This

requires access to the security critical master secret of the TA, the TASK . With that, the

plaintext response packet, RspP, is constructed, containing the IPv6 address for the device

(DevID), the private identity key for the device (IDkey) and the system parameters of the

TA (TASP). Finally, the packet is encrypted with the AEAD cipher with the symmetric key

KConfRsp corresponding to the request key and send back to the device.

Device Gateway (dynamic configuration server)

Nonce = ←$ {0, 1}sec_level

ReqC = Enc(KConfReq,Nonce, ”REQ”,DevMAC)

ReqMsg = (Nonce,ReqC)

send ReqMsg
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(Nonce,ReqC) = ReqMsg
ReqP = Dec(KConfReq,Nonce,ReqC,DevMAC)

NodeID← GenNodeID()

DevID = RoutingPrefix‖H(TASP)‖NodeID
IDkey = KeyExtract (TASK ,TASP,DevID)

RspP = (DevID, IDkey,TASP)

RspC = Enc(KConfRsp,Nonce,RspP,RouterMAC)

send RspC←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

RspP = Dec(KConfRsp,Nonce,RspC,RouterMAC)

(DevID, IDkey,TASP) = RspP  

Figure 5.3: Protocol flow for dynamic network initialization between an IoT device and the

border router.

The device can then decrypt the response and configure its network interface accordingly.

After a device has dynamically and securely obtained the network and IBC configuration

from the gateway as shown in figure 5.3, both sides can clear the symmetric keysKConfReq
andKConfRsp. Using the network configuration the device can then start signing new pack-

ets using an IBS. Note that device validation and error checking of the decryption method

are left out in figure 5.3 for clarity.

Possible AEAD ciphers for the dynamic initialization protocol include AES-GCM [73],

an AEAD construction from ChaCha20 and Poly1305 [74, sec. 2.8], and NORX [75]. NORX

30



is particularly interesting for our IoT application environment, because of its flexibility to

adjust to low power 32-bit devices [76]. This flexibility comes in form of instances, the term

used by the NORX authors to describe different configuration of the abstract algorithm

[77, § 2.3]. An instance configuration is parameterized by a word size, a number of rounds

and a parallelism degree. Furthermore, NORX performs well in performance and code size

benchmarks for low power and inexpensive devices, compared to the classic AES-GCM

cipher [78].

5.4.5 Authenticated Two-wayMessage Exchange

Mutual authenticated message exchange

Alice Bob

Nonce = ←$ {0, 1}sec_level

sigreq = sign
(
A.TASP,Alice.IDkey,

(
Nonce,msgreq

))
send

(
Nonce,msgreq

)
and sigreq−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

A.TASP = TA_lookup (AliceID)

verify
(
A.TASP,AliceID,

(
Nonce,msgreq

)
, sigreq

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Processing Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sigrsp = sign
(
B.TASP,Bobkey,

(
Nonce,msgrsp

))
send msgrsp and sigrsp←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.TASP = TA_lookup (BobID)

verify
(
B.TASP,BobID,

(
Nonce,msgrsp

)
, sigrsp

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Processing Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.4: Authenticated two-way message exchange diagram

In Figure 5.4, we describe an authenticated message exchange between an Internet of

Things (IoT) device and a server. Starting with the public system parameters (TASP), Alice’s

ID (AliceID), her private key (Alicekey) and a request message (msgreq), Alice can generate a

signature to sign her request and send it over to Bob.

As soon as Bob receives the request, he can look up the correct public system parameters

of the trusted authority (TA), TASP, based on Alice’s ID. Afterwards he verifies the request

and, provided the verification succeeds, can start processing the request. A potential

response can then be signed and send back to Alice, who can lookup the public system
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parameters of Bob’s TA, TASP and then verify and process the response. The requests

and responses can be anything, but in the case of the IoT likely they are Constrained

Application Protocol (CoAP) messages.

While this protocol is very simple and straightforward, the TA_loopup function has yet to
be defined. The definition of the TA_lookup function, is a major contribution of this work

and is discussed in detail in the following section. Furthermore, the described protocol, as

an authentication protocol, does not provide confidentiality nor perfect forward secrecy.

However, it can be used as a foundation for more secure protocols like:

1. Elliptic Curve Diffie-Hellman (ECDH): identity-based signatures (IBSs) can be used

to sign the two messages of an ECDH key exchange and help securely establish a

symmetric shared secret between two parties. Using this shared secret and sym-

metric cryptography forward secrecy is enabled, i.e. even a future compromise of a

private identity key (IDkey) will not expose messages secured using the shared secret

established in past.

2. Identity-Based Authenticated Key Exchange (IBAKE): Depending on the identity-

based cryptography (IBC) system that is used, combined algorithms can be available

that provide an authenticated key exchange using IBC in one go. Ideally, the IBAKE

algorithmwould bemore efficient than the plain ECDHbased construction described

before.

There exist IBAKE schemes which are designed for secret-key agreement between

user from different domains and authorities [79], which would be a good match for

the federating system architecture we propose.

3. Datagram Transport Layer Security (DTLS): Regardless of whether plain ECDH or

an IBAKE is used, it is possible to integrate the established shared secret into the

DTLS authentication step. This allows to build on the security and more heavily

tested DTLS protocol and implementation. The fact that a common application level

protocol for the IoT, CoAP, builds on DTLS to secure request and response messages,

supports this point.

5.4.6 Authority Lookup and VerificationMethods

When both communication partners are from the same subnetwork, they have private

identity keys issued from the same trusted authority (TA). This means the lookup for

the corresponding authority is trivial, because the devices already have the public system

parameters of their own local TA.

In the case of communication partners from different networks, the corresponding

border gateway—playing the role of a TA lookup responder—needs to be consulted for the

remote public system parameters.

The following sections describe two different authority lookupmethods, a self-contained

independent client-based approach that can be done by an unconstrained Internet of
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Things (IoT) service itself and a gateway supported method that offloads heavy work from

the constrained devices to an unconstrained border gateway.

Client-based Authority Lookup

Server

Bare
Router

Internet

Border
Gateway

IoT
Device

Figure 5.5: Client-based TA system parameter lookup and verification.

Figure 5.5 shows the abstract process of the lookup of public system parameters by a

standalone powerful endpoint. After the server received a signed message from a device

in a remote network (marked as in figure 5.5), it attempts to lookup the pubic system

parameters of the TA corresponding to the remote network in its local trust database. If the

lookup in the local trust database fails, the server endpoint will start the lookup process

( ) for the remote system parameters, which works as follows:

1. The requesting endpoint sends the system parameters request to the remote border

gateway, conventionally located at the NodeID =: 1.

2. The remote border gateway responds with a signed message, containing the system

parameters TASP.

3. On received of the gateway response from GatewayID the requesting endpoint val-

idates the message and the contained public system parameters in the following

way:

a) Hashing the received public systemparameters of the remote system, i.e. HRsp =
H(TASP).

b) Verify that HRsp is equal to the hash value of the subnet prefix of the from IPv6

address, i.e. the remote border gateway.

c) If the verification succeeds and the subnet prefix of the IPv6 from address is of

the subnet looked up in step 1, the trust association (Prefix(GatewayID),TASP)
is stored in the local trust database.

d) If the verification fails, the error is reported back to the calling code.

This lookup procedure combines a cryptographic address approach for the system pa-

rameters of a TA with a leap of faith or trust on first use (TOFU) trust approach. The
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cryptographic address approach provides a medium protection against man-in-the-middle

(MitM) attackers during the initial lookup of remote system parameters. The TOFU ap-

proach protects against MitM attackers at a future time.

Gateway-based Authority Lookup

IoT
Device A

Enhanced
Gateway

Internet

Border
Gateway

IoT
Device B

Figure 5.6: Gateway-based TA system parameter lookup and verification.

This scenario requires an enhanced gateway which connects IoT devices in a subnet using

a specialized protocol to the worldwide routed Internet. Simple network gateways are

already present in many IoT scenarios in form of IEEE 802.15.4 [44] border routers and can

be extended with additional security features to help during the authentication process.

This means that all communication to and from the IoT devices goes through the border

gateway. The border gateway can support the hardware constrained IoT devices, by ac-

quiring and verifying the public system parameters of remote TAs. Verified TA parameters

are then forwarded to the endpoints, i.e. constrained IoT devices, which can immediately

verify the signatures of messages.

Figure 5.6 shows the abstract acquisition of the public system parameters of a remote

TA by the enhanced gateway. The process is described as follows:

1. As soon as the border gateway detects a message from an unknown network to one

of its clients (marked as in figure 5.6), it delays routing of that message.

2. Before forwarding the message, the border gateway requests the corresponding TA

public key from the gateway ( ). The verification procedure is the same as in the

client based method described in the previous section.

3. On successful verification, the original message and the acquired and verified system

parameters of the remote network are forwarded to the constrained IoT device ( ).

