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Abstract

Hardware-in-the-Loop (HIL) testing ensures that the combination of software and hard-

ware works as speci�ed. In this thesis, we analyze Universal Asynchronous Receiver

Transmitter (UART) structure, extend its API in RIOT OS and develop a test suite for
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1 Introduction

RIOT is an open source operating system for Internet of things (IoT) and other embedded

devices [7], [6]. It provides support for more than a hundred boards and new ones being

added constantly. Meanwhile, the project surpassed 20000 commits and to keep projects

reliability at such a quick development pace, one needs a suitable testing ecosystem.

RIOT currently relies on tests like static code analyzes performed by Travis-CI and build

and unit tests executed by custom distribution load worker called Murdock.

The RIOT project allows developers to write a program for an 8-bit platform like for

example Arduino Mega 2560 and then reuse it on 16-bit or 32-bit platforms. This het-

erogeneity of IoT hardware imposes some constraints on the testing. Some tests can be

performed in software using device emulators or simulators. However, in order to ensure

that the combination of software and hardware works as speci�ed, system tests must be

performed on real devices [25]. In addition, it is very unlikely that this ever-growing

amount of devices can be owned and centralized in one testing rack.

PHiLIP project was developed as a low-cost and �exible Hardware-in-the-Loop (HIL)

simulator. It provides a quali�ed �rmware simulating slaves for a number of interfaces

like I2C, UART, SPI and can be used both for automated regression testing and devel-

opment/debugging needs. Together with Murdock's distributed properties and PHiLIP's

a�ordability any institution or even persons can contribute to better test coverage as the

devices do not have to be concentrated and owned at one place.

Though COM connectors disappear from modern personal computers, the UARTs are

still widely used: Various wireless technologies like Bluetooth, LoRa use them as an

interface to a CPU. Also such �eldbus standards as Modbus, BACnet use serial commu-

nication as a physical layer.

The current UART API in RIOT allows only basic functions su�cient for a shell or a

simple serial communication with standard settings like 8-bit, no parity and one stop bit

(8-N-1). Serial frame con�guration is a feature shared by all UARTs supported in RIOT.
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1 Introduction

In the current implementation, such changes cannot be made from a user application

and require custom changes on the platform driver. Therefore, extending the UART

API with a serial frame con�guration increases UART usability in RIOT and opens it to

more protocols requiring other settings than 8-N-1.

In this work we analyze the UART structure and its API in RIOT and develop a HIL

module for RIOT's CI infrastructure. Following contributions were made:

1. Extend the UART API so that it is possible to alter serial frame con�guration

(number of data bits, parity and the number of stop bits).

2. Develop a UART slave for the HIL testing based on the PHiLIP project.

3. Develop a test suite for the UART and integrate it into the RIOT's CI environment.

The thesis has the following structure. The next Section summarizes the related works.

Chapter 2 on page 4 introduces CI in the embedded systems development process and

how it is implemented in RIOT. Chapter 3 on page 8 shows current HIL testing approach

used in RIOT. UART is described in Chapter 4 on page 14. Chapter 5 on page 22 shows

how UART API is extended. Chapter 6 on page 27 describes UART test integration into

RIOT's CI process. Tests evaluation is presented in Chapter 7 on page 43. And �nally

Chapter 8 on page 50 provides conclusion and outlook.

1.1 Related Work

The introduction and main postulates of the Continuous Integration (CI) were presented

in an article of Martin Fowler [12]. [16] shows how such techniques as Test Driven

Development (TDD) and Continuous Integration that are widely used in the software

development process can be applied to the embedded software development process. [36]

gives an overview of the peculiarities in an automotive deployment pipeline.

The basics of Universal Asynchronous Receiver Transmitter (UART), its usage and pro-

tocols were described in [5]. Also, UART's data sheets and application notes provide

in-depth insight into integrated circuits of various vendors [9], [30], [28], [17], [14], [15],

[4], [35], [34], [27], [31]. [8] covers the causes of serial communication timing issues.

A Hardware-in-the-Loop (HIL) approach in general is described in [19]. [3] shows HIL

validation of an over-current relay. [26] describes testing method for embedded control

2



1 Introduction

systems. The HIL simulation of a cardiovascular system is described in [13]. [22] gives

an overview of the HIL systems for Powertrain control system software veri�cation and

validation.

Robot Framework [11] usage in software automated testing will be shown in [18], while

[32] uses Robot Framework in an embedded environment.

3



2 Continuous Integration in Embedded

Systems Development Process

This chapter introduces Continuous Integration, di�erent testing types as also their usage

in embedded systems developments process. Also current CI process in the RIOT project

will be described.

2.1 Continuous Integration Overview

Continuous Integration (CI) is a development practice used in software engineering that

requires developers to integrate code into a shared repository several times a day. Each

integration will be veri�ed by an automated build that allows an early error detection.

Basically, a CI process goes through the following stages: unit, integration, and system

testing [1].

The unit tests ensure that speci�c units and components of the software are fully func-

tional. These components will be tested isolated from each other. The aim of this stage

is to check that each component correctly implements its design and is ready to be

integrated into a system of components.

Now that the separate components are tested, they will be integrated and checked

whether they can work together in a system. The integration tests are designed to

�nd defects on the interface level between the modules/functions.

The system tests analyze the application as a whole to verify that all its acquirement are

met.

Embedded systems or as they are sometimes called cyber-physical systems have a unique

characteristic that they directly interact with the physical world. Therefore, they need

inputs and outputs that cannot always be generated or checked easily when testing [36].
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2 Continuous Integration in Embedded Systems Development Process

Providing such an environment for the automated CI process is not always possible

or feasible. To avoid the necessity of manipulating hardware the embedded systems

will be tested in simulated environments. Sensors and actuators will be replaced with a

computer that provides the exact signals the sensor would send under the desired physical

condition. The same applies to the actors where a computer is connected and translates

the outgoing signals to a hypothetical physical action. This technique is called Hardware-

in-the-Loop (HIL) simulation. It provides system-level testing of embedded systems in

a comprehensive, cost-e�ective, and repeatable manner [19]. Figure 2.1 demonstrates

a high-level view of an example HIL simulation where an embedded system or System

under Test (SUT) produces input for the real-time simulation and consumes its output

in the form of sensor data or operator commands.

Embedded System
(SUT)

Real-Time
Simulation

Actuator control signals
Operator displays

Sensor input signals
Operator commands

Figure 2.1: HIL Example [19]

Figure 2.2 shows a basic CI process tailored for embedded systems and containing all the

above-mentioned test types.

Figure 2.2: Continuous Integration Process for Embedded Systems[23]

This work focuses on the peripheral driver testing. Therefore, to embed the Device under

Test (DUT) into a HIL testing, a computer providing all necessary interfaces is needed.

5



2 Continuous Integration in Embedded Systems Development Process

Normally such a host does not provide all these interfaces or the low-level access and

special functionality are not available. Adding such interfaces through for example USB

converter would a�ect the timing accuracy. [21] suggests to use a mocking hardware

for the HIL testing. The usage of a commercial testing hardware or the development

of a custom hardware means a considerable investment. Provided, such a device can be

reused for multiple projects or where the cost of human/manual testing is very high, or

a high level of reliability is an absolute must, the costs are justi�ed.

Figure 2.3 demonstrates a setup where CI Server, on the one hand, uploads �rmware

through a JTAG interface to the DUT and executes tests using UART and Ethernet

interfaces, on the other, controls a Testing Coprocessor simulating GPIO and SPI slaves

over the USB interface.

CI Server
Embedded Target

JTAG
Cross Compiler Normal Device Firmware

Firmware Programmer
Testing Framework UART

Test Hardware Drivers
Coprocessor Firmware

Coprocessor Drivers Ethernet
System Test Code

Testing Coprocessor(s)

GPIO(s)
Coprocessor Firmware

CI Server Communication
USB Target Interface Driver SPI

Figure 2.3: HIL Testing with a Mocking Hardware [21]

2.2 RIOT Development Process

The RIOT project is hosted on GitHub platform and takes advantage of its services like

version control, issue tracker, wiki as also integration with Travis CI service. According

to RIOT's documentation 1, the following steps are needed in order to get the developer's

contribution merged:

1https://github.com/RIOT-OS/RIOT/wiki/Contributing-to-RIOT
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2 Continuous Integration in Embedded Systems Development Process

1. Fork the RIOT git repository (if you have not done this already).

2. Create a branch.

3. Make commits.

4. Make sure your code is in compliance with RIOTs coding conventions.

5. Push this branch to your fork on GitHub.

6. Do a pull request (Use the labels).

7. Other RIOT members will provide feedback.

8. Address this feedback.

9. Your code is merged in RIOT master branch.

A pull request triggers Travis CI to perform a number of tests including static source

code analysis like cppcheck and Coccinelle, Python style guide enforcement checks like

�ake8 etc.