5.4.7 Device Revocation

Revocation of identities or their associated private key in identity-based cryptography (IBC)

is not a trivial task, as already discussed in section 3.3.2. Existing approaches to the revoca-

tion problem in IBC discussed there either only support revocation by expiration or follow
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a completely decentralized approach without the goal to scale up to the size of the Internet.

Device Revocation

Internally Reported

Data
Violation

Excessive
Traffic

Unresponsive
Device

Control
Violation

Invalid
Signatures

Invalid
Messages

Externally Reported

Private Key
Compromise

Policy
Violation

Excessive
Traffic

Port
Scanning

Figure 5.7: Device revocation categories.

We categorize revocation scenarios for as shown in figure 5.7. A device revocation can

be either reported internally, by neighbor devices in the same network or externally by

users noticing bad behavior. If a device notices a huge amount of invalid signatures or

traffic in general from a specific node, it accuses the node of malicious behavior and can

notify its gateway.

Internally Reported Accusations

If a device in the local network notices malicious behavior by one of its neighboring devices,

it can send an official accusation message to the border gateway. This accusation message

is constructed as shown in figure 5.8.

1 : AccMsg = ("Acc",AccusedNodeID,AccusedMAC)

2 : AccPacket = (AccMsg, Sign (SP, IDkey,AccMsg))

Figure 5.8: Construction of an accusation message.

The packet AccPacket is then send to the border gateway of local network of the reporting
device.

All accusations for malicious behavior or explicit revocation requests are validated and

managed by the border gateway on receive. If the accusation message passes the validation,

row is added to the device revocation table shown in table 5.1. The accusation is saved with

the sender ID of the accusation message and the NodeID and MAC address of the accused

device. The table contains only one row per (AccuserID,AccusingID,AccusingMAC) triple.
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AccuserID AccusingID AccusingMAC
... ... ...

Table 5.1: Device accusation table.

As soon as there are more than AccusationThreshold rows for a specific AccusingID in the

device accusation entry, the device is revoked. This means a row for the revoked device is

added to the revocation table shown in table 5.2.

RevokedID RevokedMAC
... ...

Table 5.2: Revocation table.

The revocation table serves two purposes:

1. The IP address of a revoked identity, i.e. RevokedID, can immediately added to a

network firewall. This firewall can be located on the border gateway and block traffic

for the revoked identities.

2. It is checked against during the trusted authority (TA) rollover procedure, in which

devices dynamically renew their ID and private key material. Revoked devices will

not receive a new ID and key material during that process.

If there are more than RevocationThreshold revoked devices in the revocation table, a TA

rollover is initiation, described in detail in the following section.

Externally Reported Accusations

Accusations and revocation requests from external parties need to be reviewed more

carefully to prevent Denial of Service (DoS) attacks where remote parties try to revoke

identities they never communicated with. The reports can be caused by human users

or automatically be remote intrusion detection system (IDS). Correctly validated and

reviewed external reports are added to the accusation table, or in case of severe reports

directly added to the revocation table.

5.4.8 Rollover of the Trusted Authority

Once the decision is due, a secure rollover of the trusted authority (TA) is initiated. An

appropriate RevocationThreshold depends on the application scenario and its potential

attackers and needs to be carefully evaluated.

A high RevocationThreshold means that more storage is required for the accusation table

and the revocation table. Network protection systems like firewalls have to manage and

evaluate more rules per packet. However, the constrained Internet of Things (IoT) devices

in the local network remain unprotected against the revoked devices until a TA rollover
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successfully completed. This is because the revocation information is not distributed to

all local devices as they are highly constrained in their memory capacity.

Lower values for the RevocationThreshold will result in more frequent TA rollovers as

devices are revoked. TA rollovers are associated with a communication and computation

cost for the distribution of new keys and reconfiguration of potential routing tables due to

change of subnet prefix. These costs affect all but the revoked devices in the local network.

The procedure to rollover to a new TA works as follows:

1. Generate newTA, including system parameters TASP and secret key TASK as described

in section 5.4.3.

2. Generate new IP address and corresponding identity key for the gateway.

IDnew = RoutingPrefix‖H (TAnew
SP ) ‖:1

IDnew
key = KeyExtract (TAnew

SK ,TAnew
SP , IDnew)

3. Assign new IP address, i.e. the generated IDnew, as additional address to the network

interface.

4. Notify other IoT networks about the network identity transition. The other IoT

networks are discovered by the gateway by monitoring the IP level metadata of the

forwarded traffic. This allows to transition the identities of devices of the old TA

securely to their new identities in the new TA. It also actively updates the TA lookup

cache of bound public TA public parameters. This saves a future superfluous TA

lookup for the new prefix and TA.

The notification message send to remote networks is constructed as follows:

1 : TARolloverMsg = (”TA_Rollover”,H (TAnew
SP ))

2 : TARolloverPacket =
(
TARolloverMsg, Sign

(
TAold

SP , IDold
key,TARolloverMsg

))
Figure 5.9: TA rollover notification to federated IoT networks.

5. The local router or gateway broadcasts a signed TA rollover notification to their

devices.

6. On receive of the notification broadcast from the previous step, the devices securely

request a new ID and key in the new network via Elliptic Curve Diffie-Hellman

(ECDH) and Authenticated Encryption with Associated Data (AEAD).
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Key renewal

Device (Dev) Gateway (Ga)

q← #E(Fp) q← #E(Fp)

Dev.private←$Zq

Dev.public← P0 · Dev.private
ReqMsg← (”KRReq”,Dev.public)
ReqSig← Sign (TASP, IDkey,ReqMsg)
ReqPacket ← (ReqMsg,ReqSig)

send ReqPacket
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(ReqMsg,ReqSig)← ReqPacket
Verify (TASP,Dev.ID,ReqMsg,ReqSig) = true
Check that device is not revoked

(”KRReq”,Dev.public)← ReqMsg
Ga.private←$Zq

Ga.public← P0 · Ga.private
RenewKey← H (ReqPacket‖ (Dev.public · Ga.private))
Generate new ID in the new network

NewDevID← GenDevID()

NewIDkey ← KeyExtract (New.TASK ,New.TASP,NewDevID)

RspSecretMsg← Enc(RenewKey,Nonce,NewIDkey,RouterMAC)

RspMsg← (”KRRes”,Ga.public,DevID,New.TASP,Nonce,RspSecretMsg)
RspSig← Sign (TASP, IDkey,RspMsg)
RspPacket ← (RspMsg,RspSig)

send RspPacket
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(RspMsg,RspSig)← RspPacket
Verify (TASP,Gateway.ID,RspMsg,RspSig) = true
(”KRRes”,Ga.public,DevID,New.TASP,Nonce,RspSecretMsg)← RspMsg
RenewKey← H (ReqPacket‖ (Ga.public · Dev.private))
NewIDkey ← Dec (RenewKey,Nonce,RenewKey,RouterMAC)

Figure 5.10: Authenticated device key renewal during TA rollover.

7. Remove old TA and network routing after a grace period. From this point on revoked

devices should be unable to communicate in the local and global networks.
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6 Protocol Compatibility and Deployment

Considerations

6.1 Compatibility with Existing Internet Protocols

Our proposed security architecture changes the semantic of the IPv6 address, by embed-

ding of an cryptographic hash. The length of the embedded hash is 64 bit and requires to

increase the subnet ID accordingly. The remaining 16 bit are used as node ID.

The usage of IPv6 addresses as cryptographic identities and public keys in an identity-

based cryptography (IBC) system, and the short node IDs result in compatibility issues

which are discussed in the following sections.

6.1.1 Large IPv6 Prefixes and Stateless Address Autoconfiguration

In legacy IPv4 networks, the Dynamic Host Configuration Protocol (DHCP) [80] is com-

monly used for automatic address configuration. In DHCP a new host requests network

configuration including a IPv4 address from a DHCP server.

IPv6 takes a completely different approach. It uses stateless address autoconfiguration

(SLAAC) [81], a stateless configuration method which generates link-local and global

addresses independently. The global addresses are generated by appending an interface

identifier derived from the link-layer address, e.g. an EUI-64 ID, to the routing prefix.

However, our proposal works with 16 bit node IDs and a 112 bit prefix length which is

incompatible with standard SLAAC.

An alternative protocol for address configuration in IPv6 networks is DHCPv6 [82],

similar to DHCP in IPv4 networks. While it allows address configuration for smaller

subnets which do not provide large enough node IDs for stateless autoconfiguration, it is

an insecure protocol.

Instead our architecture uses the dynamic device initialization protocol, outlined in

section 5.4.4. It extends standard network configuration with cryptographic configuration

by also providing private keys to the configuring device.

6.1.2 Compliance to Global and Local IPv6 Routing

The general format for IPv6 global unicast addresses [83, § 2.5.4] allocates the first 64 bit of
the IP address to the network prefix which is split up into the global routing prefix at front,

followed by the subnet ID, as shown in figure 4.1. Our proposed architecture changes the

structure of the IPv6 address. The first 48 bit are still allocated to the global routing prefix,

but the size of the subnet ID has increased to 64 bit to include a cryptographic hash.
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However, compliance to standard IPv6 global addresses is still achieved, as long as the

first 16 bit of the 64 bit subnet ID are locally unique. The first 16 bit of the subnet ID

are equivalent to the complete to the total subnet ID in traditional IPv6 global unicast

addressing.

This uniqueness is given, as long as the following requirements are met:

• The random number generator used for generating trusted authoritys (TAs) provides

high-quality cryptographic randomness [84]. This reduces the chance of generating

two identical TAs under a single global routing prefix, as identical TAs would have

identical cryptographic hashes as subnet ID.

• The output of the cryptographic hash function approximates a uniform random

variable. This property is typically present in cryptographic hash functions [27,

§ 9.7.1].

• The number of TAs generated for a global routing prefix is limited. The theoretical

number of subnets is limited by the size of the subnet ID, i.e. 264 for our 64 bit subnet
IDs. However, due to the birthday paradox [27, § 2.1.5], after generating 232 TAs, there
is one colliding TA on average.

These requirements are easily met in our proposed architecture, meaning that the sub-

nets used by our systems and the full IPv6 addresses are compliant to standard IPv6 global

unicast addresses, resulting in interoperability on the Internet layer.

6.1.3 Incompatibility with IPv6 TransitionMechanism

To enable connectivity between the coexisting IPv4 and IPv6 Internet, multiple transition

mechanisms have been proposed. The security architecture proposed in this work requires

the use of IPv6 addresses as identifiers. The main transition mechanism interesting to

this proposal is allowing IPv6-only enabled Internet of Things (IoT) devices to access IPv4

servers in the Internet.

NAT64 [85, 86], as part of Carrier-Grade NAT (CGN) [87] deployments, allows IPv6-only

hosts to access IPv4-only hosts with the help of a protocol translation gateway. The gateway

provides its own IPv6 network prefix and maps IPv4 hosts to an IPv6 address within the

prefix, by embedding the 32 bit IPv4 address in the IPv6 address.

However, with this translation the IPv4-only host has no control over the IPv6 subnet pre-

fix the network address translation (NAT) gateway from the provider will use, and can not

generate a trusted authority (TA) and IDs for the IoT devices. While the end-user devices in

the Internet Service Provider (ISP) network are able to communicate with other IPv6 hosts

on the global Internet, they can not generate IPv6 packets which are authenticatable using

our proposed architecture and protocol, due to missing control over the IPv6 subnet prefix.

Another IPv4/IPv6 transition technology in deployment is Dual-Stack Lite [88]. Here,

the end-user devices receive globally routed IPv6 addresses in addition to private IPv4
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addresses from the ISP. The private addresses in IPv4 packets are translated via NAT in a

gateway supplied by the ISP to IPv6 packets with a shared IPv6 address. Our proposed

federated end-to-end security architecture is compatible with this transition technology,

as the IPv6 part of the stack is native and end-users are assigned globally routed subnets

without NAT.

6.1.4 Compatibility with Internet of Things Application Layer Protocols

Constrained Application Protocol (CoAP) [45] and MQTT [89] are popular choices used

by IoT solutions as application layer protocols. They both focus on low transport overhead

and easy processing for constrained devices.

CoAP recommends to use Datagram Transport Layer Security (DTLS) [46] to provide

security to the protocol. MQTT specifies to use standard transport layer security (TLS)

[90] for securing the communication channel [89, sec. 5]. In section 5.4.5 we outlined

the idea on how identity-based signatures (IBSs) or Identity-Based Authenticated Key

Exchange (IBAKE) algorithms can be integrated in TLS and DTLS to integrate our proposed

authentication architecture in these existing security protocols.

Part of the DTLS handshake is a Diffie-Hellman key exchange, where the messages are

signed by each party. The public keys used for signing the key exchange are commonly

transfered to each other as X.509 [91] certificates. One possible way for integration of

IBS and DTLS is to modify this key exchange procedure. The X.509 certificates are not

needed in identity-based cryptography (IBC) and can be omitted. Instead the key exchange

messages are signed using an IBS and the IPv6 address as the identity.

6.2 Deployment Scenarios

This section discusses possible Internet of Things (IoT) deployment scenarios and how

our identity-based cryptography (IBC) security architecture can add usable security to the

scenarios.

6.2.1 Federated Smart Metering with Independent Electricity Providers

Smart meters measure the power usage of a household and digitally transfer the collected

measurement data to the electricity provider. This eliminates the traditional manual

process of reporting the power usage by the customer.

The electricity retailing market is open to competition which results in regular prices

changes by the providers to outbid competitors. Economic customers will watch for these

changes and switch to a less expensive provider if possible.

Power usage measurements are very private data, as it can be used to deduce behavioral

patterns about the members of a household, e.g. working hours or times at which heavy

energy consumers like washer and dryer are used. Current proposals for secure smart

metering do not consider the fact of the customer changing electricity providers.
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So et al. [92], propose an identity-based cryptography (IBC) based solution for secure

smart metering with little configuration overhead. However, they also envision a central

power supplier being the sole authority on the security of the system.

In a secure smartmetering scenario based on our proposed system architecture for secure

federated end-to-end authentication, both the electricity provider and each user would

run publicly accessible Internet of Things (IoT), with the associated trusted authority (TA)

and border gateway.

For smartmetering based on standardized protocol, the use end user would just setup the

smart meter in his IoT network and run the dynamic device configuration procedure. After

configuring the receiving end-point of the electricity provider, end-to-end authenticated

messages can be exchanged and metering measurements can be reported over a highly

secure Datagram Transport Layer Security (DTLS). When the household changes the

electricity provider, it only has to change the provider endpoint in their smart meter

device.

If the power company uses proprietary smartmeters, the protocol can still take advantage

of the already present end-to-end authentication infrastructure and build their custom

protocol on top of this.

This allows flexible integration of secure smart metering in the IoT networks in house-

holds, which keep the authority over the security and trust in their local network while

still being able to communicate securely with the rest of the Internet.

6.2.2 Environmental Monitoring with Sensor Sharing

In section 4.2.3 we discussed the proposal of Oliveira et al. [58] to use public-key cryptog-

raphy to authenticating traffic from a constraint data collection node to multiple users.

This section focuses on the deployment scenario described by them and how our proposed

federated authentication architecture works in this scenario.

Oliveira et al. describe a scenario, where a sensor node provides valuable data, interesting

to different parties. For instance, a smart meter installed by the power company in the

household collects power usage and reports it back to the power company for smart

metering and accounting purposes. Other parties, e.g. the household members or the

landlord, could also be interested in the metering data.

Applying our proposed architecture to this scenario, the user would install a border

gateway with a trusted authority (TA) for her Internet of Things (IoT) devices. A smart

metering device can simply be added by supplying symmetric keys for dynamic device

configuration. It would connect to the power provider and authenticate the packets using

identity-based signature (IBS) to report power usage. Other interested parties could do

the same to access the data via authenticated messages, if they are authorized.

Another example is a research institute which deploys IoT devices to collect environmen-
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tal measurements like temperature, humidity and barometric pressure. Probably there are

many researchers who are interested in the data beside the deploying institute.

The devices are simple shipped with new symmetric keys for dynamic configuration and

are then deployed in the wild. A single IoT border gateway, for TA lookup services and

dynamic device configuration, which is independent from battery power and has access to

IPv6 can then be used to connect many environmental monitoring devices to the global

IPv6 Internet. With mesh routing protocols even larger areas can be covered, while the

end-to-end security of authenticated packet stays intact. After deployment users in remote

networks with the federated end-to-end security architecture set up, can simply query the

devices and get access to the monitored data via authenticated messages.
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7 Implementation

In order to practically evaluate the proposed architecture we implement the components

required for an evaluation scenario. We implement the proposed architecture in C/C++

using Raspbian1 and RIOT [93] operating systems (OSs) and the RELIC [23] library for

cryptographic routines.

The communication protocol UDP is used, and messages for any data exchange and

stored data are encoded using the Concise Binary Object Representation (CBOR) [94].

CBORs allows schema-free and compact encoding of object data with the availability of

lightweight encoding and decoding development libraries. RIOT already includes a CBOR

parsing and serialization implementation. The border gateway and the Internet of Things

(IoT) service component use the open source and MIT licensed libcbor2 library. Thus it
fits the requirements for our constrained application domain, the IoT.

Our implementation and the following evaluation covers the high-level functionality

and interactions described in section 5.4, except for the device revocation in section 5.4.7

and the trusted authority (TA) rollover in section 5.4.8.

7.1 Dependencies

The implementation created to evaluate our federated end-to-end authentication architec-

ture depends on several open-source software projects. All the dependencies are C or C++

libraries and applications freely available on the Internet. The exact version and sources

of the dependencies are listed in table 7.1.