As soon as the maintainers see the PR mature for build tests, a special label "CI: ready

for build" will be applied. This step invokes the Murdock server. Murdock is a simple

CI (continuous integration) server written in Python developed speci�cally for RIOT

OS. It will be used both for pull request validation as also for the nightly builds testing.

Basically, Murdock will run a number of static tests i.e. build tests, static code analysis

tests, etc. But it can also perform tests on a native port and a number of registered

boards (samr21-xpro was the only available board at the time of writing). For now, only

the tests that do not require externally attached hardware can be run.

GitHub invokes Murdock via a webhook feature to perform CI tasks, using disque based

work queue (dwq) Murdock distributes the tasks to available dwq worker slaves running

inside Docker containers.

The heart of the Murdock is disque based work queue. Dwq is a tool that can be used

to distribute jobs on git repositories across multiple machines. So Murdock master mode

distributes CI tasks based on per board/app basis to the registered dwq worker slaves

reducing the duration of CI session.

The results from all used worker slaves are combined and provided back to the GitHub.

7



3 Test Platform for HIL in RIOT

3.1 PHiLIP

The Primitive Hardware In the Loop Integration Product (PHiLIP) project [37] is a

combination of hardware and software that RIOT will use in a CI process but is not

limited to it. The project uses a�ordable hardware like Blue Pill (STM32F103C8) and

STM32 Nucleo-64 development (STM32F103RB) boards. The Blue Pill boards can be

purchased for less than $2. This makes it usable for a lot of developers needing a tool

with quali�ed �rmware to test their embedded systems at various development stages.

Figure 3.1 a shows Blue Pill board mounted on top of a Raspberry Pi using a specially

designed adapter board (the green layer between Blue Pill and Raspberry Pi). Together

these devices form a HIL node for RIOT's CI.

Figure 3.1: HIL Node for CI

8



3 Test Platform for HIL in RIOT

An MCU solution was chosen because specialized testing hardware is expensive and has

proprietary �rmware, so that not every required scenario can be covered. Besides MCU

provides low-level hardware access enabling exact test control. For example, NRT's

NanoBoard supports only I2C, SPI, GPIO, and analog signals and already costs $59 [33].

Some related interfaces like UART, CAN, etc. are missing and the API does not provide

access to the controller's registers.

PHiLIP covers such interfaces as I2C, UART, GPIO, SPI etc. Figure 3.2 shows Blue

Pill board pin con�guration. Serial interface UART (TX1, RX1) is used to control the

�rmware.

Figure 3.2: PHiLIP-B Pinout [37]

PHiLIP implements a set of virtual registers. One set of registers controls slave behavior

and also gathers statistics like sent/received bytes or packets, error �ags, a slave state,

etc. This way the user can detect and analyze DUT issues. The other set of registers lets

both the user and DUT read and write arbitrary data and simulate real slave devices.

3.1.1 Firmware Controlling Protocol

PHiLIP will be controlled using a simple ASCII protocol. The protocol supports four

commands shown in Table 3.1 on the following page allowing the user to read and write

9



3 Test Platform for HIL in RIOT

registers of the memory map and reset PHiLIP's MCU. These commands can be typed

in a terminal software like HyperTerminal or minicom to manually control PHiLIP.

Writing to a register will only alter the memory map. To apply settings, for example,

to change UART baud rate one needs to issue ex command after changing the related

register.

Command Parameter Description

rr index, size Read register

wr index, data, size Write to register

ex n.a. Commit changes

mcu_rst n.a. Reset MCU

Table 3.1: PHiLIP Protocol

3.1.2 RIOT PAL

r i o t_pa l is a Python package abstracting away and unifying shell based commands in

RIOT and for bare metal memory map access. This way both DUT and PHiLIP can be

controlled using the same interface.

Low Level Memory Map Interface (LLMemMapIf) is the core component interfacing with

a memory map. It parses the map from a CSV �le and allows �ne-grained access to the

registers compared to ASCII protocol. In ASCII protocol each register is addressed with a

numerical o�set. r i o t_pa l allows hierarchical symbolic register names comparable with

the structure �eld access in C programming language. For example, reading "uart.mode"

register will access mode �eld of the uart structure in PHiLIP. The interface provides

the following basic functions:

• read_struct - reads a set of registers de�ned by the memory map.

• read_reg - read a register de�ned by the memory map.

• write_reg - writes a register de�ned by the memory map.

10



3 Test Platform for HIL in RIOT

3.2 Test Infrastructure in RIOT

RIOT's peripheral tests are collected under t e s t s folder pre�xed with periph_. Such

tests provide a small application that will be �ashed onto DUT. This program provides

a shell interface allowing the user to initialize the peripheral in question and perform

actions according to the API. All interactions run via the default UART. For example

main . c from per iph_spi allows the user to setup SPI modes, frequency etc. and

transfer data to some slave.

UART peripheral test application implements the following commands:

• i n i t - initialize a UART device with a given baud rate.

• send - send a string through given UART device.

The incoming data will be stored in a bu�er associated with a given UART and as soon

as character \n will be received the content of the bu�er will be printed.

3.2.1 Robot Framework

Robot Framework is a generic test automation framework written in Python. It makes

use of tabular test data syntax and utilizes the keyword-driven testing approach. The

keywords act as programming functions or methods. The users can use the keywords

provided by the standard libraries to create their own higher-level keywords.

This approach is demonstrated in Listing 3.1 taken from the o�cial Robot Framework

documentation [11]. The "Settings" section provides test suite description and also in-

cludes additional higher-level keywords from re sou r c e . txt �le. The test case "Valid

Login" performs the followings steps: opens a login page in a browser, inputs demo and

mode as login credentials, submits them and checks whether the page could be opened

with the submitted credentials. In the end, the browser is closed. A keyword, for example,

"Submit Credentials" has only one character spaces between the words and corresponds

to a Python function submit_credent ia l s . A parameter is provided using a tabular

like in user name input keyword.

*** Settings ***
Documentation A test suite with a single test for valid login.

This test has a workflow that is created using keywords in

11



3 Test Platform for HIL in RIOT

the imported resource file.

Resource resource.txt

*** Test Cases ***
Valid Login

Open Browser To Login Page

Input Username demo

Input Password mode

Submit Credentials

Welcome Page Should Be Open

[Teardown] Close Browser

Listing 3.1: Robot Framework Example [11]

Robot framework is independent of operating system and application. Figure 3.3 shows

the framework architecture as it is described in its documentation. The framework re-

ceives the test data and utilizes test libraries to communicate with the system under

test [32]. Usually, this communication is direct but some testing libraries require lower

level test tools as drivers. In the case of RIOT, a test library relies on RIOT Proto-

col Abstraction Layer as a driver to handle communication with both PHiLIP and the

DUT.

Test Data

Robot Framework

Test Libraries

Test Tools

System Under Test

-------------Test data syntax

--------------Test library API

------------System interfaces

Figure 3.3: Robot Framework Architecture [11]

Robot Framework generates thorough reports and logs in XML format and hence, can

be easily integrated into web-based CI systems.

12



3 Test Platform for HIL in RIOT

RobotFW-tests project maintains various HIL tests [20]. It uses git submodules to inte-

grate RIOT source tree and so provide a full build environment.

Folder d i s t / robotframework/ r e s provides keywords for common modules used by

all tests:

• ap i_she l l . keywords . txt - keywords for shell API calls.

• ph i l i p . keywords . txt - keywords to reset PHiLIP and DUT.

• r iot_base . keywords . txt - keywords to reset RIOT application.

Folder d i s t / robotframework/ l i b provides a Python module Phil ipAPI . py. This

module abstracts the communication with PHiLIP using RIOT PAL.

A test will be invoked using make command:

BOARD=<name> make −C t e s t s /<t e s t name> f l a s h robot−t e s t

13



4 UART

4.1 UART Overview

The Universal Asynchronous Receiver Transmitter (UART) is an integrated circuit (IC)

providing asynchronous serial communication capabilities. Universal designation stands

for con�gurability of both data format and transmission speeds. Also the actual electric

signaling levels and methods (like di�erential signaling etc.) typically are handled by a

special driver circuit external to the UART [2].

UART internal structure consists of following elements: transmitter, receiver, baud rate

generator and a First-In-First-Out (FIFO). Figure 4.1 on the next page shows such a

structure based on the Exar's ST16C550 UART. The transmitter converts parallel data

into a stream of bits, which the receiver then samples and converts into parallel data.