7.2 Software Components

The following three sections go into the details of the software components implemented

to evaluate the proposed secure Internet of Things (IoT) architecture. These are the

implementation for the IoT sensing node, the IoT border gateway and an IoT service.

The source code of all three software components can be found online in a GitHub

repository 3.

1https://www.raspbian.org/
2http://libcbor.org/
3For the source code of our implementation of the three described software components in this work, see

https://github.com/tfar/ibce2eiot
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Software Version Description Website

RIOT git:b68213a embedded OS http://riot-os.org/

RELIC git:7d6f795 cryptography https://github.com/relic-toolkit/

libcbor git:3371385 CBOR encoding http://libcbor.org/

libtins git:af71a4e network packet encoding http://libtins.github.io/

boost 1.50 general purpose http://www.boost.org/

NORX git:36209b8 AEAD cipher https://norx.io/

easyloggingpp 9.80 logging https://github.com/easylogging/

Table 7.1: Software dependencies, version and sources used for the implementation.

7.2.1 Internet of Things sensing node

The sensing node for our evaluation scenario is implemented using RIOT [93]. RIOT

allows to develop constrained embedded applications as standard ANSI C applications

and features cooperative multi-tasking between different threads.

Our IoT sensing node provides secure access to sensing data collected by the node. As

the SAM R21 board does not feature any on board sensor, in our scenario the sensing node

servers randomly generated data.

Our sensing node covers the following roles introduced in section 5.4.1:

• Dynamic configuration client

• Signature sender

• Signature receiver

• Trusted authority (TA) lookup client

After the initialization phase of RIOT, our main code is executed which initializes the

cryptographic library RELIC, sets up the 802.15.4 radio channel, registers our networking

thread for UDP packets and starts the dynamic device initialization protocol described in

section 5.4.4.

Following the successful transmission of the dynamic device initialization packet, the

sensing node waits for incoming packets.

On receive of a UDP packet, it is analyzed by port number and it can fall in one of the

following three cases:

Device initialization reply When a reply to our dynamic device initialization request is re-

ceived, it is decrypted via NORX [75] Authenticated Encryption with Associated Data

(AEAD) cipher. If the decryption succeeds the reply is authentic and the own IPv6

address, TA parameters and private identity key are set.
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Figure 7.1: Flow chart of the authentication procedure on the embedded node.

TA lookup reply To authenticate signatures from devices of remote IoT edge-networks, their

TA system parameters are required. If the IoT devices does not have the TA system

parameters for the remote network present in its cache, it sends a request to the

remote TA lookup responder. The system parameters in the reply are verified against

the hash embedded in the remote subnet prefix and validated. For elliptic curve

cryptography (ECC)-based identity-based cryptography (IBC) systems this validation

is done by assuring that elliptic curve points are on the elliptic curve defined by the

system. If the system parameters pass the verification, they are added to the cache;

else they are discarded.

In a gateway supported TA lookup setup, described in section 5.4.6, TA lookup replies

can be received from the gateway just before it forwards the original remote message

to the IoT device. For security remarks regarding this gateway-injected TA lookup

response, see section 7.2.2.
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Due to the memory constraints of IoT devices, this cache is highly limited. In our

implementation the cache only contains a single subnet prefix/TA system parameter

pair.

Signed message On receive of a signed message it is validated and handled in a multi stage

process, described in figure 7.1. If the IPv6 subnet prefix of the sender address of

the message matches a prefix in the local TA cache, it can be authenticated using

its signature and the verify function of the vBNN-IBS implemented in RELIC and

described in section 3.2.1. If the verification proofs the signed message to be correctly

authenticated by the sender, the message is processed. In our case this means a reply

with random data is generated, signed with a vBNN-IBS signature, CBOR encoded

and sent back to requesting peer.

If the IPv6 subnet prefix of the sender address is not in the local TA cache, a TA lookup

request is initiated as described in section 5.4.6. In this case the original signed

message is cached and authentication is delayed until the required TA parameters

are acquired.

7.2.2 Internet of Things border gateway

The border gateway is implemented as a standard C++ application running on the Raspbian,

a Debian-based Linux distribution for the Raspberry Pi.

The roles supported by the IoT border gateway are as follows:

• Dynamic configuration server

• Trusted authority (TA)

• TA lookup responder

• TA lookup requester

• TA lookup cache

After initialization of RELIC library, the TA component of the gateway program is ini-

tialized. For this the program checks for existing TA system parameters and TA keys in a

file in the current working directory and loads them if present. Otherwise it will generate

new TA keys as described in section 3.2.1 from random data. The deployment of the TA on

the gateway device and storing the TA keys on the same device is not recommended for

real world secure deployments because of cost and complexity of hardening the Raspberry

Pi and its software stack. Instead, a specialized hardened security device, e.g. a hardware

security module (HSM) operating the TA and storing the high value master secret key, is

recommended for deployment in non-testing scenarios.

Following, the network components for the dynamic configuration server, the TA lookup

responder, and, if requested, the TA lookup cache roles are started. In addition, the net-

work device is configured for the IPv6 subnet with the embedded hash of the TA system
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parameters and assigns itself an address with the node ID 1.

Part of the IoT border gateway is the authentication support server that plays the role of

the dynamic configuration server. The symmetric keys for the initial device authentication

during the dynamic device initialization are stored build into the program. After start of

the gateway component the authentication support server joins a predefined IPv6 link-local

multicast group, where it awaits dynamic configuration requests from IoT devices.

On receive of a dynamic configuration request, the request is decoded from Concise

Binary Object Representation (CBOR), decrypted using the Authenticated Encryption

with Associated Data (AEAD) cipher NORX, and the nonce supplied by the requester and

theKConfReq symmetric key. The cleartext is then tested against the fixed string ”REQ”. If

the request is valid, a node ID within the subnet and the corresponding identity key IDkey
are generated, encoded to a CBOR message and encrypted using the same algorithm and

nonce but with theKConfRsp key.

The prototype implementation holds the keys in static memory inside the code. A secu-

rity hardened implementation would store the key externally from the code and securely

remove them from the storage media. This would prevent attackers, who gain control of

the machine, from the ability to reuse keys for authentication during the dynamic device

initialization phase.

The TA lookup responder is another essential component of the IoT border gateway

implementation. During the start of the gateway and after initialization of the TA it is

started with the public system parameters of the TA and listening on a predefined port for

incoming TA parameter lookup requests from remote IoT networks.

The Linux kernel and its 6LoWPAN stack4 take care of the gateway functionality, trans-

lating and forwarding packets between IPv6 and 6LoWPAN networks.

If requested at start by specifying the –piggyback=1 parameter, the gateway will also

play the role of a TA lookup cache. The component for this role depends on the Linux

ip6tables firewall, which is installed on the Raspberry Pi. In addition, it uses the Linux net-

filter queue feature to register itself for packet handling of incoming packets authenticated

with an identity-based signature (IBS) signature.

The Linux netfilter queue5 is a feature that allows to setup firewall rules in the ip6tables

kernel-space network firewall, that forward packets to special in kernel queue. Using the

API of the netfilter queue library, user-space programs like our IoT gateway component,

can connect to a netfilter queue and read the network packets. The same API also provides

a back channel for the user-space program to signal the ip6tables firewall different packet

handling decisions like dropping a packet or letting it path through.

4For more information on the 6LoWPAN implementation in Linux and its configuration, see http://wpan.
cakelab.org/.

5Further information about user-space low-level network handling with netfitlter queue on Linux, see http:
//www.netfilter.org/projects/libnetfilter_queue/.

48

http://wpan.cakelab.org/
http://wpan.cakelab.org/
http://www.netfilter.org/projects/libnetfilter_queue/
http://www.netfilter.org/projects/libnetfilter_queue/


As soon as ip6tables adds an incoming authenticated network packet to the netfilter

queue, our IoT gateway component is notified. It reads the packet from the queue and tells

the firewall to drop it. With the authenticated IPv6 packet in user-space, it is parsed using

libtins, a high-level, multiplatform C++ network packet sniffing and crafting library. The

TA lookup cache will check the if TA system parameters for the 112 bit prefix of the IPv6
source address of the packet are in the cache and act as following:

1. If the subnet prefix of the IPv6 source address is unknown to the TA parameter

cache, a TA lookup is initiated. On successful validation of the TA system parameters

replied from the remote TA lookup responder, the TA system parameters will added

to the cache alongside the corresponding 112 bit prefix. If the validation fails, the

original authenticated message will be discarded.

Afterwards, the cached TA lookup response for the remote subnet and the original

identity-based cryptography (IBC) authenticated message are injected back in the

network stack using libtins to be forwarded to the destination of the authenticated

message.