This conversion is performed by a shift register. The FIFO is a special bu�er used both

as a transmitter and receiver that stores high speed incoming data to prevent data loss

and increase throughput for the outgoing data. Baud rate generator provides clock to

transmitter, receiver and FIFO.

In UART communication two devices are interconnected by two pins RX (receive) and

TX (transmit). RX pin of one device is connected to TX pin of the other and vice versa.

This way a bidirectional communication is possible. Two UARTs can be interconnected

directly using TTL signals, for a communication with devices in a �eld physical standards

like RS-232, RS-422, RS-485 and others are used.

Transmission timing UARTs communicate with each other using the asynchronous

methodology. Instead of using a clock signal to indicate the beginning and the end of a

byte, start and stop bits are used. Hence, both sides must use the same baud rate because

a large deviation will cause wrong bit sampling. To allow larger frequency deviation many
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4 UART

Figure 4.1: ST16C550 UART Internal Structure [9]

UARTs over-sample the incoming data at 16 times the baud rate to detect the near center

of the start bit [28].

Aside from baud rate setting issues, there are also other factors that can a�ect the

timing of a UART transmission: send jitter problem, baud rate drift, clock o�set and

signal runtime [8]. But as the software UART drivers do not in�uence these issues, this

section concentrates on the arithmetic error in baud rate setting.

Standalone UARTs like 8250 and its derivatives use an external clock source. So normally

it is chosen so that it is possible to get the standard baud rates like 50, 300, 600, 2400,

4800, 9600, 19.2 k, 38.4 k, 57.6 k and 115.2 k exactly.

Following example shows how a baud rate can be programmed into a ST16C550 UART

with a crystal or oscillator running at 14.7456 MHz. This UART uses a 16-bit divisor

together with the over-sampling rate to divide the clock and get the required baud rate.

Two registers DLM and DLL hold the most and less signi�cant bytes of the divisor,

respectively. Equation (4.1) on the following page calculates the baud rate from UART

15
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clock, over-sampling rate and divisor. Table 4.1 on the next page shows the obtained

baud rate divisors, actual baud rates and an error between a desired baud rate and actual

baud rate. Because of the speci�cally selected clock source, the error is zero.

baud rate =
clock

16× divsor
(4.1)

As for MCUs, the situation is di�erent because UART is an integral part of the MCU itself

and thus uses one of the system clocks. To show the di�erence between standalone and

integrated UARTs, the baud rate programming is performed for STM32 family UARTs.

These UARTs have a more �exible con�guration. The divisor value programmed into

the baud rate register USART_BRR has an integer part 12-bits and a fractional part

4-bits. The over-sampling rate is con�gurable and allows both 8x and 16x rates. The

OVER8 bit controls the UART to sample with 8x over-sampling rate if set and 16x if

cleared. A prescaler speci�es the clock for the UART. According to the data sheet it

ranges from 8 to 84 MHz. This example takes 8 MHz clock to show the calculation error.

Equation (4.2) will be used to calculate a baud rate for STM32. Hence setting OVER8

to 0 converts the formula to the same equation as for ST16C550, but the problematic

part is splitting the divisor into mantissa and a fraction.

baud rate =
clock

8× (2−OV ER8)× divisor
(4.2)

Calculation error is demonstrated by determining divisor for 115200 b/s:

1. Using the modi�ed equation (4.1) and rounding to two digits after a decimal point

a divisor for 115200 b/s is 4.34

2. Fractional part for the USART_BRR register is calculated as 16 × 4.34 = 5.44.

After rounding it becomes 5. So USART_BRR value is 0x45

3. To determine the actual divisor the USART_BRR provides the fractional part and

is calculate as follows: 12 : 5 = 0.3125. In the end the divisor used by the UART

equals 4.3125 instead of 4.34 resulting in an error of 115942×100
115200 = 0.64%

Table 4.2 on the following page taken from [30] shows baud rate calculation errors for

the same standard baud rates using the above mentioned approach. As can be seen from

the table the resulting baud rates di�er from the desired ones.
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Desired baud rate Divisor Actual baud rate % Error

115200 8 115200 0

230400 16 230400 0

460800 32 460800 0

Table 4.1: Baud rate table for ST16C550

Desired baud rate Divisor Actual baud rate % Error

115200 4.3125 115942 0.64

230400 2.1875 228571 0.79

460800 1.0625 470588 2.12

Table 4.2: Baud rate table for STM32

In general, a UART in 16x oversampling mode allows about ±5% of a baud rate deviation

considering a byte consisting of a start bit, 8 data bits and one stop bit [28]. But

depending on the implementation each UART model and even its revision can have its

own tolerance when receiving a character.

For example according to [28] SC16CXXXB UARTs with date code prior to 0443 tolerate

baud rate deviation of -0.5 % if the incoming baud rate is less than programmed one,

and 5.6 % if the incoming baud rate is more than programmed one. Later revisions have

increased their tolerance for slower baud rates to -4.4 %.

STM32 UARTs tolerate deviation from 3.03% to 4.375% depending on the selected

mode.

Data framing UART wraps each character into a packet when sending on the wire.

Table 4.3 shows a serial frame and its components. It begins with a start bit and ends

with one or two stop bits. Between these bits resides a character itself and optionally

a parity bit. The receive UART samples this packet and checks if every bit can be

detected according to the programmed settings. If a stop bit cannot be detected at its

�xed position then a framing error is detected and a related status bit is set.

1 start bit 5 to 9 data bits 0 to 1 parity bits 1 to 2 stop bits

Table 4.3: UART Packet

17



4 UART

Parity The line noise can corrupt transmitted bytes. To detect this, the UARTs can

use an added bit to ensure that the total number of 1-bits in a serial frame is odd or

even. Therefore, there are two parity bit types used for error detection: odd and even.

The odd parity bit is set when the number of 1-bits is odd, and the even parity bit is set

when the number of 1-bits is even, respectively. Table 4.4 shows how serial frames look

with either parity enabled.

Character Binary Number of ones
Serial frame

8-O-1

Serial frame

8-E-1

a 0110 0001 odd 0-10000110-1-1 0-10000110-0-1

c 0110 0011 even 0-11000110-0-1 0-11000110-1-1

Table 4.4: Odd an Even Parity Examples

There are also other parity types that do not have an error detection function. Mark

and space belong to stick parity. With mark parity, the parity bit is always 1, and with

stick parity, the parity bit is always 0. Some 9-bit networks use it to detect whether a

UART frame contains an address or data [5].

Modem signals A full-featured UART like 8250 and its derivatives implements addi-

tional six signals used to control a modem: RTS, CTS, DTR, DSR, DCD, and RI. These

signals handle hardware handshake, device and line status as also incoming calls. If the

UART is not used with a modem, then mostly used signals are RTS/CTS.

Request To Send (RTS) and Clear To Send (CTS) signals are cross-coupled between two

communicating devices. Each device uses its RTS to signal if it is ready to accept new

data and check CTS to see if it is allowed to send data [17].

4.2 Supported UARTs in RIOT

RIOT operating system supports various microcontrollers (MCUs). These MCUs provide

one or several UARTs. Table 4.5 on the next page shows a non-exhaustive list of UARTs

supported in RIOT and their features. As can be seen from the table MCUs implement

only a small subset of the UART capabilities compared to the 8250 family.
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The MCUs provide only built-in RTS/CTS handshake, there is no modem control/s-

tatus register equivalent. So if these signals should be controlled by software such a

functionality will have to implemented using signals in GPIO mode.

Only a small subset of the MCUs supports stick parity. Data bits support also di�ers

from MCU to MCU.

Hardware support for RS485 mode is available only by a small number of MCUs. In

these MCUs RTS signal will be used to control the RS485 transmitter. Other controllers

must use a free GPIO and shift register empty interrupt in order to determine when the

last bit went on wire to disable the transmitter.

MCU
Modem Control

Signals
Data Bits Parity

RS485

Support

ATmega328 [35] none 5 to 9 even, odd no

CC2538 [14] RTS, CTS 5 to 8 even, odd, stick no

MSP430x1xx [15] none 8 to 9 even, odd no

PIC32 [34] RTS, CTS 8 to 9 even, odd no

SAM3X [4] RTS, CTS 5 to 9 even, odd, stick yes

STM32F04x [29] RTS, CTS 7 to 9 even, odd yes

STM32F446xx [30] RTS, CTS 8 to 9 even, odd no

ESP32 [31] RTS, CTS 5 to 8 even, odd no

nRF51 [27] RTS, CTS 8 even no

Table 4.5: UARTs Supported in RIOT

4.3 UART API in RIOT

RIOT's low-level UART peripheral driver was designed with the simplicity in mind to

allow for easy implementation and maximum portability. So it uses the common 8-N-1

format of the serial port i.e. 8 data bits, no parity and one stop bit. The only parameter

a user can change is the baud rate.