2. If the subnet prefix of the IPv6 source address is already in the TA parameter cache,

the gateway will construct a TA lookup response for the cached system parameters

and inject it and the original authenticated message back into the network stack to

be forwarded to the destination.

As currently implemented, the TA lookup responses created by the TA lookup cache

are not further authenticated. An additional signature by the IoT border gateway would

add further security to these lookup responses, but add an extra validation burden to

the constrained IoT devices. To improve the security further the gateway should never

forward TA lookup responses without validation against the embedded hash and against

the pinned remote TA system parameters.

7.2.3 Internet of Things service

The IoT service is an example for a compact implementation a service provider could use as

a self contained application that contains all the required components of the architecture

to sign messages and verify authenticated messages received from remote networks. It

serves as initiator of the request/reply protocol used for testing in the evaluation chapter.

The roles supported by the IoT service are as follows:

• Dynamic configuration server

• Trusted authority (TA)

• TA lookup responder

• TA lookup requester

• Signature sender
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• Signature receiver

It is implemented in C++, reusing most code of the IoT border gateway implementation.

This means the same roles are implemented which the border gateway component already

provides. In addition, a signature sender which sends a predefined message with a vBNN-

IBS signature, and a signature receiver, which queries the TA lookup requester for the

public system parameters of the remote TA, and when present verifies the message against

the vBNN-IBS signature, are implemented.

7.3 Interoperability Issues

The 6LoWPAN implementation for Linux, i.e. wpan-next6, and RIOT are both under

active development. At the time of writing, RIOT did not support 6LoWPAN UDP header

compression [50, sec. 2.3]. However, it is still possible to setup interoperable 6LoWPAN

communication between Linux and RIOT, by disabling UDP header compression on Linux.

This can be done by running the following command on the Linux host: rmmod nhc_ud.

6See https://github.com/linux-wpan/linux-wpan-next.
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8 Evaluation

8.1 Security Evaluation

In this section, we will show which threats and risks relevant to the architecture have been

considered in the design and how our architecture protects against potential attackers.

Further, we describe how the authentication and validation procedures of the identity-

based signature (IBS) andCrypto-based Identifiers (CBIDs) reduce to knownhard problems

in computer science.

8.1.1 AttackerModel

The following attack model describes the abilities of a potential adversaries, that are

considered in during further security analysis and under which our proposed architecture

is secure. We consider an attacker unable to do the following:

• Break into the device carrying the trusted authority (TA) master private key. This

can be achieved by running the TA on a hardened security device, e.g. a hardware

security module (HSM).

• Break the symmetric Authenticated Encryption with Associated Data (AEAD) cipher

used for dynamic device configuration.

• Build algorithms for solving the elliptic curve discrete logarithm problem (ECDLP)

more efficient than Pollard’s rho [28].

In contrast, an attacker is assumed to have the following abilities:

• Compromise the security of Internet of Things (IoT) devices to gain access to their

private identity keys.

• Inject and modify messages within the local IoT networks and the path between the

two federated IoT networks.

• Monitoring global traffic containing authenticated messages and local traffic within

the wireless network interconnecting constrained IoT networks.

8.1.2 Threat Model

To gain an overview on possible threats to the security of our federated end-to-end au-

thentication architecture for the Internet of Things (IoT), we start by identifying the data
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Figure 8.1: Data flow graph of security critical secret and public data between a local IoT

network (left half) and a remote IoT network (right half).

critical to the security of the system, its flow between the different system components,

and how an attacker can gain access to security critical data.

Figure 8.1 shows the security relevant data flow between the components of our archi-

tecture during the system initialization, dynamic initialization and trusted authority (TA)

lookup. Based on the security data and its flow, we extract the security assets and describe

their access limitation with regard to other system entities and possible attackers.

TAmsk Themaster secret key is the most valuable asset in an administrative IoT network

in the system architecture. With access to the TAmsk, you can generate new and

trusted identity keys for the devices in the IoT network. Due to the inherent key

escrow problem in identity-based cryptography (IBC) systems, access to the TAmsk
also allows you to generate identity keys for identities the TA already issued identity
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keys to.

Thus, access to it needs to be strongly protected and only the TA is allowed access,

during the dynamic device initialization phase.

TAmpk Everybody is allowed access to themaster public key of the TA. On its own, the TAmpk
is not required to be authenticated. However, except for signing messages, the TAmpk
is used together with the 112 bit network prefix associated to it. This association

is lightly protected by the embedded hash in the prefix as shown in figure 5.2 and

strongly protected by the pinning TA lookup cache.

IDkey Only the device with the ID to which the IDkey is bound is allowed access to it.

During the dynamic device configuration phase, the dynamic configuration server

also gains short time access to it. For maximum security it securely clears the key

out of memory as soon as it is securely delivered to the IoT device.

KConfReq,KConfRsp The symmetric key-pair used for dynamic device initialization is also

private information that needs to protected from everybody else except the IoT

device originally deployed with them and the dynamic configuration server.

(Prefix,TAmpk) The association of the public system parameters of a TA and the prefix

belonging to it are public information accessible to everybody. However, by default

this association is only protected by the 64 bit embedded in the subnet prefix.

{(Prefix,TAmpk) , · · · } The is the list of pinned associations between a 112 bit prefix and
corresponding TA system parameters, i.e. TAmpk. While being public information,

it is required to protect this list strongly against malicious modification. Only the

pinning TA lookup cache is allowed to modify it and only add an association, if

the prefix is not present yet in the cache and the TA system parameters have been

validated against the embedded hash of the prefix.

This list of assets shows that the TA with its TAmsk is most valuable and compromising

its secrecy would have disastrous consequences. To provide a more complete overview,

we continue our threat analysis by describing the risk of failing to protect each security

asset, with the attacker ability that gives access, and the consequences of compromising

the access restrictions.

TAmsk Compromising the secrecy of themaster secret key is impossible in our described

attacker model. However, to show how valuable the master secret key is, we explain

the consequences for failing to protect it.

An attacker gaining access to the TAmsk is able to generate new identity keys and

reproduce identity keys which have already been issued. With access to the secret

identity key can also be seen as an identity theft of the identity associated to an

identity key.

With access to the identity key, an attack can produce valid signatures for the corre-

sponding identity. The ability to forge messages for an identity automatically results
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in total loss of non-repudiation for the signatures of that identity, because other

users, apart from the legitimate user, can also be the signer.

To minimize this risk, it is recommended to either deploy the TA on a hardened

security device like a hardware security module (HSM), or use an offline TA. An

offline TA complicates dynamic device initialization and TA rollover, and would

require some modifications to the security architecture which are out of scope of

this work.

TAmpk This asset already has widest access permission as public information. The only risk,

is the extraction of the corresponding TAmsk based on only the TAmpk. The TAmpk is

generated by elliptic curve cryptography (ECC) scalar multiplication of the ECC base

point point with TAmsk, as described in section 3.2.1. Calculating the factor TAmsk
from TAmpk requires solving the elliptic curve discrete logarithm problem (ECDLP),

which is considered a hard mathematical problem (see section 2.4).

IDkey Failure to protect the identity key against physical attackers on the constrained IoT

device or the dynamic configuration server, results in identity theft of the identity

that is bound to the IDkey. An attacker with access to IDkey can forge signatures for

arbitrary messages, for the specific identity.

If noticed, the compromised identity needs to be revoked as described in section 5.4.7

to limit the possibilities of the attacker and its damage. This is done by devices

sending authenticated revocation messages to the authentication support server,

which can be deployed on the border gateway.

The border gateway can modify firewall rules to limit communication to the local

network. As soon as enough revocations are collected, the border gateway initiates a

TA rollover as described in section 5.4.8. During this process devices are authenti-

cated again using their current identities and are issued new identity keys. Revoked

devices will not receive a new key.

After this process is done and no legitimate device is left using the old TA, the old TA

and the associated network can be discarded. Thereby the previously revoke devices

have been excluded from the new network and the revocation list can start fresh.

KConfReq,KConfRsp The consequence of compromising the secrecy of the symmetric key-

pair used for dynamic device initialization depends on the time when access to them

is gained. If they are recovered after the original device has already been dynami-

cally configured and the dynamic configuration server has cleared the keys from its

memory, the attacker can not use them to request a valid identity key. However, if

recovered before the original device has been dynamically configured, the attacker

can request an identity key from the dynamic configuration server instead, leaving

the original device without any way to successfully configure within the network.

This risk can be mitigated, by binding the symmetric key-pair to the layer 2 address

of the true device.

54



(Prefix,TAmpk) An attacker that can inject arbitrary network packets on the path between

a TA lookup client and a TA lookup responder is able to suppress the response. A

sufficiently powerful attacker can generate a colliding TA, i.e. a TA which system

parameters resulting in the same embedded hash, for the targeted subnet prefix if

allowed sufficient time. If successful, it can mislead the TA lookup client to bind

the colliding TA parameters to the prefix, resulting in a Denial of Service (DoS) for

the original TA and the associated network. The authenticated messages send by

devices from the original network are invalidated as devices in the receiving network

use falsely pinned TA parameters to validate them.