Initialization uar t_in i t routine takes care of the UART initialization (see its de�-

nition below).

int uart_init (uart_t uart,

uint32_t baudrate,
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uart_rx_cb_t rx_cb,

void * arg

)

It accepts following parameters:

• uart - UART device to initialize

• baudrate - desired baudrate in baud/s

• rx_cb - receive callback, executed in interrupt context once for every byte that is

received (RX bu�er �lled), set to NULL for TX only mode

• arg - optional context passed to the callback functions

void uart_write (uart_t uart,

const uint8_t * data,

size_t len

)

uart_write routine sends l en characters from the given bu�er data. The function is

blocking and will only return if l en bytes are sent.

typedef void(* uart_rx_cb_t) (void *arg, uint8_t data)

Character reception is implemented using an interrupt callback function, that was given

to the uar t_in i t routine.

4.4 UART Test Overview

UART API allows a user to con�gure UART and send/receive serial data. All UARTs

from Table 4.5 on the preceding page support serial frame con�guration. The majority

of devices also provide RTS/CTS signals. Automatic RS485 transmitter control is only

supported by a small number of MCUs and thus will not be handled further.
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Together with PHiLIP as mocking hardware the following test types can be made with

a HIL simulation:

• Con�guration tests.

• Data transmission tests.

• Modem signal tests.

Con�guration tests take care of UART initialization, baud rate calculation and also serial

data frame con�guration (data bits, parity and stop bits). Data frame con�guration

requires an API extension that is also part of this work.

Data transmission tests check that the previously applied con�guration works correctly.

A successful API call only means that a setting could be applied but its e�ect can be

only checked in real data transmission.

Modem signal tests check whether RTS/CTS pin con�guration was correctly applied

Con�guration and data transmission tests were implemented in PHiLIP and also inte-

grated into RIOT CI environment. Modem signal tests were only implemented in PHiLIP

as runtime hardware handshake con�guration API is still in evaluation.
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5 Extending UART API

Currently, UART API does not allow to con�gure the serial interface to any other mode as

8-N-1 at runtime. This makes RIOT di�cult to be used with the serial protocols/devices

requiring other settings. The author of a pull request "UART: setting baudrate, stopbits,

and parity on runtime" 1 suggests that UART API should be extended to support such

serial settings as a number of data and stop bits as also parity.

5.1 STM32 UART

As a proof of concept STM32 platform was chosen. STM32 UARTs have following

capabilities: 7, 8 and 9 data bits, odd and even parity as also 1 and 2 stop bits.

Not all devices share the same functionality. As for a number of supported data bits,

there are two STM32 UART �avors: L1, F1, F2, F4 series support only 8 and 9 bits and

the devices belonging to the F0, F3, F7, L0, L4 generally support 7, 8 and 9 bits. But

some of the devices from the second group do not support 7 bits [29].

The con�guration takes place in the control registers USART_CR1 and USART_CR2.

STM32 UART's number of data bits depends on the parity settings, i.e. if a frame should

have 8 data bits and a parity then a 9 bit mode will have to be setup. Table 5.1 on the

next page shows all possible combinations (the two last combinations are not available to

the UARTs that do not support 7 data bits). M bits areUSART_CR1_M,USART_CR1_M0

and USART_CR1_M1 enabling 9 and 7 data bits accordingly. PCE or USART_CR1_PCE

bit enables parity control. USART_CR1_PS bit con�gures odd or even parity.

USART_CR2_STOP_1 bit enables 2 stop bits.

1https://github.com/RIOT-OS/RIOT/pull/5899
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5 Extending UART API

M bits PCE bit Frame

00 0 |start bit|8-bit data|stop bit|

00 1 |start bit|7-bit data|parity bit|stop bit|

01 0 |start bit|9-bit data|stop bit|

01 1 |start bit|8-bit data|parity bit|stop bit|

10 0 |start bit|7-bit data|stop bit|

10 1 |start bit|6-bit data|parity bit|stop bit|

Table 5.1: Frame Formats

USART_CR1_UE bit on the UARTs supporting 7-bit mode must be unset prior to chang-

ing serial settings.

The incoming data will be stored in the USART_RDR_RDR register together with the

parity bit. Hence, when read into the software bu�er, parity bit becomes part of the

data byte. This is rather uncommon approach as usually the UARTs discard start,

parity and stop bits and do not pass them to the host [10].

5.2 Con�guration Routine

New routine uart_mode extends the API. Listing 5.1 shows function de�nition.

int uart_mode (uart_t uart,

uart_data_bits_t data_bits,

uart_parity_t parity,

uart_stop_bits_t stop_bits

)

Listing 5.1: De�nition of the uart_mode Function

• uart - UART device to con�gure

• data_bits - number of data bits in a UART frame

• parity - parity mode

• stop_bits - number of stop bits in a UART frame
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Three new enumeration types map parity, data and stop bits. The idea behind these

enumerations is to specify a register con�guration bits required to enable serial set-

tings. These values can then be just assigned to the register without checking for the

exact value in a switch/case or an if clause (see Listing A.1 on page 56 lines 40 and

41). Each platform overrides the common enumerations with related values and also

marks not supported modes. The values de�ned as zero specify default values, i.e.

uart_mode ( uart , 0 , 0 , 0) con�gures UART to 8-N-1 mode.

Listing 5.2 demonstrates how it is implemented for the parity. Even parity is activated

with parity control enable bit, and the odd parity requires both parity control enable

and parity select bits. STM32 does not support mark and space parities, therefore, these

modes are marked as invalid. The enumeration for stop bits is simpler as all de�ned

modes are supported (refer to Listing 5.3).

typedef enum {

UART_PARITY_NONE = 0, /**< no parity */

UART_PARITY_EVEN = USART_CR1_PCE, /**< even parity */

UART_PARITY_ODD = (USART_CR1_PCE | USART_CR1_PS), /**< odd parity */

UART_PARITY_MARK = UART_INVALID_MODE | 4, /**< not supported */

UART_PARITY_SPACE = UART_INVALID_MODE | 5 /**< not supported */

} uart_parity_t;

Listing 5.2: Enumeration for the parity

typedef enum {

UART_STOP_BITS_1 = 0, /**< 1 stop bit */

UART_STOP_BITS_2 = USART_CR2_STOP_1, /**< 2 stop bits *
} uart_stop_bits_t;

Listing 5.3: Enumeration for the number of stop bits

As already mentioned the number of supported data bits cannot be detected based on

the CPU family. The solution is to use USART_CR1_M1 macro that is only de�ned for

CPUs implementing this feature. Listing 5.4 shows 7-bit mode being enabled only if

USART_CR1_M1 is de�ned.

typedef enum {

UART_DATA_BITS_5 = UART_INVALID_MODE | 1, /**< not supported */

UART_DATA_BITS_6 = UART_INVALID_MODE | 2, /**< not supported unless

parity is set */

#if defined(USART_CR1_M1)
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UART_DATA_BITS_7 = USART_CR1_M1, /**< 7 data bits */

#else

UART_DATA_BITS_7 = UART_INVALID_MODE | 3, /**< not supported unless

parity is set */

#endif

UART_DATA_BITS_8 = 0, /**< 8 data bits */

} uart_data_bits_t;

Listing 5.4: Enumeration for the number of data bits

Another challenge is the MSB parity bit during the data reception. This issue arises

only when the number of data bits is smaller than 8 and parity is enabled. For example

receiving '0' or 0x30 character with 7-E-1 mode, will result in reading 00110000 from the

USART_RDR_RDR register, so the character will be correctly passed to the user space.

But receiving '1' or 0x31 character, will result in reading 10110001, hence delivering a

wrong character i.e. 0xb1 instead of 0x31.

The MSB has to be masked as the receive callback is to return the data bits. The

�rst and the last place where the UART driver can handle the incoming data is the

interrupt handler. The mask will be de�ned in an interrupt context structure as shown

in Listing 5.5. This way the handler does not need to spend extra time to determine

what mask to use (see Listing A.2 on page 57 lines 11 and 23).

/**

* @brief Allocate memory to store the callback functions

*

* Extend standard uart_isr_ctx_t with data_mask field. This is needed

* in order to mask parity bit.

*/

static struct {

uart_rx_cb_t rx_cb; /**< data received interrupt callback */

void *arg; /**< argument to both callback routines */

uint8_t data_mask; /**< mask applied to the data register */

} isr_ctx[UART_NUMOF];

Listing 5.5: STM32 Interrupt Context Structure

The function uart_mode is so far only provided for STM32 platform. Until all plat-

forms implement it, this code is guarded withMODULE_PERIPH_UART_MODECFGmacro

and exposed to the applications as a periph_uart_modecfg feature. As soon as all
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platforms add it to their UART drivers, both macro and a feature can be removed and

new platforms will have to provide uart_mode's implementation at once.