This risk of this attack can be limited by reducing the amount of TA parameter

lookups from devices. Increasing the local TA cache on constrained devices and

utilizing gateway-based TA parameter lookup mitigates this risk effectively.

{(Prefix,TAmpk) , · · · } Strong security and trust is enabled by the pinning TA lookup cache.

Failing to protect its pinning store, i.e. the list of network prefix and TA system

parameters associations, results in attackers being able to introduce falsely generated

TAs for subnets, essentially preventing communication to the original networks

behind the subnets.

Identity theft is the major threat in our system architecture. We address this by providing

a secure mechanism to report accusations on malicious devices and the secure rollover to

a new TA, excluding revoked devices. Bhargav-Spantzel et al. [95] discuss the problem of

identity theft specifically for federated security systems.

8.1.3 Security Proof

In order to proof the security of our federated end-to-end authentication architecture, we

need show that only the true devices that originally received an identity key from their

respective trusted authoritys (TAs) are able to generate valid signatures that are verified as

correct by the device in the opposite network.

The security of the architecture requires two parts of the system to be secure:

1. vBNN-IBS, the identity-based signature (IBS) used to generate and verify asymmetric

signatures on messages in our system.

In [33, § 5], Cao et al. prove the security of the IBS used by our architecture, vBNN-

IBS, based on the security of BNN-IBS. They proof that if BNN-IBS is existential

unforgeable, then vBNN-IBS is also existential unforgeable. The former is proven in

by Bellare et al. in [35].

2. The dynamic device initialization protocol.

Its security is based on the NORX [75] Authenticated Encryption with Associated

Data (AEAD) cipher, a candidate in the current CAESAR1 competition on AEAD

ciphers.

1http://competitions.cr.yp.to/caesar-submissions.html
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3. The remote TA system parameter lookup method.

During the system initialization phase (see section 5.4.3), a TA is generated and the

hash value of H(globalprefix + TAmpk) is appended to the global IPv6 routing prefix

to generate the subnet for Internet of Things (IoT) devices. Remote receivers of TA

system parameters, i.e. the TAmpk, can validate the received parameters against the

embedded hash.

In order to send valid messages from subnet S, an adversary in form of a man-in-

the-middle (MitM) has to either (a) find the corresponding TAmsk to the TAmpk of the

subnet or (b) generate a new TA, A.TA, with a A.TAmpk that produces the same hash

value as TAmpk. We further discuss the feasibility and hardness of these two options:

a) Finding the master secret key based on a specific master public key of a TA

requires to solve the elliptic curve discrete logarithm problem (ECDLP) which

is considered to be hard mathematical problem according current knowledge

and research of the cryptographic community. For more details on this subject

see section 2.4.

b) Since the cryptographic hash function used for generating the embedded hashes

is preimage resistant, the easiest attack an adversary can run to find a TA, with

the hashed TAmpk matching that of the attacked TA, is a brute force attack. The
size of the hash value used in our architecture is 64 bit. This means on average,

after generating 264 random TAs, the adversary finds has a colliding embedded

hash with the attacking network.

8.2 Practical Evaluation

We conduct our practical evaluation by deploying the critical parts of our proposed archi-

tecture in a test network and executing two evaluation scenarios. We record the network

traffic on the border gateway using Wireshark and the logging output of the Internet of

Things (IoT) device, the border component and the IoT service.

For a performance evaluation of the asymmetric signature algorithm used in the proto-

type of our implementation, i.e. vBNN-IBS [33], and the twisted Edwards curve implemen-

tation in RELIC, we refer to our recent project report [24].

8.2.1 EvaluationMetrics

The logging output and packet captures recorded during the execution of our evaluation

scenarios are analyzed for the following evaluation metrics. In addition, we analyze the

ROM image of the Internet of Things (IoT) device.

Protocol overhead The layer 2 protocol 802.15.4 — common in IoT networks — leaves

around 100 B for the upper layers. 6LoWPAN takes 2 B to 20 B of the following

layer. Sending large packets over 6LoWPAN networks leads to fragmentation which

increases the chance of the whole packet getting lost in transmission.
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We analyze the message size of the packets send in our two evaluation scenarios

described in section 8.2.3, and compare the Concise Binary Object Representation

(CBOR) encoded packets to the plain payload contained in them, determining the

encoding and security overhead as part of the total protocol overhead of our authen-

tication protocol.

Timing Time is an important factor when it comes to wireless communication between IoT

devices. For request and reply scenarios, it is important to reduce the overall minimal

time of the communication between the devices. The total time for a request/reply

exchange is mainly influenced by the processing speed for each endpoint and the

network round-trip time (RTT). After receiving a request message and sending the

reply back, the CPU and radio of the device can fall back to low-powermodes increase

the overall lifetime of battery-based IoT devices.

Time measurements also provide an indirect indication for the energy use of the

operations on the IoT device.

Static program size One of the critical constraints of IoT devices is the available ROM/flash

storage on the devices. The SAM R21 used in our evaluation has 256 KiB of available

flash. IoT devices with 128 KiB to 1,024 KiB are among the list of devices supported

by RIOT 2.

Analysis for the static program size and a breakdown in its components give an

insight into how much our proposed end-to-end authentication layer contributes to

a software IoT stack.

8.2.2 Evaluation Platforms

The evaluate our implementation of the proposed architecture for message sizes and

performance, we run the three system components on the platforms described in table 8.1.

We compile the source code of the implementation using arm-none-eabi-gcc (GNU Tools

for ARM Embedded Processors) 4.9.3 20141119 for the Internet of Things (IoT) device, arm-

linux-gnueabihf-g++ (crosstool-NG linaro-1.13.1-4.9-2014.05 - Linaro GCC 4.9-2014.05) 4.9.1

20140505 for the border gateway, and Apple LLVM version 6.0 for the IoT service.

For the execution of the evaluation scenario, the IoT device uses the RIOT version listed

in table 8.1. The border gateway uses Linux raspberrypi 4.1.2+ #1 PREEMPT Thu Jul 23

16:39:12 CEST 2015 armv6l GNU/Linux and the IoT service uses OS X 10.9.5 (13F1077).

The Raspberry Pi does not have any on-board 802.15.4 radio as compared to the SAM R21.

Instead, connectivity to 6LoWPAN over 802.15.4 is provided by the openlabs Raspberry Pi

802.15.4 radio3. This enables a wireless low-power communication channel between the

Raspberry Pi and the SAM R21 board.

2https://github.com/RIOT-OS/RIOT/wiki/RIOT-Platforms
3http://openlabs.co/store/Raspberry-Pi-802.15.4-radio
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IoT Device Border Gateway IoT Service
M
o
d
el Device SAM R21 [96] Raspberry Pi (2011/Model B) MacBook Pro

Vendor Atmel Raspberry Pi Foundation Apple

P
ro
ce
ss
o
r

Architecture ARM ARM Intel

CPU Cortex-M0+ ARM1176 Core i7

Clock speed 48 MHz 800 MHz 2 GHz

Word size 32 bit 32 bit 64 bit

CPU cores 1 1 4

L1 cache N/A 32 KiB 64 KiB per core

L2 cache N/A (256 KiB) 256 KiB per core

L3 cache N/A N/A 6 MiB shared

M
em

o
ry ROM 256 KiB N/A N/A

RAM 32 KiB 512 MiB 8 GiB

N
et
w
o
rk 802.15.4 radio On-board Add-on module No

Ethernet No Yes Yes

Note: The L2 Cache is used by the GPU on the Raspberry Pi and therefore is not available

to the CPU.

Table 8.1: Overview of the platforms used for the practical evaluation of our proposed

security architecture.

8.2.3 Evaluation Scenarios

In the two scenario we aim to evaluate the performance, in particular the computation

time and message size overhead, and behavior of the three implemented components in

a local test network. Both scenarios will cover initializing all components, the dynamic

device initialization of the Internet of Things (IoT) device and the IoT service sending

a query to the IoT device and it responding with an authenticated reply, as described in

section 5.4.5.

For the first scenario, the deployment is configured to use client-based authority lookup.

The border gateway will only support dynamic device initialization and forwarding network

traffic to the IoT end-points The second scenario will employ gateway-based authority

lookup.
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We use the same approach for evaluating both scenarios. The network capturing tool

Wireshark4 is used on the Raspberry Pi to capture all network traffic, including the Ethernet

link between the Raspberry Pi and the laptop, and the network link between the Raspberry

Pi and the SAM R21 IoT device before and after the 6LoWPAN conversion.

In addition, time-stamped log messages have been inserted into interesting code parts,

to deduce the duration for relevant cryptographic and management computations. While

log messages can be cached, delayed and have the overhead of formatting and terminal

output, they provide a good estimate on the computational complexity of the parts of the

evaluation. A detailed and more precise evaluation of the identity-based signature (IBS)

operations can be found in our recent project report [24].

From the Wireshark network captures and the log messages of all three programs, we

produce message communication flow and computation diagrams, shown in figure 8.2,

figure 8.3 and figure 8.4.

Note that the blocks for the computations are not proportional to the duration of the

computation, to save vertical space. In addition, we leave out Concise Binary Object

Representation (CBOR) encoding and decoding, as it takes minimal time on all devices

and would further increase the size of the diagrams.

Client-based Authority Lookup Scenario

The diagram shown in figure 8.2 displays the major computations and all network com-

munication for a fresh authenticated message exchange between an IoT service deployed

on a laptop and a constrained shows the runtimes, delay and communication between the

three components. It is reproduced fromWireshark captures and the log messages of all

three programs. In following, we will go into detail and analyze the diagram for the first

two evaluation metrics, namely message size and timing.

Message Content Security CBOR Total

Dynamic configuration request 3 B ciphertext: 20 B
nonce: 16 B

3 B 39 B

Dynamic configuration response ID: 16 B
TAmpk: 33 B
IDkey: 65 B

16 B 20 B 150 B

TA lookup request 3 B 0 B 1 B 4 B
TA lookup response 33 B 0 B 2 B 35 B
Authenticated request 3 B 100 B 17 B 117 B
Authenticated response 10 B 100 B 17 B 124 B

Table 8.2: Overview of the communication messages and their overhead distribution.

4See https://www.wireshark.org/ for more information on Wireshark.
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IoT Device Border Gateway IoT Service

NORX encryption2 ms
39 B, 1 frame

device config request

NORX decryption3 ms
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NORX encrpytion1 ms
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device con
fig respons

e

NORX decryption3 ms

set ID, IDkey, TAmpk923 ms IBS signing3 ms

117 B (inc. 3 B payload), 2 frames

request message, signature

cache message14 ms

4 B, 1 frame

TA lookup request

35 B, 1 frame

TA lookup response

verify & cache TAmpk691 ms

IBS verifying3,121 ms

IBS signing1,037 ms
124 B (inc. 10 B payload), 2 frames
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cache message
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TA lookup request
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Figure 8.2: Communication and computation sequence diagram for the client-based au-

thority lookup scenario.
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Protocol overhead Using the communication flow diagram shown in figure 8.2 , the log

messages of our components, and the Wireshark network traffic captures during

the run of the evaluation scenario, we compiled an overview on the overhead of the

security and CBOR [94] encoding used by the proposed protocol. This overview is

shown in table 8.2.

The dynamic configuration request message is build by encrypting the string ”REQ”

with a random nonce and the predefined symmetric keysKConfReq. The reply is en-

crypted using the predefined keyKConfRsp. Due to NORX being a block cipher, the

plaintext is expanded from 3 B to a multiple of the block size, resulting in 20 B cipher-

text. The CBOR encoding adds little overhead and the resulting request message

totals at 39 B and fits in one 6LoWPAN frame.

The corresponding response however requires two 6LoWPAN frames to transmit

back to the IoT device. Its total size of 150 B is mainly caused by the amount of

cryptographic information that is transmitted back to the device. This includes not

only public information like ID and TAmpk, but also the secret IDkey. Together these

keys and identity constitute 114 B to the reply. Additionally, due to use of more ver-

bose CBOR primitives, i.e. maps with byte string keys, the CBOR overhead increased

highly compared to the request.

In comparison, the trusted authority (TA) lookup request and reply are compact.

The request, simply made up from a CBOR encoded fixed string ”TAL”, only needs

4 B. The response consists of a compress elliptic curve cryptography (ECC) point,

encoded as CBOR.

CBOR maps are also used for encoding the authenticated request and authenticated

response. The large size of the response and request messages are due to the security

overhead of 100 B, the vBNN-IBS signature. The storage complexity of the vBNN-IBS,

explained at the end of section 3.2.1, is one ECC point and two 32 B integers.

Timing Due to the fact that RIOT [93] currently does not support low energy modes for the

CPU of the SAM R21 board, the CPU runs at full speed at all times and the runtime

measured is proportional to the energy consumption.

The runtime for the Authenticated Encryption with Associated Data (AEAD) cipher

is minimal with only a couple milliseconds. This confirms, that NORX [75] is very

suitable for constrained devices in the IoT.

The computational cost of the vBNN-IBS verification is roughly three times higher

than the vBNN-IBS signing operation. This is the same ratio we have seen in our

more detailed practical evaluation of IBS mechanisms [32] and our evaluation of

twisted Edwards curves [24]. In addition, this timing difference is also explained by

the theoretical computational complexity of the vBNN-IBS algorithm, shown at the

end of section 3.2.1.
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Generating an ID and the corresponding private identity key has roughly the same

computational complexity as the vBNN-IBS signing operation. However, the Rasp-

berry Pi is more powerful resulting only in a 20 ms runtime. Border gateways are

commonly less energy constrained and are connected to the power grid or high

energy batteries.

For small messages, e.g. 3 B and 10 B payload, our authentication protocol with IBS

shows an overhead of 100 B. This already requires two 6LoWPAN frames to transmit. Due

to our use of IBS, and the possibility to use IPv6 addresses as ID and public key, no addition

public keys or certificates need to be transfered, provided that the TA is already known. In

contrast, traditional certificate-based authentication does have smaller signatures but also

has the overhead of certificate transmission for the public key and its binding to an identity.

According to Gupta et al. [97], certificates exchanged during the Datagram Transport Layer

Security (DTLS) handshake require at least 220 B for storage. This is more than double of

our security overhead for an authenticated message.

Considering that asymmetric cryptography is primarily used for securely negotiating a

shared symmetric secret key to use with symmetric cryptography — the same protocol

that transport layer security (TLS) [90] and DTLS [46] follow — messages authenticated

using asymmetric cryptography, e.g. IBS are exchanged rarely between two endpoints.

Overall, vBNN-IBS accounts for the majority of the overall computational overhead of

our architecture and presents a key architectural component to optimize.

Gateway-based Authority Lookup Scenario

The gateway-based authority lookup scenario aims at evaluating the performance, and

demonstrating the advantage, of a deployment scenariowhere the border gateway is used to

support the authentication process. It is composed of two authenticated message requests

from the IoT service to the constrained IoT device.

The computations times for each operation are similar to the times measured in the

previous evaluation. They are not discussed further here. Therefore, we will focus on the

procedure of this evaluation scenario and its specialties.

Figure 8.3 shows the message exchanges and computations after dynamic device config-

uration up to the end of the verification of the first message. At this time, the TA lookup

cache in the IoT service and in the IoT border gateway are still cold, i.e. they do not contain

any mappings from subnet prefix to TA system parameters yet.

After the IoT service signs the initial query message, it sends it to the remote IoT device.

On its way, it passes through the IoT border gateway. Here it is intercepted using ip6tables

firewall and passed along to the IoT border gateway program described in section 7.2.2.

The IoT gateway tries to lookup the corresponding TA system parameters for the received

query message in its pinning TA system parameter cache. It then caches the original query

message and starts the TA system parameter lookup procedure, because the cache is empty

at the beginning. After receiving the TA system parameters from the remote TA lookup
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after device configuration

IBS signing4 ms

117 B, 2 frames

request message, sig
nature

cache message1 ms
4 B, 1 frame

TA lookup request

35 B, 1 frame

TA lookup response

verify & cache TAmpk26 ms

craft TA reply for TAmpk5 ms

35 B, 1 frame

TA lookup response

117 B, 2 frames

request message, sig
nature

verify TAmpk691 ms

IBS verifying3,079 ms

IBS signing1,038 ms

124 B, 2 frames

reply message, signature

cache message

lookup TA
1 ms

4 B, 1 frame

TA lookup request

35 B, 1 frame
TA lookup response

verify & cache TAmpk1 ms

IBS verifying5 ms

Figure 8.3: Communication and computation sequence diagram for the gateway-based

authority lookup scenario after successful device configurationwith cold caches.
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responder, the border gateway verifies the received system parameters against the 64 bit
hash which is embedded in the IPv6 address.

If the verification succeeds, the TA system parameters are stored in the cache with the

associated 112 bit subnet prefix. This essentially pins the TA system parameters to the prefix

and protects against potential man-in-the-middle (MitM) attacks, which have computed

a colliding TA with the same 112 bit subnet prefix. Afterwards a TA lookup response is

crafted by the border gateway and it, and the original message to be forwarded, are send

to the destination address of the initial query message.

In case the validation fails, both the original message and the TA lookup response from

the remote network are discarded.

The following reception of the TA lookup parameters, the original query message and

the verification of the end-to-end IBS signature attached to it, works the same as described

in the client-based authority lookup evaluation scenario. The signed reply message is send

back to the IoT service via the IoT border gateway, which simply forwards outgoing mes-

sages in the current implementation. Reception, TA lookup and verification of signature

by the IoT service are handled like in the first evaluation scenario.