5.3 Veri�cation

During the implementation of the uart_mode routine, several testing techniques were

used.

The �rst veri�cation occurred using a terminal emulator and RIOT's testing �rmware, i.e.

t e s t s / periph_uart /main . c. This manual method was su�cient to check whether

STM32 could correctly send bytes with changed parity and data bits. Though this only

checked that no framing errors occurred during the transmission. Terminal software

ignores parity errors so that the characters will be displayed correctly even if one side

was sending with even parity and the other side was receiving with odd parity.

The opposite direction was even more challenging because of the parity bit inclusion into

the data read register. So even if the parity was correctly set on both sides, the characters

with parity bit set were not the expected ones. It was also hard to check whether two

stop bits were actually sent. Both STM32 and FTDI only check for the �rst stop bit to

assure the correct framing. The second stop bit will be ignored. So using an oscilloscope

as shown in Section 7.3 on page 45 was required to verify that all serial frames were

correctly sent.

As soon as all settings were applied correctly and other implementation aspects were

changing, PHiLIP was used to perform veri�cation automatically.
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Adding UART testing to the RIOT CI process required changes to several projects. First

of all PHiLIP's �rmware has to be extended to support UART, then RIOT peripheral

testing infrastructure has to be reworked to perform tests with PHiLIP.

6.1 Preparing PHiLIP for UART Testing

PHiLIP is using STM32 UART and hence has following capabilities:

• 8 to 9 data bits.

• None, even and odd parities.

• Hardware �ow control on RTC/CTS pins.

• 1 to 2 stop bits.

• Overrun, noise, frame and parity error detection.

Though compared to Table 4.5 on page 19 PHiLIP covers not all UART features, but

most common settings can be tested. The quali�ed �rmware was extended to allow the

following: receive/transmit tests at di�erent baud rates, none, even and odd parity tests

as also automatic hardware �ow control tests.

Figure 6.1 on the next page shows a development setup for a PHiLIP device. Host PC

connects to both UARTs using FTDI based USB to serial adapters.
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Host PC PHiLIP

UART1

UART3

USB to serial
Adapter

USB to serial
Adapter

Figure 6.1: PHiLIP Development Setup

6.1.1 Software Structure

The software structure corresponds to PHiLIP's git repository [37] at the time of commit

864fd153e69eb7b8de91920ca85bbf31a75dcd92.

UART test logic is tightly interwoven with the serial communication interface used to

control the PHiLIP application. This code resides in port_uart . c source �le. The

UART test speci�c code resides in port_dut_uart . c and handles UART settings like

baud rate, parity, data and stop bits as also setting/clearing of the RTS signal.

PHiLIP's serial communication is working in an input mode that is similar to libc's

canonical mode, i.e. the string will be returned only if the \n character is received. So

PHiLIP is waiting for \n and as soon as it is received it starts with command parsing.

The register map was extended with uart_t structure that holds UART related settings.

UART behavior will be de�ned by the mode �eld. There are four modes:

• MODE_ECHO- received data will be returned as is, i.e. simulating virtual loopback.

• MODE_ECHO_EXT - this is a data changing mode. All received data bytes will be

incremented by one.

• MODE_REG - register access mode. In this mode UART is working as the serial

controlling link.

• MODE_TX - special mode that permanently sends data.

baud holds UART's baud rate de�ne as an integer. rx_count and tx_count hold

number of bytes sent to and received from the DUT. c t r l structure will be used to

con�gure parity, stop bits as also toggle the RTS pin. s t a tu s structure indicates CTS

state.
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typedef union uart_t_TAG {

struct {

/* Test mode */

uint8_t mode;

/* Baudrate */

uint32_t baud;

/* Number of received bytes */

uint16_t rx_count;

/* Number of transmitted bytes */

uint16_t tx_count;

/* UART control register */

uart_ctrl_t ctrl;

/* UART status register */

uart_status_t status;

/* Reserved bytes */

uint8_t res[5];

};

uint8_t data8[16];

} uart_t;

typedef struct uart_ctrl_t_TAG {

/* Number of stop bits */

uint8_t stop_bits : 1;

/* Parity */

uint8_t parity : 2;

/* RTS pin state */

uint8_t rts : 1;

/* Number of data bits */

uint8_t data_bits : 1;

} uart_ctrl_t;

typedef struct uart_status_t_TAG {

/* CTS pin state */

uint8_t cts : 1;

/* Parity error */

uint8_t pe : 1;

/* Framing error */

uint8_t fe : 1;

/* Noise detected flag */

uint8_t nf : 1;

/* Overrun error */

uint8_t ore : 1;

} uart_status_t;
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6.1.2 Receive and Transmit

As pointed in Section 4.1 on page 14 UART's clock source can have a great impact on

sending and receiving serial data. Not only the external clock but also the clock for the

UART subsystem in an MCU can a�ect sampling accuracy and the resulting transmit

baud rate. So it is important to make sure an embedded system's UART supports

target baud rate. PHiLIP provides various modes to test the DUT's transmit/receive

behavior.

STM32 UART is capable of detecting following receive errors:

• Overrun error is detected when data cannot be transferred from the shift register

to the RDR register.

• Noise error is detected when at least one of the samplings shows 2 of 3 sampled

bits are at 0.

• Framing error is detected when the stop bit is not recognized on reception at the

expected time.

• Parity error is detected when the parity bit does not match the number of expected

1-bits.

Echo or virtual loopback mode receives a string ending with \n character and sends it

back to DUT. Such a test can be performed at any baud rate that both devices support.

As soon as DUT does not receive the same string as was sent uart_status_t register

can be checked for the possible cause of transmission issue. If either noise or framing

errors are set then PHiLIP could not reliable receive the data. If no such errors were

set then DUT could not receive the data. Both rx_count and tx_count should be

checked to determine how many characters where received and sent by PHiLIP.

6.1.3 Parity

PHiLIP supports none, odd and even parities modes. Taking 8 and 9-bit data into

account following test combinations with parity bit are possible:

• 7 bit data and even parity.
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• 7 bit data and odd parity.

• 8 bit data and even parity.

• 8 bit data and odd parity.

During the UART API extension, a special feature of STM32 UART was revealed. I.e.

that the parity bit together with the serial data is placed into the data register. As long

as the data reading is interrupt driven the byte can be masked in the interrupt routine.

But as PHiLIP con�gures UART in DMA mode, the data has to be masked when reading

from DMA bu�er. Listing A.3 on page 58 shows _rx_str routine that handles incoming

data.

6.1.4 Hardware Handshake

MCU's in RIOT support automatic hardware handshake on RTS/CTS pins if these

dedicated pins are provided at all. The test should check whether the automatic hardware

handshake was con�gured correctly i.e. no data is to be sent when CTS is read as high

and RTS is to be raised when the UART's hardware handshake trigger level is reached.

If RTS/CTS mode is activated RTS cannot be toggled in software. This is also true for

STM32 used in PHiLIP. To overcome this limitation pins RTS/CTS will be con�gured

as GPIOs. This way RTS signal can be toggled and CTS signal change can generate an

interrupt.

Hardware handshake test will be executed in two steps. The �rst step checks whether

the DUT's transmitter would react to its CTS signal change and stop sending. Via serial

control interface PHiLIP will be instructed to set RTS signal, then DUT will try to send

a test data. If after a de�ned timeout no data will be received on DUT side, the test is

positive. Otherwise, the handshake is not working or con�gured properly.

The second step is more complicated. DUT's UART is in automatic hardware handshake

mode and cannot toggle its RTS signal, so PHiLIP has to bring the other UART to set

RTS. This can be achieved by sending enough data to �ll the Rx FIFO so that UART

will have to set its RTS signal.

MODE_TXwas developed to continuously send data and thus force the DUT to raise its

RTS signal. Enabling it will make PHiLIP sending character 'a' continuously till this

mode is changed. The interrupt handler for the CTS pin catches the signal change on
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rising edge (see Listing 6.1) and saves it into c t s �eld of the uart_status_t structure

(see Listing 6.2).