Directly afterwards, another authenticated query is send by the IoT service to the con-

strained IoT device. The computations and communications for this continuation of the

gateway-based authority lookup scenario are shown in figure 8.4.

At this point the pinning TA cache in the border gateway and the IoT service are warm,

as they contain the subnet prefix/TA parameter mapping from the previous request. This

means that after receiving the second authenticated query message from the IoT service, it

can directly lookup the TA system parameters, corresponding to the IPv6 subnet prefix of

the message, in the pinning TA system parameter cache. With that a TA lookup response

can be synthesized and send to the IoT device, followed by the original message. The

lookup and synthesizing takes minimal time, no longer than 1 ms.
Afterwards, the IoT does the verification, reply generation and signing computations

and sends the reply back. The receiving IoT service can directly verify it, as the TA system

parameters are still cached from the last query/response exchange.

This scenario shows the advantage of caching TA parameters on the border gateway. In

deployment scenarios, where an IoT device needs to verify requests from many networks

in the Internet, the border gateway can cache and pin the TA system parameters required

for verification. A scenario like this, is the sharing of sensor devices which provide data

interesting to different parties [58].

This caching is possible, because the border gateway has more memory available com-

pared to the constrained IoT device. For example, our current implementation for the IoT

device can only store a single master public key from a remote TA due to the constraints

on the runtime memory.
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IoT Device Border Gateway IoT Service

second request with warm cache

IBS signing4 ms

117 B, 2 frames

request message, sig
nature

craft TA reply for TAmpk1 ms

35 B, 1 frame

TA lookup response

117 B, 2 frames

request message, sig
nature

verify TAmpk470 ms

IBS verifying3,090 ms

IBS signing1,064 ms

124 B, 2 frames

reply message, signature

IBS verifying8 ms

Figure 8.4: Communication and computation sequence diagram for the gateway-based au-

thority lookup scenario after successful device configuration with warm caches.

8.2.4 Program Size Evaluation

ROM is a critical resource for constrained Internet of Things (IoT) devices, as it is highly

limited compared to flash sizes of other devices on the Internet like smart phones, embed-

ded computers like desktop computers. Due to this special property of constrained IoT

devices it is important to keep the program size small enough with respect to the available

ROM of a device.

To gain an insight over the distribution of the program code size across the various com-

ponents, the link map, the cross reference table and information about removed dead code

are analyzed. This information is provided by the GNU ld linker program with the help

of the following program flags: -Map=program.map –cref –print-gc-sections. Fi-
nally, this output is analyzed by a Python script which counts symbol sizes per application

component.

Table 8.3 shows the breakdown of the program image which is flashed on the ROM of

the SAM R21 board, our IoT evaluation platform.

RIOT accounts for 53.5 % of the overall image size. This includes code and data for

multi-threading, 802.15.4 radio driver, network stack, virtual timers, Concise Binary Object

Representation (CBOR) encoding/decoding andmore. The runtime for the C programming

language, which covers low-level functions that emulate required instruction missing on
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Component Size Share

RIOT 56,123 B 53.5 %
RELIC 30,072 B 28.6 %
Application 10,082 B 9.6 %
C runtime 6,833 B 6.5 %
NORX 1,864 B 1.8 %
Total 104,974 B 100 %

Table 8.3: Program size distribution across program components.

the target CPU and functions from the C standard library, accounts for 6.5 % of the total

size.

Our application, including its specific cryptographic dependencies RELIC and NORX,

takes up the remaining space of the code image. RELIC, accounts for 28.6 % of the total

image size. RELIC includes and implementation of vBNN-IBS and the lower level crypto-

graphic primitives required by it. This are implementations for finite prime fields, twisted

Edwards curves, cryptographic hash functions and random number generation.

Similar ROM requirements for RELIC have been measured by Oliveira et al. [58, p. 392],

who evaluated the memory overhead of a RELIC-based secure web service on 8 bit AVR
and 16 bit MSP platforms. However, compared to the Datagram Transport Layer Security

(DTLS)-based security and two-way authentication proposal for the IoT by Kothmayr et al.

[56, p. 2717], our implementation requires nearly double the ROM as their implementation

for a Cortex-M3 platform. They count 10,838 B of ROM for the cryptography and 67,315 B
for the total ROM image. Instead of RELIC [23] and RIOT [93], they use CyaSSL and

TinyOS.

The Authenticated Encryption with Associated Data (AEAD) cipher, NORX, fits in less

than 2 kB. This shows its suitability to provide a high-level of authenticity, integrity and
confidentiality for communication with constrained devices in the IoT. The application

logic for handling the roles of the IoT sensing node listed in section 7.2.1 account for the

remaining 10,082 B.

Bormann et al. [43, § 3] define three classes of constrained IoT devices. The most

constrained class describes devices with a ROM size smaller than 100 KiB and the least

constrained class devices with a ROM size of about 250 KiB. With a total of 104,974 B for

our application it just fits on class 1 devices, with have about 100 KiB of ROM available.

Noting that while our application is optimized for size by the compiler, our code base has

not been highly optimized for code size. Both our application code and RIOT include

conditional error checks with debug output, which comes with a non-negligible code

overhead. It is conceivable that with further optimization for code size, our IoT application

will easily fit on the middle and least constrained classes of devices.
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9 Summary

In this final chapter we will close our work by drawing conclusion from our implementation

and the insights from the evaluation, followed by an outlook into future work.

9.1 Conclusion

We have presented a new system architecture for federated end-to-end authentication in

the Internet of Things (IoT). It is build from identity-based signature (IBS), which allow

to eliminate public key management and key distribution overhead known from classic

public-key cryptography (PKC), leading to a smaller size of authenticated messages.

With the proposed system, independently administrated IoT networks in the IPv6 In-

ternet can exchange identity-based cryptography (IBC) authenticated messages. These

messages can be verified by a federated authentication process which is secured by em-

bedding cryptographic information in the IPv6 network prefix, an idea similar to Cryp-

tographically Generated Addressess (CGAs) and Crypto-based Identifiers (CBIDs). The

proposed architecture includes means to deal with compromised devices in the network

and provides a mitigation strategy using revocation combined with a secure rollover of the

trusted authority (TA).

Our system implementation uses an IBS based on modern elliptic curve cryptography

(ECC), specifically twisted Edwards curves. This allows the usually computationally com-

plex IBS to be used on constrained IoT devices which are have limited physical resources,

e.g. memory, processing speed and energy.

We further discussed the interoperability of our proposed architecture and protocol

with existing standards of the Internet and the IoT, specifically standard IPv6 addressing

and 6LoWPAN. The proposed system architecture and procedures are proven to be secure

under a specified attacker model.

Our implementation and practical evaluation on a constrained IoT device, i.e. the

SAM R21 controller, demonstrates the implementability of our system architecture and its

suitability for the constraints of the IoT. Utilizing additional resources on border gateways

to support the authentication process, enables good scalability regarding the number

of participating IoT networks and devices for the federated end-to-end authentication

architecture.
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9.2 Outlook

A popular application layer protocol specifically with designed for constrained Internet of

Things (IoT) devices is Constrained Application Protocol (CoAP) [45, 98]. CoAP recom-

mends to use Datagram Transport Layer Security (DTLS) to provide transport security and

this combination has been focus for optimization for constrained devices [99]. Therefore,

an implementation of the integration of our secure federated end-to-end authentication

architecture with DTLS, as described in section 6.1.4, is an ideal continuation of this work.

In section 5.4.7 and section 5.4.8 we described the revocation of compromised and mali-

cious devices and the resulting trusted authority (TA) rollover as a countermeasure. While

these procedures are part of the specification and description of our distributed system

architecture for federated end-to-end authentication, they have not been implemented

and practically evaluated.

The detection of malicious behavior and compromised devices is non-trivial. However,

it an important topic for unmaintained and constrained IoT devices and deserves further

evaluation and analysis.

We concentrated on limited communication scenarios during our evaluation of the

proposed architecture. To provide a more sound validation of the proposal, an evaluation

on the public IPv6 Internet withmore intercommunicating devices from different networks

would be ideal.

This would also provide an insight in the cache performance of the gateway-based au-

thentication strategy.

Further, our implementations of twisted Edwards curves for the C library RELIC could

benefit from algorithm and implementation improvements. Currently, it is not protected

against side-channel attacks on the prime field and elliptic curve cryptography (ECC) layers.

The abstractions it uses to allow flexibility and easy implementation of new features come

with an associated performance penalty.

There is room for improvements in the area of performance and side-channel security.

Compared to the state-of-the-art, side-channel protected, implementation of Curve25519

in assembler by Düll et al. [100], our twisted Edwards curve implementation requires

five times the computations for the same ECC scalar multiplication operation on equal

hardware.
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