/* Configure GPIO pin : DUT_CTS_Pin */

GPIO_InitStruct.Pin = DUT_CTS_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;

GPIO_InitStruct.Pull = GPIO_PULLDOWN;

HAL_GPIO_Init(DUT_CTS_GPIO_Port, &GPIO_InitStruct);

Listing 6.1: CTS Interrupt Con�guration

void EXTI15_10_IRQHandler(void)

{

/* USER CODE BEGIN EXTI15_10_IRQn 0 */

uint8_t status;

read_regs(offsetof(map_t, uart.status), (uint8_t *)&status, sizeof(((

uart_t *)0)->status));

status |= 0x01;

write_regs(offsetof(map_t, uart.status), (uint8_t *)&status, sizeof

(((uart_t *)0)->status), IF_ACCESS);

#ifdef BLUEPILL

HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_13);

#endif

#ifdef NUCLEOF103RB

HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_10);

#endif

/* USER CODE END EXTI15_10_IRQn 1 */

}

Listing 6.2: CTS Interrupt Handler

Figure 6.2 on the following page shows two signals: PHiLIP's TX transmitting multiple

'a' characters and DUT's RTS going high.

6.1.5 Validating PHiLIP Firmware

At the moment of writing, only I2C and UART slaves were implemented. Hence, the

PHiLIP project is still in active development and requires constant testing. The quali�ed

�rmware can be released only if the whole functionality is veri�ed.
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Figure 6.2: CTS Assertion

The test will be handled with a Python script TEST/uart_module_test . py. It ac-

cepts three parameters:

• port - serial device connected to PHiLIP's control port.

• dutport - serial device connected to PHiLIP's DUT port.

• loglevel - script's verbosity.

6.2 Preparing RIOT for UART Testing

The testing process should ensure that both newly introduced boards/platforms are cor-

rectly implemented and that refactoring, bug �xing, etc. do not break the already working

con�guration.

Echo tests with di�erent baud rates cover the UART initialization, baud rate calculation

and data reception/transmission aspects. Using the current UART API calls these tests

check that the UARTs initialization does not freeze (proper IRQ locking sequence), the

correct UART clock is selected, the baud rate is set without returning an error and baud

rate calculation error is within a tolerance range. It is necessary to perform the baud rate
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tests on the most used mode settings (such as 8-N-1) as this is the only mode supported

by all platforms. The short echo tests with prede�ned characters check for baud rate

accuracy and the tests with random data stress the DUT and check that di�erent patterns

can be correctly sampled.

The advanced UART con�guration tests check not only whether the UART can set the

modes correctly, but that uart_mode calls can be executed one after another without

the need to completely reinitialize the UART using uar t_in i t call. The negative tests

ensure that the required settings were e�ectively applied.

6.2.1 PHiLIP Keywords

First of all tests require an abstraction of the RIOT PAL protocol to get meaningful key-

words for UART con�guration. d i s t / robotframework/ l i b /Phil ipAPI . py imple-

ments Phil ipAPI class. It provides the following methods reset_dut, setup_uart,

get_counters and get_error_f lags .

reset_dut resets DUT using a dedicated GPIO signal. This step is necessary in order

to bring the DUT into an initial state and thus establish the same condition for all

tests.

setup_uart provides one method where all UART related settings can be set. This

method changes PHiLIP's memory map and applies these changes.

get_counters reads receive and transmit counter �elds from PHiLIP's memory map.

get_er ror_f lags reads error �ags from PHiLIP's memory map.

Phil ipAPI will be imported via philip.keywords.txt �le as PHILIP object.

*** Settings ***
Library PhilipAPI port=%{PHILIP_PORT} baudrate=${115200} WITH

NAME PHILIP

Resource riot_base.keywords.txt

*** Keywords ***
Reset DUT and PHILIP

[Documentation] Reset the device under test and the PHILIP tester.

Reset Application

PHILIP.Reset MCU
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PHILIP.Reset DuT

Show PHILIP Statistics

[Documentation] Show rx/tx counters and error flags.

${rx} ${tx} = PHILIP.Get counters

${pe} ${fe} ${nf} ${ore} = PHILIP.Get error flags

Set Test Message RX: ${rx[’data’]}, TX: ${tx[’data’]}, PE: ${pe[’data’]},

FE: ${fe[’data’]}, NF: ${nf[’data’]}, ORE: ${ore[’data’]}

Get PHILIP Statistics

[Documentation] Return rx/tx counters and error flags.

${rx} ${tx}= PHILIP.Get counters

${pe} ${fe} ${nf} ${ore}= PHILIP.Get error flags

[return] RX: ${rx[’data’]}, TX: ${tx[’data’]}, PE: $

{pe[’data’]}, FE: ${fe[’data’]}, NF: ${nf[’data’]}, ORE: ${ore[’data’]}

Listing 6.3: PHiLIP Keywords

6.2.2 Transmit and Receive

The tests begin with an echo mode where a string "t111" will be sent and received at

115200b/s and 8-N-1 con�guration. In the case of an error, this prede�ned pattern can

be checked on an oscilloscope.

After checking the basic UART functionality a test with a long string consisting of

randomly chosen digits will be made.

The extended echo tests i.e. data changing tests use the same patterns.

Register access tests simulate real slave communication using a de�ned protocol.

Baud rate tests take a number of standard speeds and perform transmissions in echo

mode. As a negative test both PHiLIP and DUT perform transmission at di�erent baud

rates.

6.2.3 Data Bits, Parity and Stop Bits

The newly introduced support for changing advanced serial settings at runtime is so

far only available for STM32 UARTs. Therefore, the tests should be able to detect
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support for uart_mode command at runtime. All CPUs must support 8-N-1 con�gu-

ration. Hence, if this command fails, the CPU in question does not provide support for

uart_mode and this test must be skipped.

The parity tests will be performed �rst for 8 data bits and then for 7 data bits. Each

parity test will be made along with a negative test where the opposite parity will be set.

Listing 6.4 shows these tests.

Even Parity 8 Bits

DUT UART mode should exist dev=1

PHILIP.Setup Uart parity=${UART_PARITY_EVEN}

API Call Should Succeed Uart Init

API Call Should Succeed Uart Mode data_bits=8 parity="E" stop_bits=1

DUT Should Match String 1 ${SHORT_TEST_STRING} ${SHORT_TEST_STRING}

API Call Should Succeed Uart Mode data_bits=8 parity="O" stop_bits=1

DUT Should Not Match String or Timeout 1 ${SHORT_TEST_STRING} ${

SHORT_TEST_STRING}

Show PHILIP Statistics

Listing 6.4: Parity and Data Bits Test

The stop bits test is challenging because modern UARTs do not check for the second

stop bit i.e. as soon as the �rst stop bit is detected, the frame is valid. Hence, the

negative test when DUT sends with two stop bits and PHiLIP receives with one stop bit

will fail. As a consequence, the test cannot really check whether DUT can work with two

stop bits. As Figure 6.3a on the following page shows, two 't' characters have no delay

between them. Therefore, a receiver relying on two stop bits will fail to correctly receive

the data.

The solution is to con�gure PHiLIP in such a mode that it will be forced to verify all

the bits from DUT. Following example demonstrates how the test works with PHiLIP

con�gured in 8-O-1 and DUT in 8-N-2.

DUT sends 't' character or 0x74. Translated into a serial frame it looks like 0-00101110-

11. PHiLIP interprets this character as 0-00101110-1-1 i.e the same number of bits. But

in the �rst case both '1' at the end of the frame are stop bits and in the second case one

'1' is a parity bit and the other is a stop bit. Therefore, PHiLIP will de�nitely check the

full frame.
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The 8-O-1 mode is chosen because every test string has to be terminated with 'NL'

character or 0x0a. This character has an odd number of '1' bits. Hence, all characters

in a test string must have an odd number of bits. Figure 6.3b demonstrates such a test

string.

Listing 6.5 shows both the positive and negative tests. At �rst a string will be sent and

received with 8-N-2 con�guration. Then serial parameters will be changed to 8-N-1 and

the test times out because PHiLIP gets error.

Two Stop Bits

DUT UART mode should exist dev=1

PHILIP.Setup Uart parity=${UART_PARITY_ODD}

API Call Should Succeed Uart Init

API Call Should Succeed Uart Mode data_bits=8 parity="N" stop_bits

=2

DUT Should Match String 1 ${TEST_STRING_FOR_STOP_BITS} ${

TEST_STRING_FOR_STOP_BITS}

API Call Should Succeed Uart Mode data_bits=8 parity="N" stop_bits

=1

DUT Should Not Match String or Timeout 1 ${TEST_STRING_FOR_STOP_BITS}

${TEST_STRING_FOR_STOP_BITS}

Show PHILIP Statistics

Listing 6.5: Two Bits Test

(a) Test String at 8-N-1 (b) Test String at 8-N-2 or 8-O-1

Figure 6.3: Stop Bits Test Strings
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6.2.4 Test Reports

Robot Framework provides extensive logging and reporting in XML format that will

then be automatically converted to HTML format. Figure 6.4 on the next page shows

the main test report including all test suits. Total statistics like the number of tests,

duration, and pass to fail ratio. Test failures were arti�cially provoked to demonstrate

how error reporting was implemented for UART tests.

Figure 6.5 on the following page and Figure 6.6 on page 40 provide details for individual

test suits. This time every test including its statistics is visible. "Message" �eld is used

to show test related information both in the case of successful execution and failure. For

UART tests this �eld shows PHiLIP's statics i.e. rx/tx counters and error �ags. Such

data helps to understand the cause of a failure as described in Section 6.1.2 on page 30.

Three tests from the Base test suite are marked as failed: Echo, Extended Echo, and

Wrong Baud Rate Test.

Echo test sends a short string and expects the same string in return. "Test timed out:

RX: 0, TX: 0, PE: 0, FE: 1, NF: 0, ORE: 0" is displayed in the "Message" �eld. To

understand why the test timed out PHiLIP's statistics should be examined. RX: 0 means

PHiLIP could not detect a string terminated with 'NL. FE: 1 points to a framing error

that explains why the test timed out.

Extended Echo test sends a short string and expects in return all characters except 'NL'

to be incremented by one. "Reference string does not match the received one: RX: 5,

TX: 5, PE: 0, FE: 0, NF: 0, ORE: 0" is displayed in the "Message" �eld. Both counters

show that PHiLIP could receive and send the test string. Possible error cause could be

that at least one character got damaged on a wire but the framing was correct.

Wrong Baud Rate test sends a short test string but at a di�erent baud rate than PHiLIP

is set to and thus expects a timeout. The test fails because the baud rate on the DUTs

side was not changed.

Figure 6.7 on page 40 shows a successful and Figure 6.8 on page 41 a failed test with all

their steps. Every step can be expanded to the most low-level keyword and the failed

keyword appears in red.
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Figure 6.4: Robot Framework Report Overview

Figure 6.5: Robot Framework Report UART Base Tests
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Figure 6.6: Robot Framework Report UART Mode Tests

Figure 6.7: Robot Framework Successful Baud Test at 9600 b/s
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Figure 6.8: Robot Framework Failed Echo Test
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6.3 Summary

Following goals were achieved during the implementation stage:

• PHiLIP project was extended to provide a UART slave functionality

• UART tests were integrated into the RIOT CI environment

PHiLIP's new functionality covers the features required for testing a UART as suggested

in Section 4.4 on page 20. And it also provides various test statistics like rx/tx counters

and error �ags that help to analyze the test failures.

Robot Framework had a �at learning curve and due to its extensibility with Python, the

tests could be easily integrated with RIOT PAL library. The keywords make the tests

easy to understand even for persons not involved in the test development process.

Test reports provide a good overview of the executed test and their results. In the case

of a test failure, UART tests show the failed keyword and statistics provided by PHiLIP

what helps to quickly �nd the cause of the problem.

Testing two stop bits was challenging because most UARTs just ignore them. A special

frame con�guration had to be developed to force UARTs to check this setting. Parity

handling required modifying the received data as STM32 UARTs leave it in the data

byte. Aside from these issues, all other tests could be implemented based on UART

speci�cation.

Modem signal test was not implemented in RIOT because related API for setting hard-

ware handshake is still missing from the UART driver. But PHiLIP already provides a

functionality to test it.
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7.1 Detected Issues in RIOT

After launching the CI service on PHiLIP basis one error with arduino-mega2560 was

detected. According to issue 10517, a baud rate got truncated if set higher than 32767

b/s. For example, when set to 115200 b/s, the DUT sent data at 250 b/s.

Further investigation revealed that the problem was how t e s t s /periph_uart /main . c

parsed a baud rate parameter. During the parsing this parameter was parsed using

a t o i ( ) function. For systems like STM32 where integer is 32-bit long, it was correct

but for systems with 16-bit integer type, the value got truncated.

The solution was to use s t r t o l ( ) function returning a long integer.

7.2 Test with a Modbus Slave Simulator

Diagslave Modbus Slave Simulator [24] simulates a Modbus slave providing both network

and serial versions of a protocol. The Modbus ASCII protocol used in this test supports

7 and 8 data bits, none, even, and odd parities as also 1 and 2 stop bits. These are

exactly the settings that DUT (Nucleo-F411re board) supports.

A special program modbus−r i o t−t e s t [38] was developed to send valid Modbus ASCII

packets and check the correct responses.

This test checks following combinations at 115200b/s: 8-N-1, 8-E-1, 8-O-1, 7-E-1, 7-O-1.

Two stop bits tests are omitted as both STM32 UART and FTDI FT232R used on the

PC side ignore the second stop bit. For each con�guration modbus−r i o t−t e s t was

recompiled with corresponding serial settings and �ashed onto Nucleo board.
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Modbus Slave Simulator was invoked with the following command line parameters for

each test:

• 8-N-1: −m a s c i i −b 115200 −d 8 −s 1 −p none

• 8-E-1: −m a s c i i −b 115200 −d 8 −s 1 −p even

• 8-O-1: −m a s c i i −b 115200 −d 8 −s 1 −p odd

• 7-E-1: −m a s c i i −b 115200 −d 7 −s 1 −p even

• 7-O-1: −m a s c i i −b 115200 −d 7 −s 1 −p odd

Table 7.1 shows a frame structure and content that modbus−r i o t−t e s t sends every

second. The response of a Modbus slave is demonstrated in Table 7.2.

Name Value(hex) Description

Start 3A Start of a frame: ":" character

Address 01 Slave address

Function 03 Read multiple holding registers

Register 0063 Read starting from the 100th register (0 is the �rst register)

Number 0005 Read 5 registers

LRC 94 Checksum

End 0D0A End of the frame: carriage return and line feed

Table 7.1: Modbus Frame Request

Name Value(hex) Description

Start 3A Start of a frame: ":" character

Address 01 Slave address

Function 03 Read multiple holding registers

Length 0A Response contains 10 bytes of data (�ve 16-bit register values)

Data 00..00 All �ve registers have 0000 as data

LRC F2 Checksum

End 0D0A End of the frame: carriage return and line feed

Table 7.2: Modbus Frame Response

As soon as the Modbus slave detects a valid request it prints its summary on the screen:

Slave 1: readHoldingRegisters from 100, 5 references
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For each serial frame con�guration, the test makes 100 cycles. modbus−r i o t−t e s t

compares each received frame with a reference response and increases the packet counter.

If a packet does not correspond to the reference one, an error counter is increased. At

the end of each session the packet counter must be 100 and error counter 0:

RX: [:01030A00000000000000000000F20x0d]\n

Total message counter: 100

Error counter: 0

The tests for all serial con�gurations were successful.

7.3 Digital Oscilloscope Veri�cation

Aside from tests against a PHiLIP device a digital oscilloscope with automatic UART

signal parsing was used to verify that DUT (Nucleo-F411re board) correctly implements

baud rate setup and the extended UART modes. With UART parsing mode enabled,

oscilloscope acts like a UART and requires the same settings to correctly sample the

serial data. The model used for evaluation can parse the following modes: 8-N-1, 8-O-1,

8-E-1, 7-O-1, 7-E-1. The tests were executed at 115200 b/s.

Figure 7.1 on the following page shows characters 't', 'u' and NL sent with 8-N-1 mode.

The oscilloscope marks both the start and stop bits as gray rectangles. Between these

rectangles, a hexadecimal value of a character is displayed. Two cursors around the

�rst serial frame show the di�erence between the 8-N-1 and 8-N-2 modes. Though the

oscilloscope does not support 8-N-2 mode directly it is possible to dissect such serial

frames as Figure 7.2 on the next page demonstrates. The second stop bit appears just

like a possible inter-character delay. Hence, the driver sets baud rate and the number of

stop bits correctly.

Figure 7.3 on page 47 and Figure 7.4 on page 47 show the same characters but with

enabled parity. Parity bit value also appears in the frame dissection. Figure 7.5 on

page 48 and Figure 7.6 on page 48 show modes 7-O-1 and 7-E-1. The frames get shorter.

Figure 7.7 on page 49 provides a negative example: the DUT sends data with 7-O-1

and the oscilloscope awaits 7-E-1. The character can still be decoded but parity error is

reported.

The oscilloscope test con�rmed the correctness of PHiLIP tests in regards to Nucleo-

F411re board.
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Figure 7.1: 8-N-1

Figure 7.2: 8-N-2
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Figure 7.3: 8-O-1

Figure 7.4: 8-E-1
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Figure 7.5: 7-O-1

Figure 7.6: 7-E-1
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Figure 7.7: Wrong Parity Detection
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8.1 Conclusion

This thesis had two primary goals: make UART API more con�gurable and to integrate

UART into the HIL testing infrastructure.

UART API now provides a new call that lets a user specify parity and the number of data

and stop bits at runtime. This enhancement was asked by many RIOT OS community

members and thus, is a long-awaited feature. The STM32 platform was the �rst to

actually implement the new call and now other platforms can follow.

The PHiLIP project can now simulate a serial slave. It already proofed very useful during

the UART API development. At �rst, it supported veri�cation of the serial settings and

then it helped during the refactoring stage.

UART tests are now a part of the continuous integration process. Since their inclusion,

some bugs could be detected and �xed. The tests have not revealed more issues because

UART interface currently provides very basic functionality and it is used extensively as a

console interface. Hence, it is already tested well enough. But with more UART drivers

getting new functionality or being refactored, the tests become more important.

The usage of Robot Framework as a testing tool made the tests readable and easy to

understand due to a keyword-driven approach.

8.2 Outlook

Serial frame con�guration is a feature that is available on all UARTs supported in RIOT

OS. But there are a lot of other partly not common features that are supported on these

MCUs. Hardware handshake, automatic RS485 transmitter control, polarity changing
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for UART signals just to name a few. A �exible API needs to be developed to handle all

these con�gurations.
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A Appendix

1 int uart_mode(uart_t uart, uart_data_bits_t data_bits, uart_parity_t parity,

2 uart_stop_bits_t stop_bits)

3 {

4 assert(uart < UART_NUMOF);

5

6 isr_ctx[uart].data_mask = 0xFF;

7

8 if (parity) {

9 switch (data_bits) {

10 case UART_DATA_BITS_6:

11 data_bits = UART_DATA_BITS_7;

12 isr_ctx[uart].data_mask = 0x3F;

13 break;

14 case UART_DATA_BITS_7:

15 data_bits = UART_DATA_BITS_8;

16 isr_ctx[uart].data_mask = 0x7F;

17 break;

18 case UART_DATA_BITS_8:

19 #ifdef USART_CR1_M0

20 data_bits = USART_CR1_M0;

21 #else

22 data_bits = USART_CR1_M;

23 #endif

24 break;

25 default:

26 return UART_NOMODE;

27 }

28 }

29 if ((data_bits & UART_INVALID_MODE) || (parity & UART_INVALID_MODE)) {

30 return UART_NOMODE;

31 }

32

33 #ifdef USART_CR1_M1

34 if (!(dev(uart)->ISR & USART_ISR_TC)) {

35 return UART_INTERR;
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36 }

37 dev(uart)->CR1 &= ~(USART_CR1_UE | USART_CR1_TE);

38 #endif

39

40 dev(uart)->CR2 &= ~USART_CR2_STOP;

41 dev(uart)->CR1 &= ~(USART_CR1_PS | USART_CR1_PCE | USART_CR1_M);

42

43 dev(uart)->CR2 |= stop_bits;

44 dev(uart)->CR1 |= (USART_CR1_UE | USART_CR1_TE | data_bits | parity);

45

46 return UART_OK;

47 }

Listing A.1: Source Code of the uart_mode Funtion

1 static inline void irq_handler(uart_t uart)

2 {

3 #if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32L0) \

4 || defined(CPU_FAM_STM32F3) || defined(CPU_FAM_STM32L4) \

5 || defined(CPU_FAM_STM32F7)

6

7 uint32_t status = dev(uart)->ISR;

8

9 if (status & USART_ISR_RXNE) {

10 isr_ctx[uart].rx_cb(isr_ctx[uart].arg,

11 (uint8_t)dev(uart)->RDR & isr_ctx[uart].data_mask);

12 }

13 if (status & USART_ISR_ORE) {

14 dev(uart)->ICR |= USART_ICR_ORECF; /* simply clear flag on

overrun */

15 }

16

17 #else

18

19 uint32_t status = dev(uart)->SR;

20

21 if (status & USART_SR_RXNE) {

22 isr_ctx[uart].rx_cb(isr_ctx[uart].arg,

23 (uint8_t)dev(uart)->DR & isr_ctx[uart].data_mask);

24 }

25 if (status & USART_SR_ORE) {

26 /* ORE is cleared by reading SR and DR sequentially */

27 dev(uart)->DR;

28 }
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29

30 #endif

31

32 cortexm_isr_end();

33 }

Listing A.2: Source Code of the irq_handler Funtion

1 static error_t _rx_str(PORT_UART_t *port_uart) {

2 char *str = port_uart->str;

3 UART_HandleTypeDef *huart = port_uart->huart;

4

5 uint16_t rx_amount;

6 error_t err = ENOACTION;

7

8 rx_amount = _get_rx_amount(port_uart);

9 if (rx_amount >= 1) {

10 if (port_uart->mask_msb) {

11 for (int i = 0; i < strlen(str); i++) {

12 str[i] &= 0x7f;

13 }

14 }

15 if (str[rx_amount - 1] == RX_END_CHAR

16 && _get_rx_amount(port_uart) != port_uart->

size) {

17 _update_rx_count(port_uart, strlen(str));

18 HAL_UART_Abort(huart);

19 HAL_UART_AbortReceive(huart);

20 err = parse_input(port_uart->mode, str, port_uart->

size, port_uart->access);

21 _update_tx_count(port_uart, strlen(str));

22 HAL_UART_Transmit_DMA(huart, (uint8_t*) str, strlen(

str));

23

24 }

25 }

26 return err;

27 }

Listing A.3: Source Code of the _rx_str Funtion

1 class PhilipAPI(LLMemMapIf):

2
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3 ROBOT_LIBRARY_SCOPE = ’TEST SUITE’

4 ROBOT_LIBRARY_VERSION = get_version()

5

6 def __init__(self, port, baudrate):

7 super(PhilipAPI, self).__init__(PHILIP_MEM_MAP_PATH, ’serial’, port,

baudrate)

8

9 def reset_dut(self):

10 ret = list()

11 ret.append(self.write_reg(’sys.cr’, 0xff))

12 ret.append(self.execute_changes())

13 sleep(1)

14 ret.append(self.write_reg(’sys.cr’, 0x00))

15 ret.append(self.execute_changes())

16 sleep(1)

17 return ret

18

19 def setup_uart(self, mode=0, baudrate=115200,

20 databits=serial.EIGHTBITS, parity=serial.PARITY_NONE,

21 stopbits=serial.STOPBITS_ONE, rts=True):

22 ret = list()

23 ret.append(self.write_reg(’uart.mode’, int(mode)))

24

25 ret.append(self.write_reg(’uart.baud’, int(baudrate)))

26

27 if databits == serial.SEVENBITS:

28 ret.append(self.write_reg(’uart.ctrl.data_bits’, 1))

29 elif databits == serial.EIGHTBITS:

30 ret.append(self.write_reg(’uart.ctrl.data_bits’, 0))

31

32 if parity == serial.PARITY_NONE:

33 ret.append(self.write_reg(’uart.ctrl.parity’, 0))

34 elif parity == serial.PARITY_EVEN:

35 ret.append(self.write_reg(’uart.ctrl.parity’, 1))

36 elif parity == serial.PARITY_ODD:

37 ret.append(self.write_reg(’uart.ctrl.parity’, 2))

38

39 if stopbits == serial.STOPBITS_ONE:

40 ret.append(self.write_reg(’uart.ctrl.stop_bits’, 0))

41 elif stopbits == serial.STOPBITS_TWO:

42 ret.append(self.write_reg(’uart.ctrl.stop_bits’, 1))

43

44 # invert RTS level as it is a low active signal

45 if rts:
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46 ret.append(self.write_reg(’uart.ctrl.rts’, 0))

47 else:

48 ret.append(self.write_reg(’uart.ctrl.rts’, 1))

49

50 # reset status register

51 ret.append(self.write_reg(’uart.status’, 0x00))

52

53 # apply changes

54 ret.append(self.execute_changes())

55 sleep(1)

56 return ret

57

58 def get_counters(self):

59 ’’’Get rx/tx counters.’’’

60 ret = list()

61 ret.append(self.read_reg(’uart.rx_count’))

62 ret.append(self.read_reg(’uart.tx_count’))

63 return ret

64

65 def get_error_flags(self):

66 ’’’Get error flags.’’’

67 ret = list()

68 ret.append(self.read_reg(’uart.status.pe’))

69 ret.append(self.read_reg(’uart.status.fe’))

70 ret.append(self.read_reg(’uart.status.nf’))

71 ret.append(self.read_reg(’uart.status.ore’))

72 return ret

Listing A.4: Source Code of PhilipAPI Class
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